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Microfluidic live tracking and transcriptomics of
cancer-immune cell doublets link intercellular
proximity and gene regulation
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Cell-cell communication and physical interactions play a vital role in cancer initiation,
homeostasis, progression, and immune response. Here, we report a system that combines
live capture of different cell types, co-incubation, time-lapse imaging, and gene expression
profiling of doublets using a microfluidic integrated fluidic circuit that enables measurement
of physical distances between cells and the associated transcriptional profiles due to cell-cell
interactions. We track the temporal variations in natural killer—triple-negative breast cancer
cell distances and compare them with terminal cellular transcriptome profiles. The results
show the time-bound activities of regulatory modules and allude to the existence of tran-
scriptional memory. Our experimental and bioinformatic approaches serve as a proof of
concept for interrogating live-cell interactions at doublet resolution. Together, our findings
highlight the use of our approach across different cancers and cell types.

TDepartment of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA. 2 Circulating Tumor Cells Group, A.C.Camargo Cancer Center,
S&o Paulo, SP 01508-010, Brazil. 3 Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO
Porto), 4200-072 Porto, Portugal. 4 Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India. ® New
Technologies Group, Fluidigm Corporation, South San Francisco, CA 94080, USA. © Department of Computer Science and Engineering, Indraprastha Institute
of Information Technology, New Delhi 110020, India. / Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, New Delhi 110020,
India. & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4001, Australia. “Present address: Department of
Clinical Genetics, Lillebaelt Hospital, Vejle, Denmark. Opresent address: Akoya Biosciences, Menlo Park, CA 94025, USA. "Present address: Systems
Integration Group, Inscripta Inc, Pleasanton, CA 94588, USA. "“Present address: Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru
University, New Delhi 110067, India. BPresent address: Seer Inc., Redwood City, CA 94065, USA. “present address: BioSkryb Genomics, Inc., Durham, NC
27713, USA. °These authors contributed equally: Bianca C. T. Flores, Smriti Chawla, Ning Ma. ®email: naveen.ramalingam@fluidigm.com; debarka@iiitd.ac.in;
ssj@stanford.edu

COMMUNICATIONS BIOLOGY | (2022)5:1231| https://doi.org/10.1038/s42003-022-04205-y | www.nature.com/commsbio 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04205-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04205-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04205-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04205-y&domain=pdf
http://orcid.org/0000-0002-6490-6309
http://orcid.org/0000-0002-6490-6309
http://orcid.org/0000-0002-6490-6309
http://orcid.org/0000-0002-6490-6309
http://orcid.org/0000-0002-6490-6309
http://orcid.org/0000-0002-0040-2523
http://orcid.org/0000-0002-0040-2523
http://orcid.org/0000-0002-0040-2523
http://orcid.org/0000-0002-0040-2523
http://orcid.org/0000-0002-0040-2523
http://orcid.org/0000-0002-6353-5411
http://orcid.org/0000-0002-6353-5411
http://orcid.org/0000-0002-6353-5411
http://orcid.org/0000-0002-6353-5411
http://orcid.org/0000-0002-6353-5411
http://orcid.org/0000-0003-4478-2764
http://orcid.org/0000-0003-4478-2764
http://orcid.org/0000-0003-4478-2764
http://orcid.org/0000-0003-4478-2764
http://orcid.org/0000-0003-4478-2764
mailto:naveen.ramalingam@fluidigm.com
mailto:debarka@iiitd.ac.in
mailto:ssj@stanford.edu
www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04205-y

ism as an integral unit via direct physical interactions,

surface receptor-ligand interaction, cell signaling from
adjacent cells, nearby cells, or even distant organs'2. The inves-
tigation of cell-cell interaction in the tumor microenvironment
(TME) is one of the barriers to understanding cancer progression
and identifying new therapeutic targets3. Despite the advances in
high-throughput microscopy and single-cell based molecular
analysis, tools to precisely quantify live cell-cell interactions are
lacking or, more recently, characterized using combinations of
spatial -omics techniques on fresh-frozen or formalin-fixed
complex tissues and live cell analyses*8. We developed a
microfluidic workflow involving capture and co-incubation of live
single stromal/cancer cells or doublets using the single-cell dosing
mRNA-seq integrated fluidic circuit (IFC) system (Fluidigm®),
which provides both spatial and transcriptional cell-cell interac-
tions. To demonstrate the performance for the quantification of
the cell-cell interaction, we applied our platform for natural killer
(NK) - triple-negative breast cancer (TNBC) cancer-immune
doublets (CIDs).

TNBC was chosen as a model due to its aggressive nature and
lack of estrogen receptor, progesterone receptor, and human
epidermal growth factor receptor 2 that limit the use of targeted
therapies®10, However, promising responses have been seen with
immunotherapy!!, which is emerging as an important compo-
nent of cancer treatment!>13, Clinically promising discoveries
exploit specific features of tumor-immune cell crosstalk involving
immunosuppression and anti-tumoral response signaling!4-17.
Among immune cells, NK cells can efficiently kill multiple
neighboring cells with oncogenic transformation of surface
markers!819, NK cell activation, combined with their capacity to
enhance antibody responses, supports NK cells’ role as anticancer
agents?0. Tt is speculated that genetically engineered endogenous
NK cells can exert tumor immunosurveillance and influence
tumor growth?1.22. However, heterogeneity is ubiquitous in
human cancer making the selection of personalized treatment/
therapy a challenge. It is expected that NK cell heterogeneity
further contributes to NK-tumor crosstalk dynamics with dif-
ferential modulation of their cytotoxic response, triggering tumor
death when the balance between activation and inhibitory protein
levels are considered?3-2°. It is essential, therefore, to characterize
the molecular level cues emanating from single NK cells when
they encounter tumor cells. Thus, a single-cell platform for NK-
cancer cell interaction measurement is much needed to study
NK-cancer immunotherapy.

To better understand NK-tumor cell interactions, we present a
microfluidic workflow involving capture and co-incubation of
single NK and cancer cells (CIDs) using the Polaris™ Single-Cell
Dosing mRNA Seq IFC (Fluidigm)%® (Fig. S1). Traditional
sequencing methods can only identify cell populations, analyzing
the average of the signals within each group of cells, but the
heterogeneity in tumor cells cannot be deciphered. Single-cell
sequencing technologies can reliably detect the heterogeneity
among cells. Further, in doublets of cells, it is possible to find
specific markers and correlate them with the anti-tumor response
demonstrated by each doublet?’.

The doublets captured in the microfluidic chambers were
tracked for cell-cell distances, using time-lapse imaging. After
13h of incubation with the exchange of growth medium at a
defined interval of time (5h), the cells were subjected to single-
cell RNA sequencing (scRNA-seq). This offered a total of 290
transcriptomes, including single NK and cancer cells as control
and NK-cancer cell doublets (CIDs). Unsupervised clustering
analysis of the scRNA-seq expression profiles revealed hetero-
geneity in the TNBC cell line. We also observed a small number
of NK Kkilling events among the co-incubated CIDs, which

C ell-cell communication sustains the multicellular organ-

allowed us to characterize the gene expression signature asso-
ciated with NK-mediated lysis event of the companion cancer
cells. We correlated the hourly computed cell-cell distances with
terminally profiled gene expression vectors. We noted the exis-
tence of transcriptional memory, governed by precise regulatory
modules active in a time-bound manner. Interestingly, we found
the genes driving cancer-immune cell distances to have longer
half-lives. In addition, we investigated the protein pairs involved
in cellular communication, which provided cues for the inflated
activity of CD24/SIGLEC10 and ANXA1/EGEFR in the cancer-NK
doublets and supporting a previously described interaction
between CD24/SIGLECIO as a potent immunotherapy target for
ovarian and triple negative breast cancer?8.

Results

To study the interactions between NK and TNBC cells, we cap-
tured single NK-92MI cells (interleukin-2 independent Natural
Killer cell line), single MDA-MB-231 cells, and cancer-immune
doublets (CIDs, one NK-92MI cell and one MDA-MB-231) and
incubated the cells for 13h wusing the Fluidigm Polaris
system26:29-32 (Figs. 1a, S1). Time-lapse images of CIDs were
captured every hour to measure the distance between the CIDs.
Following incubation, single cells and doublets were processed for
RNA-sequencing. The integrated fluidic circuit can perform on-
chip multi step chemistry that includes cell capture, co-incuba-
tion, lysis, reverse transcription, and c¢cDNA amplification3(.
Single-cell and CIDs were analyzed for expression of marker
genes that distinguished the two cell types. We identified pre-
viously known markers for both NK-92MI cells and MDA-MB-
231 cells. In the case of NK cells, we observed strong expression of
NK cell marker genes KLRDI, LAIRI, CCR6, and TNFRSF9.
Single cancer cells showed TNBC marker genes HMGAI,
ANKRDI1, and TACSTD2 (Fig. 1b) when analyzed using
SCANPY?33 toolkit for analyzing single-cell gene expression data.
Further to validate our cell type annotations, we took advantage
of the imaging capability of the Polaris and Leica systems. Prior to
cell selection on the microfluidic IFC, the NK and cancer cells
were stained with CellTracker™ Deep Red Dye and CellTracker™
Orange CMRA Dye respectively. The z-score normalized inten-
sities of NK and cancer cell channels were subjected to 2D
visualization (plotted using R package scatterD3) revealing the
grouping of cells as per their annotations based on cell staining
(Fig. S2). Unsupervised clustering with Seurat v3 and associated
Uniform Manifold Approximation and Projection (UMAP) based
2D visualization3* of the transcriptomes revealed two separate
clusters, which were primarily dominated by clonal heterogeneity
of the cancer cell line (Fig. 1c). The single NK cells shared one of
the clusters (Fig. S4), cluster 1, with a cancer cell sub-group. Upon
performing the principal component analysis (PCA) exclusively
on the transcriptomes from this cluster, we noted spatial segre-
gation of the NK cells (Fig. 1c). To further delineate the cancer
cell heterogeneity, we performed unsupervised clustering of single
cancer cells separately, which also resulted in two distinct clusters
(Fig. 1d), featuring differentially expressed genes (Fig. S3).

Distance tracking of cancer-immune cell interactions over time
shows transcriptional memory. We tracked CIDs for dynamic
changes in the distance between cancer and the companion NK
cells under incubation in the same microfluidic chamber over
13h (Fig. 1a). At the end of the 13th hour, transcriptome
sequencing was performed on the CIDs (n =102). This allowed
us to determine the association between terminally measured
gene expression with cancer/immune cell distances measured
across different time points. Transcriptomes profiled at the end of
the 13th hour featured transcripts that correlate significantly with
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Fig. 1 Schematic workflow for cell interaction studies. a The workflow involves cancer and NK cells propagated in culture and stained off-chip, which are
then captured as live single cells and doublets, incubated/co-incubated and imaged over time. Inset shows a microscopic image of a chamber on the
microfluidic Integrated Fluidic Circuit (IFC) containing an elongated MDA-MB-231 (pink) and round NK cell (red) doublet. The cells are then lysed, reverse
transcribed, and the cDNA amplified in situ within the chambers. Down-stream library preparation, sample barcoding, and sequencing are performed off-
chip using the Illumina NextSeq system. b Heatmap plotted using Scanpy showing average expression of marker genes for single NK and cancer cells,
confirming their lineage identity. ¢ UMAP-based visualization of the cells shows two separate clusters mainly due to cancer cell line heterogeneity (cancer
cells in purple). A further dimension reduction of cluster 1 using PCA shows the separation of cancer (purple) and NK cells (red). Legend key indicates cell
status at the beginning and the end of the time-course tracking (e.g., cancer-NK/NK denotes interactions which initially consisted of both cancer and the
NK cells in a chamber, and subsequently the NK cell remained in the chamber after co-incubation due to a cell killing event). d UMAP based visualization of
single cancer cells showing heterogeneous populations of cancer cell lines. e Boxplots showing selected differentially expressed genes distinguishing killing
vs non-killing events. Parts of (a) were created using an icon from Freelmages.com/olagosta.

CID distance measurements across all the time points (Fig. 2a, b).
Surprisingly, we identified time-bound activities of at least three
distinct gene modules (Fig. 2b). Mechanistically, we postulated
that the transcripts would preferentially stem from slowly
degrading genes. To test this, we considered mRNA half-life
estimates in K562 cells for more than 5000 genes3>. We compared
the distribution of half-life estimates of transcripts with ones that
were not part of the gene modules. A higher average degradation
rate was observed for the transcripts (Welch Two Sample t-test,
P-value = 0.04867), substantiating our conjecture (Fig. 2¢). At
time point 6 (after 5h incubation and a change in culture med-
ium), we noted a new set of genes (module 2; M2) expressed.
However, we did not observe a similar shift in gene expression at

later culture medium change time points. We performed module
wise transcription factor activity analysis using ShinyGO3¢ and
RcisTarget??, which inferred the regulatory role of three potential
transcription factors, namely BRCA1, YY1, and THAP1. Among
these, BRCAL1 is predicted by ShinyGO, whereas YY1 and THAP1
along with their candidate target genes by RcisTarget (Fig. 2d).
The microfluidic system allowed us to design experiments that
tracked NK cell killing events and the associated transcriptomic
signatures. We observed ten NK cell killing events across a total
of 132 CID interactions. Differential expression analysis between
CIDs subgroups showed unique gene expression signatures
between NK killing and non-killing events. Among the 187
upregulated genes in the NK killing group were CASP8, SH3BP2,
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Fig. 2 Schematic workflow to estimate the correlation between cancer cell-NK cell (CIDs) distance and terminal expression profile of CIDs. a The
correlation analysis takes two matrices as input - the first one, containing cell-cell distance across different time points, and the second one contains the
gene expression measurements across the CIDs. b Heatmap shows correlation between cell-cell distances and terminal CID gene expression profiles.
Genes showing strong association with the cell-cell distances are clustered into four groups based on the correlation patterns (M1 to M4). The heatmap
reveals that physical distances between NK and cancer cells affect gene expression profiles, which get carried forward to define future cellular states. The
time point of first cell culture medium exchange is shown by a red arrow. This was labeled T5/T5' and T10/T10’ to denote images taken before and
immediately after media exchange for a total of 16 images that portray distances TO to T13. The color scale relates to high (yellow) and purple (low)
Pearson'’s correlation. ¢ Boxplot showing the distribution of mMRNA half-life (hours) of genes belonging to the module as shown in the heatmap (Fig. 2b) and
genes not belonging to these modules. We observed a higher median value of mRNA half-life for the genes belonging to the modules (Welch Two Sample
t-test, P-value = 0.04867). d Transcription Factor binding motif Enrichment Analysis of M1 specific genes and annotations of these motifs to TFs using
RcisTarget identifies THAP1 and YY1 as potential transcriptional regulators.

IGF-1, CNPY1, and LMOI (Fig. 1e). We applied PROGgene V2, a

tool for prognostic implications measurement of genesS, to the 2 Hazard ratio: 0.11(0.01-0.96)
Cancer Genome Atlas (Breast Invasive Carcinoma; TCGA-BRCA Log-rank P = 0.0454815
patients), and apalyzed the impact of these 187 upregulated genes ® = High expression
on overall survival. 164 out of 187 upregulated genes overlapped = == Low expression
with TCGA-BRCA dataset from PROGgene V2 (Supplementary E ©
Data 1). We observed a subtle survival advantage in the patients > °
having a higher mean expression of this combined gene signature =
(Hazard ratio (HR) = 0.11, p <0.05) (Fig. 3). E S

®)
Discussion S
TNBC is a highly aggressive form of breast cancer with limited
targeted treatment options. However, immunotherapy has recently 2
turned out to be a promising strategy in the clinical management of 0 1000 2000 3000 4000 5000 6000 7000
the disease. In addition to current widely used T cell-mediated Days

immunotherapy, research is also focused on NK cells that perform

key roles in innate immune response in cancer. As such, compre- Fig. 3 Kaplan-Meier overall survival analysis of TCGA breast cancer
hensive characterization of interacting NK and cancer cells at (BRCA) dataset. A gene signature associated with NK-killing events was
single-cell resolution might unravel actionable biomarkers and used to stratify the TCGA BRCA dataset (n=>594) in terms of overall
pathways involved in tumor growth and progression. survival. PROGgene V2 was used for this analysis.
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Here, we performed gene expression analysis of NK-cancer cell
doublets resulting from the interacting distance between doublets
measured over time. Statistical and bioinformatic investigation of
the data enabled the identification of gene expression signatures
associated with successful and unsuccessful cancer cell lysis
(killing events). Using TCGA gene expression profile data, we
further confirmed that the identified signatures are linked to
patient survival. Using single cell analysis, we also noted that the
heterogeneity of the two cancer subclones confounded the process
of dimension reduction by overshadowing the distinction of the
NK cells’ identity.

We noted activation of exclusive, exposure time-bound, gene
regulatory modules governing cell-cell physical proximity during
the life cycle of NK-cancer cell interaction under co-incubation.
We also noted an association between CID cell distance and their
terminally profiled transcriptome in live cells. Similarly, Gide and
colleagues reported a potential association between cancer/
immune cell proximity with anti-PD-1 therapy response in
melanoma patients?. This underscores the importance of
cell-cell distance as an informative parameter to understand
immunosurveillance and response in cancer. We observed
changes in gene expression modules over time that correlated to
the distance between live cells, suggesting the existence of tran-
scriptional memory. Recent work has highlighted the controlled
synthesis and degradation of mRNA transcripts as a major reg-
ulatory strategy influencing cell fate decisions?. Transcriptional
memory is a phenomenon that allows cells to retain reversible
memory to respond to similar stimuli encountered in the
future*!. At time point 6 (after a 5h incubation and a change in
culture medium), we noted a new set of genes expressed. During
the initial hours of co-incubation, the cells might have undergone
the formation of lytic synapses as reported previously!2. which
possibly might be responsible for the change in gene expression,
as noted at T5 timepoint in Fig. 2b.

In our study, we observed a regulatory role of three potential
transcription factors, namely BRCAI, YY1, and THAP]I, in tran-
scriptional memory. BRCAI is a well-studied tumor suppressor
gene and has known implications in breast and ovarian cancers.
Among the remaining two, YY1 promotes oncogenic activities in
breast cancer®3, whereas THAPI plays a key role in DNA repair
and is also found to be overexpressed in breast cancers*4. One of
the genes from module 1 is TRAPI, whose overexpression is
involved in promoting breast tumor growth. On the other hand, it
also suppresses metastasis by regulating mitochondrial
dynamics®. Another gene MELK from this module promotes
TNBC proliferation. Targeting MELK can result in cell cycle
arrest by reducing cyclin B1 and increasing p27 and p-JNK4°.
EYA2 is also involved in promoting breast cancer proliferation.
Its overexpression results in an increase of proliferative markers
cyclin E, PCNA, and EGFRY.

Cell-cell signaling is a major component of cancer-immune
cell interactions. We used gene expression as a surrogate for
protein-protein interactions, focusing on interactions involved in
cellular communication as featured in the iTALK database?.

To estimate the extent of these protein activities, we computed
Pearson’s correlation coefficient for iTALK-featured protein pairs
across CIDs (taking advantage of having the gene expression of
both cell types together) and the other single cells (Fig. 4). We
observed an elevated correlation between ANXAI and EGFR in
CIDs. ANXAL is involved in mediating endocytosis of the EGFR
receptor ANXA1/S100A11 complex**->1, and mediates cell-cell
communication via exosomal EGFR>2. We also observed a higher
correlation between CD24/SIGLECI0 in the CIDs. Similarly,
higher coordination between EGFR and HSP90AA1 was observed
in CIDs. A similar pattern was observed in the case of CD24/
SIGLECIO transcripts, suggesting a potential coordination

0.8
0.6-
S
5 041
o
S
0.2
0.0
ANXAT  HSP90AA1 CD24
EGFR EGFR SIGLEC10

B NNk

. Cancer-NK/NK . Cancer/Cancer

Cancer-NK/Cancer-NK

Fig. 4 Inference of protein-protein associations by gene expression
profiling. Barplots showing increased correlation values among CIDs for
three gene pairs ANXAT/EGFR, HSP9OAAT/EGFR, and CD24/SIGLECIO0.

NK = Natural Killer Cells. Legend key indicates cell status at the beginning
and the end of the time-course tracking.

between the two. A past study reported the association of
SIGLECI10 in impeding NK cell function and poor patient sur-
vival in hepatocellular carcinoma (HCC); CD24/SIGLEC10
interaction may thus be involved in regulating NK cell function3.
In another study, the possibility of CD24/SIGLEC10 interaction
in TNBC under the exposure of tumor-associated macrophages
(TAMs) was reported. It has been observed that CD24 and
SIGLEC10 are overexpressed in different tumor types and the
TAMs, respectively?8. Targeting this interaction may be ther-
apeutically important. Another transcript pair observed was
EGFR/HSP90AA1. HSP90AA1 is critical for maintaining the
stability and function of its client protein EGFR. This stabilization
promotes pathogenesis in breast, head, and neck cancer>*>°, This
occurs via EMT and tumor migration activating signaling path-
ways in MDA-MB-231 cells®®.

When the CIDs were analyzed for cell killing events, we noted
a gene expression signature that included CASP8, SH3BP2, IGF-1,
and LMOI. CASP8, when activated through FASLG, results in
activation of the extrinsic pathway of apoptosis in the target
cells’. On the other hand, SH3BP2°8 and IGF-1°° have shown to
play a decisive role in NK cell development and cytotoxicity. A
strong differential expression signal was observed for several
genes that are largely undocumented for their NK cytotoxicity
links. These include the overexpression of LMOI (overexpressed
in T lymphocytes from lymphoblastic leukemia)®®, CNPY1 and
ACSBG2 in the NK-killing group, which has not been described
in NK cells till today.

Currently, it is difficult to co-incubate single cells in a con-
trolled environment that simultaneously allows the study of
physical interactions between live cells and its effect on gene
expression®!. Here we report a cell-cell interaction study using an
automated environment that precisely controls temperature,
humidity, gas composition, and media exchange to continuously
monitor and measure the distance between cells. By processing
the doublets on-IFC (in the same chambers) for cell lysis, reverse
transcription, and c¢cDNA amplification using a microfluidic
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multi-step chemistry, proximity measurements can be directly
linked to downstream transcriptomics changes.

The use of this microfluidic system enabled the identification of
unique features of NK cells’ anti-cancer activities. Highly coor-
dinated gene expression profiles were identified as a result of
dynamic changes in the physical distance of interacting NK and
cancer cells. Upon further investigation, these transcripts were
confirmed to have overall higher RNA half-lives, reinforcing
transcriptional memory as a key regulatory strategy of cells. We
could also trace increased coordination among some specific
transcript pairs, manifested through gene expression readouts. In
the future, this microfluidic workflow could provide new leads
when studying immuno-oncology cellular interactions, which
may be considered while developing and administering NK cell-
based immunotherapies.

Methods

Culturing MDA-MB-231 and NK-92MI. MDA-MB-231 cells (triple-negative
breast carcinoma, ATCC® HTB-26™) were cultured using the DMEM (high mod-
ified) culture medium supplemented with 10% inactivated fetal bovine serum and
1% penicillin/streptomycin, replicating the culture every three days, keeping the
culture at a confluence of 40% at the time of passage, at 37 °C in a humid atmo-
sphere at 5% CO,. The adherent cells were dissociated with the TrypLE reagent
(Gibco) and resuspended in the complete culture medium.

NK-92MI cells (human NK cells genetically modified to produce interleukin 2,
ATCC® CRL-2408) were cultured using the AMEM (Alpha Minimum Essential
medium) culture medium, plus 0.2 mM inositol, 0.1 mM mercaptoethanol,

0.02 mM folic acid, 12.5% fetal bovine serum and 12.5% horse serum. The cells
were homogenized to separate the clusters of NKs prior to the replication of the
culture into a new 25 cm” flask (1 mL of cells cultured previously + 9 mL new
culture medium). Both cell lines were cultured separately, tested and confirmed
negative for mycoplasma, for the subsequent cell-cell interaction experiment using
the Polaris system.

Both cell lines were cultured in separate plates, as described above. The co-
culture was performed after the doublets were selected by the Polaris system for
13 h incubation.

Selection and incubation using the Polaris system (Fluidigm). The first step is
to prime the IFC with beads that will allow the adhesion of the cells to be incubated
in the microchambers. After treatment, reagents and cells already labeled using
specific markers to differentiate cell types (for NK cells, celltracker far red (CTFR)
and; and celltracker orange (CTO) for cancer cells) and viability (calcein AM) were
pipetted into the IFC. The selection of the cells to be incubated was performed on
the Polaris system. The system was configured to select NK (CTFR + calcien AM)
and cancer cells (CTO + calcein AM).

Every IFC had wells containing up to 12 single cancer cell controls, up to
12 single NK cell controls, and up to 24 cancer-NK doublets. After selection, the
equipment was programmed to keep the cells in incubation for 13 h, performing
the replacement of culture medium (20% DMEM + 80% AMEM) every 5h
(timepoints 5 and 10), and time-lapse images every hour, including images
captured before and immediately after culture medium change (timepoints 5/5” and
10/10’).

71 single cancer cells, 77 single NK cells, and 132 cells in doublets (NK 4 cancer
cells) were incubated, followed by the cell lysis, reverse transcription, and cDNA
amplification. Subsequently, sequencing of the single-cell RNA, using NextSeq
(Mlumina) was performed.

Distance measurement between cells. The distance shown in our study is the
shortest distance between the membrane of MDA-MB-231 cell and NK cell on IFC
within the doublets (NK + cancer cells) group. The distance has been measured for
13 time points. To analyze the videos frame by frame to yield the distance data, we
used Image], a public domain Java-based image processing software developed at
the National Institutes of Health®2.

Data preprocessing. In total, we obtained expression profiles of 336 cells. Out of
the 336 cells, we removed 46. The cells discarded include: 4 empty chambers (no
cells could be traced in the chambers from the start to the end); 8 empty chambers
that initially contained cancer cells; 10 empty chambers that initially contained NK
cells; 2 CIDs that started with single NK cells; and 22 cancer cells that started as
CIDs. After removal of these cells, we were left with 290 cells/doublets. The final
cell counts are as follows. 1. single NK cells (n = 77); 2. single cancer cells (n = 71);
3. CIDs throughout all time points (n = 132); and 4. CIDs that were left with NK
cells alone at the terminal time point (n = 10). Further, we discarded cells having
less than 2000 expressed genes (non-zero RNA-seq by Expectation Maximization
(RSEM) expression value®3). Next, we retained genes having RSEM expression >5

in at least 10 cells. After these filtering steps, we were left with an expression matrix
constituting 290 cells and protein-coding 8907 genes.

Batch correction, clustering, and visualization of the single cells. The matrix
obtained after performing the basic pre-processing steps was used as input for the
Seurat, single cell analysis R package, as well as for other downstream analyses. We
used Seurat’s data integration workflow to process the data with the genes detected
in at least 5 cells, further employing the standard routines for log-normalization,
variance stabilizing transformation for identification of highly variable genes using
NormalizeData() and FindVariableFeatures() with default parameter settings. The
cells used in this study originated from two independent runs. For integration and
batch correction, we used the FinIntegrationAnchors() with k.filter=100 for
identification of anchor cells that represent matching cell pairs across the two
datasets in order to project the transcriptomes into a shared space and Inte-
grateData() function was used for integrating these anchors, which involve
Canonical Correlation Analysis (CCA). These steps provided the batch corrected
matrix. 2D map of the cells was created using the RunUMAP() function.

Differential gene expression analysis. Limma-voom®* was used to identify dif-
ferentially expressed genes (DEGs) among the cell-groups. Top DEGs that qualified
adjusted P-value cutoff of 0.05 and absolute log, fold change cutoff of 1 were
further analyzed for their biological significance.

Survival analysis based on the upregulated genes governing NK cell anti-
tumor activity. PROGgene V238 was used for gene signature-based overall survival
analysis and the TCGA BRCA dataset, containing survival information for 594
patients. Out of 187 upregulated genes associated with NK killing events, 164 genes
overlapped with the TCGA BRCA dataset. PROGgene V2 produced a Kaplan-Meir
plot considering, as input, a gene signature comprised of these 164 genes. Divergent
survival patterns were observed across high- and low-risk patient groups using the
median value as cut-off.

Regulation of cell-cell distance and transcriptional memory. We considered
two matrices to track the association between temporally recorded cell-cell dis-
tance and terminally profiled gene expression. First, the processed gene expression
matrix of dimensions |G| x |C|, where |G|, and |C| denote the number of genes and
the number of CIDs, respectively. Second, the cell-cell distance matrix of dimen-
sions |C| x |T|, where |T| denotes the time points when the cell-cell distance
measurements were recorded. We used these two matrices to compute the third
matrix of dimensions |G| x |T| containing the Pearson’s correlation coefficients p, ,
for each gene-time point pairs {(g,t)| t € T,g € G}. Notably, |G| = 2000, |

C| =102, and |T| = 13. We retained 90 genes with |p, ,| 2 0.25 for at least one time
point for further analysis. These 90 genes were subjected to hierarchical clustering
based on the computed correlation values. 4 gene modules were retrieved using
cutree(). For each of these modules, motif enrichment and transcription factor
activity analyses were performed using RcisTarget’” and ShinyGO3°, respectively.
RcisTarget discerned enriched TF binding motifs and reported a module-specific
list of TFs, using the hgl9-tss-centered-10 kb-7species.mc9nr.feather database
containing genome-wide ranking for the motifs. Gene regulatory networks were
constructed using igraph®®.

Tracking mRNA half-life of the genes associated with the modulation of
cell-cell distance. We collected mRNA half-life information for >5000 genes from
the study published by Blumberg et al.3>. Notably, the mRNA half-life measure-
ments were performed on K562 cells. Out of the previously identified 90 cell-cell
distance modulating genes, we could find mRNA half-life for 57 genes with an
average half-life of 1.05 h.

Cell-cell signaling among CIDs. We used iTALK R package featuring information
on 2648 cancer-specific transcript interactions. We applied the rawParse() function
to select the top 50% highly expressed genes from our processed gene expression
matrix (constituting 290 cells and 8907 genes), using mean as a method of choice.
This identified 230 gene pairs using the FindLR() function. We computed Pearson’s
correlation coefficient between expression values associated with the selected pairs
across CIDs (cancer-NK/cancer-NK, cancer-NK/NK) and qualified ones that
exhibited Pearson’s correlation coefficient > 0.4. To rule out the possibility that the
co-expression stems solely from either NK or cancer cells alone, we tracked
Pearson’s correlation coefficient among NK/NK and Cancer/Cancer cases as well.
With these criteria, 20 gene pairs were selected, and three of these were found
directly involved in breast cancer signaling.

Statistics & reproducibility. All the statistical analyses were performed using R
software (v4.0.0). The Result and the Method sections provide details on the sta-
tistical analyses conducted in this study. We used Limma-voom to estimate the
statistical significance of gene expression differences among the cell groups for
differential gene expression analysis. For the correlation analyses, Pearson’s cor-
relation coefficient was computed. The statistical significance between mRNA half-
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lives of genes belonging to the modules vs non-module was calculated using the
Welch Two Sample t-test. Survival analysis was performed using the PROGgene V2
tool and compared through a log-rank test.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All raw and processed sequencing data generated in this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under
accession number GSE181591. Source data for figures is available in Supplementary Data 2.

Code availability
Code can be found at https://github.com/SmritiChawla/NKCell (https://doi.org/10.5281/
zenodo.7246721)%6.
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