Fig. 6: Prospective resilience and randomized gene expression. | Communications Biology

Fig. 6: Prospective resilience and randomized gene expression.

From: A computational exploration of resilience and evolvability of protein–protein interaction networks

Fig. 6

We examine if specific gene expression is driving the high prospective resilience of the expression-based attachment rule or if merely attaching nodes based on a shuffled gene expression distribution could bring about these results. Each new node joins with m = 5 for S. cerevisiae and E. coli, and m = 6 for H. sapiens. These values were selected so that the slope of the prospective resilience would be closest to 0.0 when the gene expression was not shuffled (0% shuffled). See Table 2 for how the correlation between a node’s degree and its gene expression changes as noise increases. a Prospective resilience of S. cerevisiae ribosomal network. b Prospective resilience of E. coli ribosomal network. c Prospective resilience of H. sapiens ribosomal network. Notably, we find that the prospective resilience of the networks increases simply by increasing the fraction of nodes with shuffled gene expressions.

Back to article page