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LeMeDISCO is a computational method for
large-scale prediction & molecular interpretation
of disease comorbidity
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To understand the origin of disease comorbidity and to identify the essential proteins and
pathways underlying comorbid diseases, we developed LeMeDISCO (Large-Scale Molecular
Interpretation of Disease Comorbidity), an algorithm that predicts disease comorbidities from
shared mode of action proteins predicted by the artificial intelligence-based MEDICASCY
algorithm. LeMeDISCO was applied to predict the occurrence of comorbid diseases for 3608
distinct diseases. Benchmarking shows that LeMeDISCO has much better comorbidity recall
than the two molecular methods XD-score (44.5% vs. 6.4%) and the Sag score (68.6% vs.
8.0%). Its performance is somewhat comparable to the phenotype method-based Symptom
Similarity Score, 63.7% vs. 100%, but LeMeDISCO works for far more cases and its large
comorbidity recall is attributed to shared proteins that can help provide an understanding of
the molecular mechanism(s) underlying disease comorbidity. The LeMeDISCO web server is
available for academic users at: http://sites.gatech.edu/cssb/LeMeDISCO.
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distinct diseases in clinical data from 13,039,018

individuals!, 78.8% involving all 13,034 diseases have a
larger than random probability that they co-occur in one indi-
vidual. Disease comorbidity, the co-occurrence of distinct diseases
in one individual, is an interesting medical phenomenon, and it
is important to understand their molecular origins. For example,
rheumatoid arthritis, autoimmune thyroiditis, and insulin-
dependent diabetes mellitus co-occur, but rheumatoid arthritis
and multiple sclerosis do not?. Previously, there have been several
efforts to investigate the molecular features responsible for
human disease comorbidities>. Some studies focused on parti-
cular subsets of diseases* or ethnic groups, while others investi-
gated the entire human disease network®=8. For example, ref. ©
applied text mining to search the literature for disease-symptom
associations. They then predicted the entire human disease
—disease network based on a calculated symptom similarity score.
While this approach covers many human diseases, it relies on
prior knowledge of symptomatic information; this limits its dis-
ease coverage and only explains one phenotype (disease) by
another phenotype (symptom). ref. 7 utilized known disease-gene
associations from GWAS!® and OMIM combined with a
protein-protein interaction network to identify connected
disease-gene clusters or modules. Another study also utilized
known disease-gene associations and protein-protein interaction
networks to characterize disease-disease relationships without
requiring gene clusters$; thus, its disease coverage is better than in
ref. 7. These studies that used known disease-gene associations
are limited by data availability. Indeed, only a small fraction of
diseases have known associated genes. For example, ref. 8 only
covers 1022 of the 8043 diseases in the Disease Ontology
database!l, with just 6594 pairs of diseases having a non-zero
number of shared genes. Similarly, ref. 7 found that about 59% of
44,551 disease pairs do not share genes and their relationship
cannot be resolved based on the shared gene hypothesis. The
effect of possibly missed proteins arising from both direct and
indirect protein-protein interactions with known interacting
proteins are accounted for by the network propagation method in
the XD-score® or by the disease module and network distance of
the Sap score’. However, those scores only marginally improve
the recall rate of disease pairs that are clinically comorbid com-
pared to that of shared genes in their methods (<10% recall rate
by both the XD-score and Spp score).

To address these limitations of existing studies, we developed
LeMeDISCO, which extends our recently developed MEDI-
CASCY machine learning approach!? for predicting disease
indications and mode of action (MOA) proteins (as well as small
molecule drug side effects and efficacy) to predict disease
comorbidities and the proteins and pathways responsible for
their comorbidity. LeMeDISCO covers 6.5 million pairs of dis-
eases compared to 97,666 pairs by the XD-score®, 44,551 pairs by
the Sap score’, and 133,107 pairs by the Symptom Similarity
Score®. Assuming that the most enriched comorbid proteins are
responsible for disease comorbidity, we determine the most
frequent comorbidity enriched MOA proteins. These proteins
are then employed in pathway analysis!3. As examples, we pre-
dict the comorbid diseases, comorbidity enriched MOA proteins,
and pathways associated with coronary artery disease (CAD) and
ovarian cancer (OC). We note that recently machine learning
(ML) methods have been successfully employed in numerous
areas of biology!214-16. However, due to MLs “black box” nat-
ure, it is not easy to trace back the biological meaning of the
predictions and the molecular origin(s) of disease comorbidity.
Thus, as in previous works®~8, we adopt an explicit score that
provides a set of common proteins responsible for comorbidity
predictions.

O f the total of 3,634,743 disease pairs involving 13,034

Results

Benchmarking results of LeMeDISCO. To assess its relative
performance, we compared the results of LeMeDISCO to three
other methods, the XD-score$, the S,g score’, and the Symptom
Similarity Score®. The XD-score was calculated as described in
ref. 8: Using known disease-gene associations to create a vector
representation of the disease by setting 1 for all associated genes
and 0 for all others; then the vector was iteratively updated based
on the Random Walk with Restart (RWR) algorithm, with a
restart probability of p=0.9 by using the STRING network
database. Finally, the XD-score quantifying the relation of two
diseases is defined using the updated vectors of two diseases.
NG is the number of shared genes between disease pairs®. The S45
score, a protein—protein network-based separation of a disease
pair calculated from known disease-gene associations is defined
as Spp = <dap>— (<daa> +<dpp>)/2, where Sap compares the
shortest distances between proteins within each disease A &
B7, <dpa>and <dgp>, to the shortest distances <dap > between
A-B protein pairs’. The Symptom Similarity Score was obtained
by large scale text mining of the literature for disease-symptom
relations represented as a vector, with the similarity score defined
as the cosine similarity of the respective vectors®. In this work, a
J-score for disease similarity is defined as the Jaccard index!”
of two diseases (see Method for details). The disease-disease
relations of benchmarking data from Medicare insurance data-
bases are quantified by their relative risk (RR) and ¢-score
(see Methods section for details)!. The relative risk RR is defined
in Eq. 4a and is the probability that two diseases occur in a single
individual relative to random. The ¢-score is the Pearson’s cor-
relation for binary variables and is defined in Eq. 4b. Diseases in
this work are represented by DOID numbers from the Human
Disease Ontology database!l, and they are in clinical data usually
denoted by ICD-9 or ICD-10 classifications!'® or their Medical
subject headings (MeSH) names!?.

Table 1 summarizes the results. We define a true positive
comorbidity pair when their clinic log(RR) >0, a predicted positive
when XD-score >0, Syp score <0, or the Symptom Similarity
Score >0.1 and g value <0.05 for our J-score. Recall is defined as
(the number of true positives having score > cutoff or < cutoff for
Sap score)/(total number of true positives). We emphasize that in
calculating recall, the cutoffs are suggested by the respective work as
being either biologically meaningful”8 or statistically significant®. In
addition to Pearson’s correlation coefficient (c.c.), recall and
precision, the cutoff independent measures area under the receiver
operating characteristic (AUROC) and the area under the precision-
recall curve (AUPRC) are also compared.

Mapping the DOIDs to the ICD-9 ID classifications of ref. 1,
excluding easy pairs when in the MEDICASCY library two

shared # of efficious drugs >0.9, we
\/# diseaselefficious drugsx # disease2efficious drugs

obtain 191,966 disease pairs for use in LeMeDISCO benchmark-
ing. All Pearson’s correlations of the J-score with the log(RR)
score (c.c.=0.116, p value=0) and ¢-score (c.c.=0.090, p
value = 0) are statistically significant (p value <0.05). The recall
rate of J-score for this large set is 37.1%, and the AUROC of 0.528
is well better than random of 0.5.

The Permute drug-protein test has an average + standard
deviation from 100 runs 1958.6 + 144.9 (54.3%) for diseases with
non-zero MOA proteins. We note there are still significant
correlations, though the absolute c.c. drops from 0.116 to 0.050 (p
value = 0.0) for log(RR) and from 0.090 to 0.060 (p value = 0.0) for
the ¢-score, and the recall drops from 37.1% of true relationships to
8.8% due to that the number of diseases having correctly assigned
MOA proteins drops to around half. All other measures are also
worse. The p values of the difference between LeMeDISCO and this
permutation test are significant for all measures (<0.05).

diseases have
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Table 1 Comparison of LeMeDISCO's J-score with the XD-score, NG, S5 score and Symptom Similarity Score for correlations
with comorbidity quantified by the log(RR) score, ¢p-score, and recall?.

Log(RR) score @-score Recall Precision AUROC AUPRC
191,966 disease pairsb
LeMeDISCO 0.116 (0.0) 0.090 (0.0) 37.1% 77.2% 0.528 0.780
Permute 0.050+0.004 0.060 £0.004 8.8+0.7% [2.0x107315] 74.7 +13%[0.027] 0.495+0.006 0.755+0.004
drug-protein  (0.0) [13x10754]  (0.0) [21x10717] [3.5x107°] [49x10"]
[p value]
Permute 0.0026 £0.0056 0.0029 £0.0075 0.0137£0.0828% [0.0] 54.3+46.5% [0.31] 0.500+0.001 0.757 +£0.0006
drug-disease 0.24) (0.19) [1.2x10731] [1.7 x10-12] [2.3x107294]
[p value] [4.0 x10792]
29,658 pairs©
LeMeDISCO 0.146 (0.0) 0.106 (0.0) 44.5% 80.6% 0.531 0.812
XD-score® 0.042 (2.8x1071) 0.071(9.7x1073%)  6.4% 77.8% 0.510 0.801
NGd 0.0047 (0.42) 0.053 (6.6 x10720) — - - -
943 disease pairs®
LeMeDISCO 0.0986 (0.0024) 0.0886 (0.0065) 68.6% 77.7% 0.529 0.798
Sag score’ —0.0620 (0.057) —0.0413 (0.205) 8.0% 85.3% 0.434 0.761
2621 disease pairs
LeMeDISCO 0.140 (52x10713) 0135 (3.8x10719) 63.7% 79.3% 0.512 0.814
Symptom 0.322 (0.0) 0.194 (1.4 x10-23)  100% 79.6% 0.587 0.856
similarity®
aNumbers in parentheses “()" are the p values of the corresponding correlation. Bold indicates the best results for the given dataset. For the permutations of drug-protein and drug-disease relationships,
the average * standard deviation of 100 runs with different random seeds was given, the number in parenthesis “[]" is the p value converted from the z-score = (LeMeDISCO value-average)/standard
deviation to characterize the statistical significance of the difference between LeMeDISCO and permutation tests.
bMapping the DOID IDs from the human DO database to ICD-9 IDs of ref. |, gives a set of 191,966 disease pairs.
cMapped the ICD-9 disease code to our DOID of DO and obtained a consensus subset of 29,658 disease pairs from Table 1's dataset of 97,665 disease pairs in ref. 8.
dNG is the number of shared genes between disease pairs in ref. &.
eConsensus set of 943 disease pairs from the dataset of ref. 7 and our dataset of 191,966.
A consensus dataset of 2621 disease pairs was obtained from their Supplementary dataset 4 of ref. © compared to our set of 191,966 pairs.

On average, the Permute drug-disease test only has 55.09 (1.5%)
diseases with non-zero MOAs. Its average recall of 0.0137% is
much worse than that of the Permute drug—protein test because it
loses the correct connections between diseases and proteins.
Correlations with both log(RR) (c.c. = 0.0026, p value = 0.24) and
the @-score (c.c. = 0.0029, p value = 0.19) are insignificant. Except
for precision, the p values of the difference between LeMeDISCO
and this permutation test are all very significant (well below 0.05).
The 54.3% average precision is due to its very few predictions
(average only ~26). With these few predictions, a random selection
of 26 pairs from the 191,966 (75.6% are true positives defined as
log(RR) >0) will have a probability of >-;° |, CK, x 0.756% x 0.24426-
k= 0.996 of having greater than 54.3% precision. This means the
precision is not better than random selection.

To understand the significant difference between the Permute
drug-protein and the Permute drug-disease tests, we note that
MEDICASCY predicts drug-disease pairs based on two compo-
nents: One uses the drug’s chemical structure to learn the indications
of a drug from those drugs with similar structure. This component is
insensitive to whether the drugs’ protein targets change. The other
depends on the drug’s protein targets. In the Permute drug-protein
test, a permuted drug-protein relation will randomly change the
drug’s protein targets to another drug’s. MEDICASCY was applied
after the permutation to ensure correct drug-disease relations.
Thus, MEDICASCY’s prediction of drug-disease relations still
has information from the permuted drug-protein relation and the
disease-(through permuted drug)-protein relations are not com-
pletely lost. This actually reflects the fact that there are a subset
of proteins that occur in many diseases and permuting the
drug-protein relationship for this subset does not change the
identification of proteins in a given disease. On the other hand,
the permuted drug-disease test completely destroys the mapping of
the protein (through the drug) to disease.

To compare LeMeDISCO’s J-score to the XD-score, we mapped
their ICD-9 disease code to the DOIDs and obtained a subset of

29,658 pairs from their dataset of 97,665 pairs®. As shown in
Supplementary Fig. 1 and Table 1, the XD-score has a c.c. of 0.042
(p value = 2.8 x 10713) with log(RR) and c.c. = 0.071 (p value =
9.7 x 1073%) with the @-score. Their NG score (the number of
shared genes) essentially has no significant correlation with log(RR)
with a c.c. of 0.0047 (p value = 0.42) and only shows a correlation
of 0.053 (p value = 6.6 x 10720) with the ¢-score. The J-score has
much better correlations: c.c. = 0.146 (p value = 0.0) with log(RR),
0.106 (p value = 0.0) with the ¢@-score. The recall rate of the J-score
is 44.5% compared to 6.4% for the XD-score. J-score’s precision
(80.6 vs. 77.8%), AUROC (0.531 vs. 0.510), AUPRC (0.812 vs.
0.801) are all better. Supplementary Fig. 1 shows distinct patterns of
J-score and XD-score. The data points of the XD-score are mostly
concentrated at an XD-score = 0, whereas those of the J-score
spread across the full range of 0-1.

For comparison with the S, score’, the MeSH!® disease names
were mapped to their DOIDs. A consensus set of 943 disease
pairs from their dataset and ours was obtained. As shown in
Supplementary Fig. 2 and Table 1, compared to S,p’, for the 947
disease pairs, LeMeDISCO’s J-score has a c.c.=0.0986 (p
value = 0.0024) with log(RR) and a c.c.=0.0886 (p value=
0.0065) with the ¢-score that are both better than those of the
Sap score with a c.c.=—0.0620 (p value = 0.057) with log(RR)
and c.c. = —0.0413(p value = 0.205) with the ¢-score; both are
insignificant. The recall rate of the J-score is 68.6% and is an
order of magnitude better than the 8.0% by the Ssp score when
defining comorbid pairs when the Ssp score <0; that is for a
biologically meaningful disease-disease relationship”. J-score has
AUROC = 0.531 compared to Ssp score’s 0.434 that is even worse
than random value 0.5 because its dominant S,p score >0 region
is worse than random. The J-score also has a better AUPRC
(0.798 vs. 0.761). However, J-score’s precision (77.7% vs. 85.3%)
is slightly worse. Supplementary Fig. 2 shows that the data points
of the S,p score are concentrated in the region S,z >0, whereas
those of the J-score spread over the 0-1 region.
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Next, a common dataset of 2621 disease pairs was obtained for
comparison with the Symptom Similarity Score®. As shown in
Supplementary Fig. 3 and Table 1, the Symptom Similarity
Score has better correlations of 0.322 (p value = 0.0) than 0.140
(p value = 5.2 x 10~13) by the J-score for the log(RR) and 0.194
(p value = 1.4 x 10723) than 0.135 (p value = 3.8 x 10712) by the
J-score for the ¢@-score. It also has better recall (100 vs. 63.7%),
AUROC (0.587 vs. 0.512) and AUPRC (0.856 vs. 0.814).
However, the Symptom Similarity Score only explains the
relationship of one phenotype (symptom) to another phenotype
(disease). Nevertheless, all correlations of the J-score are
statistically significant. The J-score’s precision is almost identical
to that of the Symptom Similarity Score (79.3 vs. 79.6%). We note
that Supplementary Figs. 3, 4 show very similar patterns of the
J-score and Symptom Similarity Score.

MEDICASCY based MOA protein prediction. The ICD-10
main classification coverage of the 3608 diseases is shown in
Fig. 1a. We first examine the number of predicted MOA proteins
per indication from MEDICASCY!2. Using a g value cutoff of
0.05 and including protein isoforms, the average (median)
number of MOA proteins per indication is 1,142.2 (339); the
maximal and minimal values are 15,281 (almost half of the total
32,584 screened proteins) for mast cell sarcoma and 0 for 82
diseases. The histogram of the number of MOAs is shown in
Fig. 1b. 71.0% (40.6%) of indications have >100 (500) MOA
proteins. These associations allowed us to expand the protein
repertoire that might be associated with each disease and
resemble the statistics from GWAS studies. Below, we describe
the use of LeMeDISCO to predict disease comorbidities as well as
prioritize these proteins.

Shared MOA proteins explain disease comorbidity by way of
disease-disease relationships. We next examine the overall
characteristics of the predicted comorbidity network of 3608 dis-
eases. Eighty-two diseases do not have MOA protein predictions
and thus do not have predicted comorbidities. There are a total of
6,507,028 possible pairwise disease associations. Of these, there are
2,137,022 significant pairwise disease associations (g value <0.05)
excluding the diagonals given by LeMeDISCO. Out of 3608, 3523
diseases have significant comorbidities. The density and frequency
of the J-score for the significant non-redundant pairs is in Fig. 1c,
and the density and frequency of the degree (number of edges) for
each node (disease) is represented in Fig. 1d. Using a g value cutoff
of 0.05, the average (median) number of comorbidities per disease
is 608.3 (491). The largest (smallest) number of comorbidities is
2229 for Pneumonia aspiration and the smallest is 1 for these four
diseases: glossopharyngeal neuralgia, median arcuate ligament
syndrome, toxoplasmosis, hallucinogen dependence. The average
closeness + one standard deviation (defined as the reciprocal of the

: . Number of other nodes
shortest distance to all other nodes: SShortat dsianes toother mo 5 of all

nodes is 0.535 + 0.084, indicating that the majority of disease pairs
have the shortest distance around 1/0.535. The average between-
ness is 1135+ 1727, ie., on average, 1135 pairs of diseases have
their shortest distance passing through the given disease node.
Thus, the disease network is very dense.

The cumulative distribution for the J-score and g values for all
of the comorbidities and the top 100 are shown in Supplementary
Figs. 5, 6, respectively. The summary statistics of the scores for
these thresholds are shown in Supplementary Table 1. What is
clear from these figures and Supplementary Table 1, particularly
for the top 100 ranked comorbidities, is that the 99.6% top-
ranked 100 comorbidities have a g value <0.005. In other words,
while a g value threshold of 0.05 is used, in reality, the actual g
values employed for subsequent analysis are far more significant.

Around 32.8% of the disease pairs have a g value <0.05. This
result is consistent with the 37.1% recall of large-scale bench-
marking (see Table 1). As shown in Fig. le, the giant component
(GP) of the disease-disease network covers the entire network
when the J-score is <0.1 and the q value <0.05, i.e., starting from
any disease, one can walk to any other disease on the network. As
the J-score cutoff increases, the number of diseases in the giant
component decreases; however, the decrease is very slow. The
rapid decrease only happens around a 0.45 J-score corresponding
to an average q value of 1.63x 1070+ 1.81 x 104 Thus, the
disease network is not only dense, but it is also strongly (i.e., one
has to apply a high J-score cutoff to break the network into small
GP) and highly significantly (compared to default q value 0.05)
connected. These issues will be explored in future work.

LeMeDISCO identified MOA proteins. In addition to the
comorbidity predictions, LeMeDISCO also identifies comorbidity
enriched MOA proteins. The comorbidity enriched MOA pro-
teins are hierarchically ranked by their CoMOAenrich score
(defined in the Methods section). Comparing the top 100
comorbidity enriched MOA proteins (hierarchically ranked by
the CoMOAenrich score) with the MEDICASCY top 100 MOA
proteins (ranked by g value), 92.5% of the diseases have proteins
with a significant overlap p value (<0.05). The cumulative dis-
tribution for the CoMOAenrich scores and g values for all the
comorbidity enriched MOA proteins and the top 100 are shown
in Supplementary Figs. 7, 8, respectively. The summary statistics
of the scores for these thresholds are shown in Supplementary
Table 1. For the comorbidity enriched MOA proteins ranked by
their CoMOAenrich score, 65.9% have a g value <0.005. If one
only assesses the top 100 comorbidity enriched MOA proteins,
67.1% have a g value <0.005, which are the proteins used for the
global pathway analysis.

Mapping of the LeMeDISCO MOA proteins to significant
pathways. The cumulative distribution of the g values for the
pathways and the top 100 pathways are shown in Supplementary
Fig. 9 and the summary statistics are provided in Supplementary
Table 1. As shown in Supplementary Fig. 9, 73.1% of the sig-
nificant pathways (g value <0.05) have a g value <0.015. About
3453 or 95.7% of the 3608 diseases have significant pathways. We
further note that there are some MOA proteins (e.g., AR, NR4A3,
and PGR) and pathways (e.g., HSP90 chaperone cycle for steroid
hormone receptors, SUMO E3 ligases SUMOylate target proteins,
SUMOylation) that are present in approximately a third of the
diseases in our library.

Applications of LeMeDISCO. By way of illustration, we applied
LeMeDISCO to two disparate diseases, coronary artery disease
(CAD) and ovarian cancer (OC).

Coronary artery disease (CAD). CAD, a leading cause of death
worldwide, is caused by narrowed or blocked arteries due to
plaques composed of cholesterol or other fatty deposits lining the
inner wall of the artery. These plaques result in decreased blood
supply to the heart?0. We find 2576 significant comorbid diseases
(g value <0.05) and 785 (558) comorbidity enriched MOA pro-
teins (genes) (score >0.01), meaning that at least one of the top
100 comorbid disease shares the protein as an MOA protein. This
is the p value weighted comorbidity frequency normalized by the
number of comorbid diseases used for calculating the frequency.
See Methods for more details. Forty-nine significant pathways (q
value <0.05) are associated with the top-ranked 100 comorbidity
enriched proteins. The top 20 disease comorbidities, top 20
comorbidity enriched MOA proteins, and top 20 significant
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Fig. 1 Summary results for 3608 distinct diseases. a ICD-10 main classification coverage across the 3608 diseases. Some diseases are found in multiple
groups; they were counted in each group with which they are associated. b Histogram of the number of MOAs. ¢ Frequency (bin size 0.02) and density of
the J-score for the ~2 million significant (g value <0.05), non-redundant disease pairs. d Frequency (bin size =100) and density of the degree (number of
edges) of each disease (node). e Fraction of diseases in the giant component of disease-disease network versus the J-score cutoff.
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Table 2 Top 20 comorbidities (excluding same disease pair, (i.e.,, CAD-CAD)), top 20 comorbidity enriched MOA proteins (with
respect to original disease), and top 20 pathways associated with the prediction CAD results.
Comorbidities MOA proteins Pathways
Disease J-score g value Gene name Score Pathway q value
Heart disease 0.47 <0.0001 COX7A2L 038 Class A/1 (Rhodopsin-like receptors) 3.7x10°
Cardiovascular system disease 0.45 <0.0001 COX7A2 0.38  Olfactory signaling pathway 2.7x10-8
Obstructive lung disease 0.43 <0.0001 COX7A1 0.38  GPCR ligand binding 3.8x10-8
Asthma 0.44 <0.0001 NR4A3 0.36  The canonical retinoid cycle in rods (twilight vision) 4.5 x10~7
Myocardial infarction 0.39 <0.0001 PGR 0.36 ADORA2B mediated anti-inflammatory cytokines 1.4x10-6
production
Familial hyperlipidemia 0.33 <0.0001 LXN 0.35  Nuclear receptor transcription pathway 2.3x10°6
Diabetes mellitus 0.33 <0.0001 OSBPL8 0.35  Anti-inflammatory response favoring Leishmania 7.6 %1076
parasite infection
Rhinitis 0.32 <0.0001 SLC8A3 0.35  Leishmania parasite growth and survival 7.6x10°6
Liver disease 0.31 <0.0001 KCNAT10 0.35  Peptide ligand-binding receptors 33x%x10°°
Hyperthyroidism 0.31 <0.0001 NR3C2 0.35  SUMOylation of intracellular receptors 35%x10°°
Chronic obstructive pulmonary disease 0.30 <0.0001 RARREST 0.35 G alpha (i) signaling events 9.7 %1075
Lymphedema 0.29 <0.0001 GPRC5A 0.34  Visual phototransduction 13x10-4
Allergic asthma 0.29 <0.0001 ANXAT1 0.34  Amine ligand-binding receptors 1.5%x10-4
Intrinsic asthma 0.29 <0.0001 NR3C1 0.33  Leishmania infection 1.6x10-4
Pulmonary emphysema 0.29 <0.0001 ELOVL7 0.33  Integrin cell surface interactions 3.6x104
Syndrome 0.29 <0.0001 TSPAN13 0.33  Sodium/Calcium exchangers 9.6x10—4
Congestive heart failure 0.28 <0.0001 GRP 0.33  Retinoid cycle disease events 9.7 x10~4
Kidney disease 0.28 <0.0001 ELOVL3 0.33  Diseases associated with visual transduction 9.7 x10~4
pseudohypoparathyroidism 0.28 <0.0001 ELOVL1 0.32  Reduction of cytosolic Ca++ levels 9.7x10~4
Fatty liver disease 0.28 <0.0001 OSBPL5 0.32  Diseases of the neuronal system 9.7 x10~4

pathways are shown in Table 2. There are several significant
cardiovascular-related comorbidities such as heart disease, car-
diovascular system disease, myocardial infarction, and congestive
heart failure. Asthma?!, diabetes?2, and obstructive lung disease?>
are also in the top ten with known comorbidities to CAD. CAD is
also known to be comorbid with liver disease?4, kidney disease?>,
and hyperthyroidism2°. Interestingly, allergic rhinitis is associated
with decreased coronary heart disease?’. In summary, 14 (70%) of
the top 20 predicted comorbid diseases have literature evidence to
support these predictions. To further show that these comor-
bidities with literature evidence cannot be generated randomly,
we randomly selected 20 diseases from the 3608 diseases and did
a literature search for their associations with CAD. We found
nine diseases, far fewer than our list of 14 diseases (see Supple-
mentary Table 2). A further random test selecting 20 from those
after excluding LeMeDISCO predicted comorbid diseases to
CAD, we find six diseases having literature evidence (see Sup-
plementary Table 3).

Among the top, COX-related comorbidity enriched proteins
were found. COX proteins are involved in the synthesis of
prostanoids. Prostanoids are structurally like lipids and are
involved in thrombosis and other undesirable cardiovascular
events?8. Several GPCR-related pathways (Class A/1 rhodopsin-
like receptors, olfactory signaling pathway, GPCR ligand
binding) are among the top five pathways predicted for CAD,
consistent with the literature that GPCRs play a crucial role in
heart function??.

The above results were obtained without any extrinsic
knowledge of CAD. Next, we show how LeMeDISCO can be
used to prioritize targets from other studies. A GWAS study
identified 155 CAD-associated genes’*. While they are asso-
ciated with CAD, to find out which ones to target is a non-
trivial task. Here, we applied LeMeDISCO to prioritize them by
examining their frequencies of presence in other diseases. There
were 26 comorbidity enriched MOA proteins (score >0.01) and
40 pathways (p value <0.05, but g value <0.20) found
from global pathway analysis of the 26 comorbidity enriched

MOA proteins. The top disease comorbidities, top 20 comor-
bidity enriched MOA proteins, and top 20 pathways are shown
in Table 3. There were only three significant predicted
comorbidities (g value <0.05) by LeMeDISCO. The top two
comorbidities are renal artery disease and anuria, both are
associated with dysfunction of the kidneys and are related to
CAD?>31, Anuria is attributed to failure of the kidneys to
produce urine, and renal artery disease occurs when the arteries
that supply blood and oxygen to the kidneys narrows. A study
found an increase in renal artery stenosis in patients with
CAD?3L. The last comorbid disease is anterior uveitis. Studies
showed that anterior uveitis is associated with Kawasaki disease
that can lead to heart complication32. Thus, all three have
literature evidence.

While the top genes are associated with CAD according to the
GWAS study of ref. 39, we predicted that they are also associated
with the corresponding comorbid diseases—renal artery disease,
anuria, and anterior uveitis. For example, VEGFA is predicted to
be associated with all three comorbid diseases. It was found that
in progressive kidney disease, the VEGFA expression level is
attenuated3; in contrast, in uveitis disease, it is increased34. Other
top genes are predicted to be associated only with anterior uveitis.
Among them, SERPINAL is a potential causal gene of uveitis®’,
RAB23 is associated with uveitis in sarcoidosis®®, and HHAT has
evidence of association with uveitis®’.

None of the 40 pathways obtained using the top 26 genes
overlaps with the six pathways obtained using the original 155
genes with the same cutoff. The predicted top pathway RAB
geranylgeranylation through RAB23/RAB5C genes is part of the
signaling network of statin-induced effects of improving cardiac
health in Drosophila38.

Ovarian cancer (OC). LeMeDISCO predicts 1,092 significant
comorbidities to OC (g value <0.05), with 282 (171) comorbidity
enriched MOA proteins (genes) (score >0.01). There were 159 sig-
nificant pathways (q value <0.05) from the top 100 comorbidity
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Table 3 Up to top 20 comorbidities, top 20 comorbidity enriched MOA proteins (with respect to input), and top 20 pathways

(ranked by p value since g values are the same) associated with the prediction CAD GWAS-driven LeMeDISCO results using the

gene set from ref. 30,

Comorbidities MOA proteins Pathways

Disease J-score q value Gene name Score Pathway q value p value

Renal artery 0.028 58x10=4 PEX10 0.24  RAB geranylgeranylation 0.16 4.6x103

disease

Anuria 0.022 53x10-3 BEND6 0.23  Platelet activation, signaling and aggregation 0.16 7.7x103

Anterior uveitis 0.015 0.022 NEURL1 0.22  MET activates RAP1 and RAC1 0.16 0.017
CCM2 0.20 RHO GTPases activate KTN1 0.16 0.017
FGD6 0.20  Response to elevated platelet cytosolic Ca2+ 0.16 0.019
CENPW 0.20  Killing mechanisms 0.16 0.019
PCID2 0.20 WNT5:FZD7-mediated leishmania damping 0.16 0.019
RPL17 0.19  Diseases of signal transduction by growth factor receptors and 0.16 0.022

second messengers
MANEAL 0.18  PTK6 Regulates RHO GTPases, RAS GTPase, and MAP kinases 0.16 0.022
HHAT 0.17  TFAP2 (AP-2) family regulates the transcription of growth 0.16 0.024
factors and their receptors

PHYHIP 0.16  Purine catabolism 0.16 0.030
YD 0.16  RHO GTPases activate CIT 0.16 0.031
VEGFA 0.16  Signal transduction by L1 0.16 0.033
HNRNPD 0.14  VEGFR2 mediated cell proliferation 0.16 0.033
AGT 0.13 RHO GTPases Activate NADPH Oxidases 0.16 0.037
PLEKHA1 0.12  RHO GTPases activate PAKs 0.16 0.037
SERPINAT1 0.1 TRAF6 mediated NF-kB activation 0.16 0.037
NUDT5 0.04  Neutrophil degranulation 0.16 0.038
RAB23 0.04 NOTCH3 Activation and Transmission of Signal to the Nucleus 0.16 0.039
NKIRAS2 0.04  Signaling by NTRK2 (TRKB) 0.16 0.039

enriched MOA proteins. The top 20 disease comorbidities, top 20
comorbidity enriched MOA proteins, and all significant pathways
are shown in Table 4. It is not surprising that all of the top
comorbidities are cancers. The top first comorbid disease is testi-
cular cancer. Although OC and testicular cancer cannot occur in
one individual, they are hereditarily associated®®. Fallopian tube
cancer is considered similar to OC. It was reported that squamous
cell carcinoma occurred in the ovary*(. Nodular prostate, (the male
version of OC), cervical cancer*!, and inflammatory breast
carcinoma?2 are all reproduction-related cancers like OC. OC from
lung cancer metastasis occurs in 2-4% of OC patients*. Bile duct
cancer is a very rare site of OC metastases**. Peritoneal cancer
behaves similarly to OC. Gland cancer is linked to BRCA-positive
families, and BRCA is a risk gene for ovarian cancer®®. Neurofi-
broma is reported to mimic ovarian tumors*®. Renal cell carcinoma
is metastatic to ovarian and fallopian tube cancers?’. In total, 14 of
the top 20 (70%) comorbidities have literature evidence. Similar to
CAD, we did a literature search of 20 randomly selected diseases for
their associations with OC. We found only 6 cases; far fewer than
our 14 (see Supplementary Table 2). In a further random test
selecting 20 from those after excluding LeMeDISCO predicted
comorbid diseases to OC, we find four diseases have literature
evidence (see Supplementary Table 3).

Eleven of the top 20 enriched MOA proteins are kinases that
are cancer-related. The topmost comorbidity enriched MOA
protein is TEK, angiopoietin-1 receptor; angiopoietins are found
to promote ovarian cancer progression3. Interestingly, TYRO3 is
related to drug resistance in OC*°. The top predicted pathway by
enriched MOAs is MAPK1/MAPK3 signaling that mediates the
expression of ERBB2 silencing, OC cell migration, and invasion.
There are also enriched pathways associated with ephrin ligands.
Aggressive forms of ovarian cancer have been previously shown
to involve upregulated forms of ephrin, such as ephrinA5°L.
There are 14 ephrin-related comorbidity enriched MOA proteins
found (all score >0.37).

We next examined a set of 11 genes associated with OC risk from
a study that assessed the multiple-gene germline sequences in
95,561 women with OC using LeMeDISCO®2. The results for the
top 20 comorbidities, seven MOA proteins (score >0.01), and their
associated pathways are shown in Table 5. There were 125 sig-
nificant comorbidities (g value <0.05) predicted and 33 significant
pathways (g value <0.05) associated with these seven proteins. The
top comorbidity associated with OC was angiosarcoma, a rare
cancer of the inner blood and lymph vessels and in very rare cases,
it occurs in the ovaries®3. Patients with epithelial ovarian cancers
show an increased risk of skin cancer>*. OC is also considered to
have genetic risk factors®®. Myxoid leiomyosarcoma is a very rare
tumor with similarity to ovarian cancer®, and leiomyosarcoma was
reported in the ovaries®”. A study found a relationship between
hemoglobin levels and interleukin-6 levels in individuals with
untreated epithelial ovarian cancer, indicating an inflammatory
role in cancer-associated anemia®®. Medulloblastoma can arise
from ovarian tumors in pregnancy®®. Uveal cancer is associated
with breast cancer and OC®. OC is part of urinary system
neoplasm. In total, 15 (75%) of top 20 comorbidities have literature
evidence.

The top two comorbidity enriched MOA proteins are RAD51C,
RAD51D and belong to 16 of the top 20 pathways. These involve
such processes as DNA repair, transcriptional regulation by TP53,
DNA double-strand break repair, and reproduction (see Table 5).
The top two and the third-ranked MSH6 proteins are shared by
all top 100 comorbidities. For example, RAD51C is associated
with Fanconi anemia (ranked 63th)°l; RAD51D is associated
with leiomyosarcoma®?, and MSHE6 is a risk gene for pancreatic
adenocarcinoma (26th)%3.

LeMeDISCO web server. The LeMeDISCO web service allows
researchers to query our library of 3608 diseases or input a set of
pathogenic human genes/proteins and compute their predicted
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Table 4 Top 20 comorbidities (excluding same disease pair, (i.e., 0C-OC)), top 20 comorbidity enriched MOA proteins (with
respect to original disease), and top 20 pathways associated with the prediction OC results.

Comorbidities MOA proteins Pathways
Disease J-score q value Gene name Score Pathway q value
testicular cancer 0.42 <0.0001 TEK 0.5 MAPK1/MAPK3 signaling 710 %1015
fallopian tube cancer 0.41 <0.0001 TYRO3 0.49  EPH-Ephrin signaling 8.59x10°1°
squamous cell carcinoma 0.40 <0.0001 RYK 0.49 RAF/MAP kinase cascade 237 %1014
tongue squamous cell carcinoma 0.39 <0.0001 MERTK 0.49  MAPK family signaling cascades 2.69 x10~14
nodular prostate 0.36 <0.0001 AXL 0.49  FLT3 Signaling 3.83x107 14
cervical cancer 0.36 <0.0001 LTK 0.48  EPH-ephrin-mediated repulsion of cells 3.96x10714
myeloproliferative neoplasm 0.32 <0.0001 EGFR 0.47 PISP, PP2A, and IER3 Regulate PI3K/AKT Signaling 4.07x10-1
inflammatory breast carcinoma 0.31 <0.0001 KIT 0.47 Negative regulation of the PI3K/AKT network 9.15x10-13
urinary bladder cancer 0.30 <0.0001 KDR 0.47  Constitutive Signaling by Aberrant PI3K in Cancer 3.79 %1012
lung cancer 0.30 <0.0001 FLT3 0.47 PI3K/AKT Signaling in Cancer 1.3x10-10
bile duct cancer 0.29 <0.0001 FLT1 0.47 EPHA-mediated growth cone collapse 5.51x10-10
parotid gland cancer 0.29 <0.0007 ROR2 0.47 Diseases of signal transduction by growth factor receptors and  3.45x 102
second messengers
neurofibroma 0.29 <0.0001 RET 0.47 PIP3 activates AKT signaling 8.38x108
peritoneum cancer 0.28 <0.0001 PTK2B 0.47 EPHB-mediated forward signaling 2.83x107
gallbladder cancer 0.28 <0.0001 PTK2 0.47 Intracellular signaling by second messengers 476 x10~7
Barrett's esophagus 0.28 <0.0001 NTRK3 0.47  Toll-like receptor 4 (TLR4) cascade 4.87x10°6
tongue cancer 0.27 <0.0007 NTRK2 0.47  Toll-like receptor cascades 216 x10—>
larynx cancer 0.27 <0.0001 NTRK1 0.47 ERBB2 activates PTK6 signaling 2.23x1075
kidney cancer 0.27 <0.0001 MUSK 0.47 ERBB2 regulates cell motility 3.98x10-°
lung benign neoplasm 0.27 <0.0001 LMTK3 0.47 PI3K events in ERBB2 signaling 5.02x1075

Table 5 Top 20 comorbidities, seven comorbidity enriched MOA proteins (with respect to input), and top 20 pathways
associated with the prediction OC GWAS-driven results using the gene set from ref. 52,

Comorbidities MOA proteins Pathways
Disease J-score qvalue Gene name Score Pathway q value
angiosarcoma 0.0047 0.012 RAD51C 0.41 DNA repair 3.80x10-8
skin cancer 0.0036 0.012 RAD51D 0.39 Diseases of DNA repair 6.48x10-8
skin benign neoplasm 0.0036 0.012 MSH6 0.39 Mismatch repair 1.23x10-7
ovarian carcinoma 0.0036 0.024 MSH2 0.25 Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) 1.23x10~7
biliary tract disease 0.0035 0.028 MLH1 0.12 Resolution of D-loop structures through synthesis-dependent 5.59 x 10~/
strand annealing (SDSA)
genetic disease 0.0033 0.012 BRIP1 0.065  Transcriptional regulation by TP53 8.02x10~7
myxoid leiomyosarcoma 0.0032 0.017 STKM 0.050 Resolution of D-loop structures 8.02x10~7
epithelioid leiomyosarcoma 0.0032 0.017 Resolution of D-loop structures through holliday junction 8.02x10~7
intermediates
leiomyosarcoma 0.0032 0.017 Presynaptic phase of homologous DNA pairing and strand 1.09 x10-6
exchange
mesenchymoma 0.0031  0.019 Homologous DNA pairing and strand exchange 1.23x10-°
hematopoietic system disease 0.0031 0.019 TP53 regulates the transcription of DNA repair genes 4.22%x10-©
lymphatic system disease 0.0031 0.039 HDR through homologous recombination (HRR) 424 x10-6
childhood medulloblastoma 0.0031 0.012 Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) 1.61x 10>
adult medulloblastoma 0.0031 0.012 HDR through homologous recombination (HRR) or single- 2.79x10°
strand annealing (SSA)
medullomyoblastoma 0.0031 0.012 Homology directed repair 2.98 x10°
chondrosarcoma 0.0031 0.019 DNA double-strand break repair 4.83x10~>
pancreas disease 0.0031  0.041 Meiotic recombination 4.85x10~4
metachromatic leukodystrophy 0.0030 0.021 Regulation of TP53 activity through phosphorylation 523x10~4
uveal cancer 0.0030 0.021 Meiosis 8.11x10~4
urinary system benign neoplasm  0.0029 0.024 Reproduction 112x10-3

comorbidities, prioritized MOA proteins, and pathways asso-
ciated. The web service is freely available for academic users at
http://sites.gatech.edu/cssb/LeMeDISCO. The programs and
input data for reproducing disease—protein, disease—disease rela-
tionships, and all LeMeDISCO results as well as benchmark
results are available at https://github.com/hzhou3ga/lemedisco.

Discussion

LeMeDISCO is a systematic approach for studying and analyz-
ing possible features underlying the common proteins driving
comorbid diseases. The resulting predicted driver proteins and
pathways for each disease or input gene set can allow researchers
to generate new diagnostic and treatment options and hypoth-
eses. Interestingly, there were some MOA proteins and pathways
present across approximately a third of the diseases, implying

common disease drivers. The implications of this observation
and its relationship to disease origins will be pursued in future
work. We do note that the current comorbid disease analysis
strongly suggests that the “one target-one disease-one molecule”
approach often used in developing disease therapeutics3! is likely
too simplistic.

To fully understand the complexities of a disease, one must trace
the origin of its pathogenesis, which may be due to a genetic or
somatic variant that is somehow related to the disease. However,
such variants may also be associated with a disease not previously
known to be associated with that disease. Such interrelations can be
further investigated by identifying high confidence comorbidity
predictions from LeMeDISCO, regardless of whether or not their
comorbidity was previously known in the literature. For example,
analysis of the comorbid diseases associated with CAD and OC
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have not only recapitulated known disease comorbidities but have
also provided novel insights. The results for CAD yielded high
confidence associations between liver diseases and forms of asthma,
which can be further investigated through the comorbidity enri-
ched MOA proteins and pathways. Furthermore, the results for OC
revealed more high confidence associations to other forms of
cancer such as squamous cell carcinoma and lung cancer.

LeMeDISCO not only has applications to the study of the
underlying etiology behind a disease but may also be used during
the early stages of drug discovery to identify efficacious drugs.
Rather than starting with a small molecule or protein target of
choice, LeMeDISCO allows one to begin at the level of disease
biology, often termed phenotypic drug discovery. In future work,
we shall demonstrate the utility of LeMeDISCO in identifying
efficacious drugs to treat a given disease. Overall, the results of the
current analysis and preliminary applications to drug discovery
suggest that LeMeDISCO provides a set of tools for elucidating
disease etiology and interrelationships and that a more systems-
wide, comprehensive approach to both personalized medicine
and drug discovery is required.

We note that some of the predicted MOA proteins are present
in around 1/3 of diseases. The top five (AR, NR4A3, PGR,
NR3C2, and NR3C1) proteins all belong to the nuclear receptor
family and regulate other genes. All have DNA binding sites,
especially two zinc finger domains®*. The regulatory functions
and ubiquity of well-studied zinc fingers in these proteins may
explain their frequent presentation as disease MOA proteins®.
Even though in our predicted drug targets of the probe drugs,
these proteins are not the most frequent ones (e.g., AR is ranked
1135th of 16,762), their disease associations were enriched by
MEDICASCY predicted disease-drug relationships.

With the above possible applications, there is also the limita-
tion of the current approach of using FDA-approved DrugBank
drugs as probe drugs to tease out the MOA proteins of diseases,
i.e., some possible MOA proteins of a given disease might not be
the targets of the probe drugs and others might be incorrectly
assigned. This will be addressed in future work that includes more
diverse small molecule drug libraries and improved virtual ligand
screening algorithms to map the drugs to their respective protein
targets®®. As the probe drug target space is expanded, additional
MOA proteins will be discovered. Concomitantly, as the virtual
ligand screening algorithms that assign small molecules to their
predicted protein targets improve, false positives will be elimi-
nated, and additional true positive proteins might be added.
These will result in more accurate MOA protein predictions.

Similar to previous work16-8, our predicted disease-disease
relationships were benchmarked using large-scale clinical data
and have only small-scale validation by literature searches. One
single relationship requires at least one published work to vali-
date. Large-scale automatic text mining is a feasible way to scale
up the validation and build a more confident subset of our
predictions®”. This is the subject of ongoing studies.

Methods

Overview of LeMeDISCO. A flowchart of LeMeDISCO is shown in Fig. 2.
LeMeDISCO employs MEDICASCY!2 to predict possible disease MOA proteins.
Here, MEDICASCY is applied in prediction mode (i.e., any training drugs having a
Tanimoto-Coefficient = 1 to a given input drug is excluded from training) to avoid
a strong bias toward drugs in the training set on a set of 2095 FDA-approved
drugs®®. For each of the 3608 indications, we rank the 2095 probe drugs according
to their Z-scores, Z;, defined using the raw score computed by MEDICASCY from:

¢y

7, = (18w score--averageraw score of 2095 drugs
4 standard deviation of 2095 raw scores

To predict a drug as having the given indication, we applied a Z; cutoff of 1.65,
that approximately corresponds to a p value of 0.05 for the upper-tailed null
hypotheses of random variable Z;. Thus, for each indication D, the 2095 probe

drugs are separated into two groups: N; are predicted to have indication D
(Z;21.65) and N, (=2095 — Nj;) are not predicted to have indication D (Z,; < 1.65).
This is a very loose prediction of a drug’s indication with the advantage that it
always predicts some drugs having the indication with its expected statistical
confidence. Then, for a given indication D and each protein target, T, in the human
proteome of our modeled 32,584 proteins, there are a subset of the drugs (or
perhaps none) predicted by FINDSITE®©mb2.0 69 t6 bind T. The relative risk RR(D,
T) of the given target T with respect to indication D as:

Ni/N,
N} /N,

RR(D,T) = (2a)
where N7 and NI are the numbers of drugs binding to T with and without
indication D, respectively. The numerator is the estimation of the probability of
drugs having the predicted indication D (Z; > 1.65) that bind to protein T
(F1=NT/N)). The denominator is the probability of finding drugs that do not
have the predicted indication D but which bind to protein T (F2 =NY/N,). This
latter probability serves as the background probability that an arbitrary drug will
bind to T. When no drug is predicted to bind to protein T, RR(D, T) is set to zero.
RR(D, T) = F1/F2 >1 means that a drug having indication D is more likely to bind
to T than arbitrary drugs not having the predicted indication D will bind to T.

We then compute the statistical significance of RR(D, T) by calculating a p value
using Fisher’s exact test’%’! on the following contingency table:

NI N, —NT
N} N, = N;

We define a protein target T as predicted to be a possible MOA target for
indication D if its p value <0.05 because it is more likely to be targeted by
efficacious drugs than arbitrary drugs. Thus, for each of the 3608 indications, there
is a list of predicted possible MOA proteins.

To reduce false positive MOAs, we utilized the human protein atlas database
(https://www.proteinatlas.org/about/download, normal_tissue.tsv) of expression
profiles for proteins in normal human tissues based on immunohistochemistry
using tissue micro arrays’? to filter those proteins that are “not detected” and not
“uncertain” in all tested tissues related to an indication. To determine the tissues
related to an indication, tissues are mapped to their ICD-10 main codes and
indications having the same main codes are related to the tissue.

Using the input of two sets of putative MOA proteins having a p value of <0.05
calculated by Fisher’s exact test’?, we calculate their Jaccard index!” J(D;,D,) (J-
score) defined in Eq. 3a as

(2b)

J-score = N./(ND1 + ND2 — N,) (3a)

We then calculate the p value for significance by Fisher’s exact test for the
contingency table”” that gives the probability of having overlap >N; by randomly
selecting N, out of N, proteins”%73;

< Ns NDZ - Ns )

Npi Ny =Np,

Np,» Np, are the numbers of MOA proteins/genes of disease D; and Dy; N; is the
number of overlapped MOA proteins between D;, D5, and N, is the total number of
human proteins. The Jaccard index J-score is a statistical measure of the similarity
between MOA proteins of D; and D,, and its value ranges between 0 and 1. Since the
null hypothesis of N corresponds to a hypergeometric distribution, the p value of
observing the number of overlapped MOA proteins between D;, D, > N; can be
calculated using Fisher’s exact test on the table in Eq. 3b7!. We will use the J-score for
predicting comorbidity and compare it with the observed comorbidity. We note that
the J-score is determined by the number of overlapped MOAs, which means that the
comorbidity defined by the J-score are not limited by diseases occurring in one
individual but rather considers the effect of the malfunctioning proteins in the human
population. This is especially true for sex-specific diseases such as ovarian cancer and
prostate cancer that may have overlapping MOA proteins; this may result in
significant comorbidity between them. In other words, the two diseases may share
common driver proteins, although ovarian and prostate cancer could occur unless the
individual has both an ovary and a prostate, which is highly unlikely. Similarly, it can
predict the comorbidity of rare and common diseases; again, whether this would
occur would depend on the presence in a given person of the appropriate set of
malfunctioning genes. Therefore, though many of the LeMeDISCO comorbidity
predictions are seen in one individual, others may not be. Thus, LeMeDISCO
comorbidity predictions are a population-based approach.

To better control the false discovery rate (FDR) due to background noise from
statistic errors, we performed the multiple testing correction to the p values for
disease—protein and disease-disease associations calculated by Fisher’s exact test by
computing the q value using the method described in ref. 74.

In large-scale disease-disease comorbidity calculations, we use the MOAs
predicted by MEDICASCY!2. In addition, MOA targets between disease pairs can
also be derived from experimental data; examples include differential gene
expression (GE), Mendelian or somatic mutation profiles comparing disease vs.
control normal samples, better vs. worse prognosis samples, or drug-treated vs.
control untreated samples’>.

(3b)
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Fig. 2 Schematic representation of LeMeDISCO. a The method for determining the MOA proteins associated with a disease indication via MEDICASCY,
and b The method for determining the comorbidities associated with a given disease and its molecular mechanisms via LeMeDISCO.

Benchmarking of LeMeDISCO. We validated LeMeDISCO’s J-score by correlat-
ing it with the observed comorbidity as quantified by (a) the logarithm of relative
risk log(RR) score and (b) the @-score (Pearson’s correlation for binary variables)!.
The relative risk (RR) is the probability that two diseases co-occur in a single
individual relative to random. Since RR scales exponentially with respect to the
strength of two interacting diseases, we use log(RR) for correlation analysis. The
log(RR) and ¢-score are computed from US Medicare insurance claim data using!:

Mgp/ Mot )

(i1 ) (2)

log(RR) = log<

@-score = (nyp * Ny — 1y ”B)/\/”A * 1y (Mg — 1y) * (nyy —ng)  (4D)

where 7,,; = total number of patients; 14, nz = number of patients diagnosed with
diseases A and B, and 7,45 = number of patients diagnosed with both diseases
A and B.

Permutation tests. Two permutation tests were performed: (a) Permute
drug-protein relationships: Randomly permute the predicted drug-protein rela-
tions (i.e., randomly replace a drug’s protein targets with another drug’s protein
targets predicted by FINDSITEmb2.0) This acts to transfer the protein targets of
a drug (possibly incorrectly) to another drug. This test evaluates the performance of

LeMeDISCO if we have the correct drug-disease relations (predicted by MEDI-
CASCY) but the incorrect drug-protein relations. To ensure the correct
drug-disease relations after permuting the drug-protein relations, MEDICASCY
was applied to the permuted drug—protein relations since MEDICASCY depends
on the drug’s protein targets; (b) Permute drug-disease relationships: Randomly
permute the predicted drug-disease relations (by randomly replacing a drug’s
predicted indications with another drug’s indications). This test evaluates how
LeMeDISCO will perform if the drug-protein relations are correct (predicted by
FINDSITEmb2.0) byt the drug-disease relations are randomly permuted. In both
cases, disease MOAs are derived using the permuted relationships and 100 runs for
each test with different random seeds were performed. A p value is calculated from
z-score = (LeMeDISCO value-average)/standard deviation to characterize the sig-
nificance of the difference between LeMeDISCO and the permutation tests.

Identification of key MOA proteins and associated pathways for disease
comorbidity. After determining the significant comorbidities for each disease, the p
value weighted frequency of shared MOA proteins across the top 100 predicted
comorbidities are calculated. We define a p value weighted frequency of an input
MOA as follows (i.e., CoMOAenrich score): If MOA protein T is shared by a
comorbid indication D and the p value of T associated with D is P, then the weight
defined by the min(1.0,—alogP) is counted as T’s frequency. In practice, we used 10
cancer cell line data’® to optimize the coefficient a to 0.025. We further computed a
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. __COMOAenrich score . .
p value via e « where a = 0.025, as previously mentioned. These MOA

proteins expand the number of possible molecular players driving disease patho-

genesis. An empirically derived CoMOAenrich score (normalized by the number of
comorbid indications that is 100) threshold of 0.01 was used, which is equivalent to
1% of the comorbid indications having the MOA proteins with a significant p value
(<4.2 x 10718). Then, up to the top 100 comorbidity enriched MOA proteins for

each disease were used in global pathway analysis via Reactome!3. The pathways

with a p value <0.05 were extracted. The frequency of pathways across diseases was
assessed to identify common pathways of disease.

LeMeDISCO usage. As shown in Fig. 2, LeMeDISCO can be used in two different
ways: (1) MEDICASCY-driven LeMeDISCO: The comorbidities for any of the 3608
diseases from the MEDICASCY-provided MOA proteins are predicted (Fig. 2a). (2)
Pathogenic gene set driven LeMeDISCO: Input your own pathogenic gene set derived
from differential gene expression, GWAS, exome analysis, or other experimental/
clinical techniques (shown in Fig. 2b). The LeMeDISCO web service allows users to
query the LeMeDISCO database as well as input their own set of pathogenic genes to
assess the associated comorbidities, MOA proteins, and pathways.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The input data for reproducing disease-protein, disease—disease relationships, and all
LeMeDISCO results as well as benchmark results are available at https:/github.com/
hzhou3ga/lemedisco. The web service is freely available for academic users at http://sites.
gatech.edu/cssb/LeMeDISCO. The underline data for Fig. 1 is in file supplementary
data 1.

Code availability
The programs for reproducing disease-protein and disease-disease relationships are
available at https:/github.com/hzhou3ga/lemedisco.
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