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Sequential fear generalization and network
connectivity in trauma exposed humans with
and without psychopathology
Xi Zhu1,2,11, Benjamin Suarez-Jimenez3,11, Amit Lazarov 1,4, Sara Such5, Caroline Marohasy3, Scott S. Small1,2,6,

Tor D. Wager7, Martin A. Lindquist8, Shmuel Lissek9 & Yuval Neria 1,2,10✉

While impaired fear generalization is known to underlie a wide range of psychopathology, the

extent to which exposure to trauma by itself results in deficient fear generalization and its

neural abnormalities is yet to be studied. Similarly, the neural function of intact fear gen-

eralization in people who endured trauma and did not develop significant psychopathology is

yet to be characterized. Here, we utilize a generalization fMRI task, and a network con-

nectivity approach to clarify putative behavioral and neural markers of trauma and resilience.

The generalization task enables longitudinal assessments of threat discrimination learning.

Trauma-exposed participants (TE; N= 62), compared to healthy controls (HC; N= 26), show

lower activity reduction in salience network (SN) and right executive control network (RECN)

across the two sequential generalization stages, and worse discrimination learning in SN

measured by linear deviation scores (LDS). Comparison of resilient, trauma-exposed healthy

control participants (TEHC; N= 31), trauma exposed individuals presenting with psycho-

pathology (TEPG; N= 31), and HC, reveals a resilience signature of network connectivity

differences in the RECN during generalization learning measured by LDS. These findings may

indicate a trauma exposure phenotype that has the potential to advance the development of

innovative treatments by targeting and engaging specific neural dysfunction among trauma-

exposed individuals, across different psychopathologies.
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More than one third of people exposed to traumatic
events, such as wars, disasters, and assaults, are likely to
develop significant psychopathology, including post-

traumatic stress disorder (PTSD), panic disorder (PD), general-
ized anxiety disorder (GAD), and major depression disorder
(MDD)1–4. As symptoms of these disorders frequently overlap5,
their biological underpinnings are often shared6,7. Addressing the
question of whether trauma exposure is associated with a distinct
neural signature across psychopathologies such as those pre-
viously listed may advance our understanding of the corre-
sponding neural dysfunction. Yet, efforts to advance knowledge
regarding trauma-related neural aberrations have been hampered
by adhering to traditional diagnostic systems, such as the Diag-
nostic and Statistical Manuals of Mental Disorders (DSM)8,
neglecting more objective markers including those clarified by
brain imaging9. Furthermore, extant research examining neural
biomarkers of trauma exposure has focused almost solely on
patients with PTSD, limiting our understanding of potential
shared mechanisms across psychopathologies versus trauma-
exposed healthy controls. As such, this focus on PTSD has also
complicated efforts to clarify whether resilience (i.e., exposure to
trauma without developing significant psychiatric symptoms)
may have a unique neural signature, with research on resilience
being relatively sparse10–12. In an effort to address these gaps in
knowledge, the present study aimed to clarify the behavioral and
network functional magnetic resonance imaging (fMRI) markers
of trauma and resilience in trauma-exposed people with and
without psychopathology, and among people who were never
exposed to trauma.

Previous studies have implicated excessive threat generalization
(termed also threat or conditioned overgeneralization) as a
potential endophenotype of several psychopathologies, including
PTSD, PD, and GAD13,14. Threat generalization and dis-
crimination are essential for learning about future threats. Gen-
eralization transfers a conditioned response from one stimulus to
another similar, yet different, stimulus, such as concentric
circles15. In threat-related fear responses, individuals who over-
generalize transfer fear from a dangerous stimulus to a less
dangerous or even safe one, reflecting excessive fear and resulting
in threat discrimination difficulties15. A recent meta-analysis
study has shown significantly heightened behavioral fear gen-
eralization across trauma-, stress-, and anxiety-related disorder
participants including GAD, PTSD, PD, SAD than controls,
however, this study was limited to behavioral and psychophy-
siological data only16.

Several brain areas have been identified to be involved in dis-
tinct computational process that are responsible for threat gen-
eralization and discrimination. These include the
hippocampus17,18, ventral prefrontal cortex (vPFC)1,13, insula19,
dorsomedial prefrontal cortex (dmPFC)20, anterior cingulate
cortex (ACC), and thalamus19. Functional deficits in these brain
areas, related to generalization/discrimination, have been attrib-
uted to PTSD21,22. The involvement of these neural areas also
underscores the potential role of several essential brain networks
in generalization/discrimination, including the default mode
network (DMN), salience network (SN), and executive control
network (ECN). These brain networks were also shown to play a
key role in memory (DMN)23, bottom-up (SN) and top-down
executive control processes (ECN)24.

Understanding the ways by which trauma exposure may alter
these brain networks, and where they diverge from those of
resilient individuals, is essential for clarifying the underlying basis
of human psychopathology in the aftermath of trauma. To
thoroughly elucidate behavioral and neural markers of trauma
exposure and resilience, we utilized a generalization/discrimina-
tion task previously tested in patients with PD14, GAD25

and PTSD21. These studies show that psychiatric patients,
compared to normal controls, exhibit stronger generalization,
implicating it as a putative marker of disrupted threat
discrimination13–15,23,25–27. However, no study to date has
assessed this neural marker among people exposed to trauma
with psychiatric illnesses or among resilient participants who
were exposed to trauma, but did not develop any significant
psychiatric symptoms. In addition, no study to date has looked at
how trauma exposed individuals learn to discriminate between
cues over time. Learning to discriminate is an essential process
whereby exposure to cues creates different neural representations
for each cue. Understanding how these representations are built
over time can give us an insight into how psychopathology
develops and is maintained and how resilient trauma-exposed
counterparts overcome it. Hence, the task used here entails two
consequent generalization stages, termed early and late general-
ization (EG, LG), enabling to delineate the sequential trajectory of
threat discrimination learning over these two stages. One study
compared the trial-by-trial course of risk rating during general-
ization phase between PTSD and subthreshold PTSD to trauma-
exposed controls28. This study provided initial evidence that
relative to trauma-exposed controls, those with PTSD and sub-
threshold PTSD displayed significantly elevated generalization in
early but not late trials28. However, research has yet to char-
acterize the temporal associations between threat discrimination
and network activation over the course of two consecutive gen-
eralization phases.

In the present study, aiming to characterize the behavior and
neural markers of threat generalization /discrimination of trauma
exposure and resilience, we assessed both the behavioral risk
rating and network connectivity of the DMN, SN, and ECN,
which has been largely unexplored in trauma-exposed popula-
tions. To clarify the behavioral and neural markers of trauma,
trauma-exposed participants (TE) and healthy controls (HC)
were compared. To identify the behavioral and neural markers of
resilience, trauma-exposed participants with psychopathology
(TEPG) were compared to trauma-exposed healthy controls
(TEHC) and healthy controls (HC) with no trauma exposure. For
behavioral markers, we hypothesized that there would be elevated
generalization to stimuli resembling the CS+ in the TEPG group,
compared to HC or TEHC groups. For neural markers, we
expected that in the TEPG group there would be limited changes
of network connectivity in SN and ECN over the two general-
ization stages, compared to TEHC or HC group.

Results
Demographics and clinical characteristics of the participants.
Demographic and clinical characteristics, including diagnoses, are
presented in Table 1. As expected, compared to HC, TE partici-
pants had significantly higher PTSD symptoms29, depression
symptoms30, SAD symptoms31, panic disorder symptoms32,
GAD symptoms33, and functional impairment34. In addition,
TEPG, compared with TEHC, had higher psychopathology
symptoms on all measures (all p’s < 0.001; See Table 1).

Behavioral risk rating (conditioning). First, we examined the
appraisal of shock risk (risk ratings to CS+ vs. vCS−) in TE and
HC separately, across the three phases (pre-acquisition, acquisi-
tion, and generalization), using paired sample t-tests. Results
showed no CS+ vs. vCS- differences at the pre-acquisition phase
in both groups (HC: p= 0.09, t= 1.75, df= 24; TE: p= 0.39,
t=−0.88, df= 58). Conversely, a significant difference between
the cues at acquisition (HC: p= 0.009, t=−2.84, df= 25; TE:
p < 0.001, t=−8.01, df= 60) and generalization phase (HC:
p= 0.001, t=−3.83, df= 25; TE: p < 0.001, t=−9.95, df= 60)
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emerged in both groups (Figure S1, Table S2). These results
suggest that both groups learned the CS contingencies.

Threat overgeneralization/discrimination over time
Trauma exposure markers
Behavioral markers changes of stages: To examine the behavioral
differences over the two generalization phases (EG, LG), we first
assessed the changes of behavioral risk rating over the two stages
(delta: EG-LG) of trauma exposure by comparing TE and HC
using a group (TE and HC) by stimulus-type (vCS-, oCS-, GS1,
GS2, GS3 and unreinforced CS+) repeated measures ANOVAs.
Results indicated no significant findings of the changes of beha-
vioral risk rating over the two stages (p > 0.05; Fig. 1).

Next, we assessed the changes of LDS across two stages using
one-way ANOVA. Results indicated no significant findings
(p > 0.05).

Neural markers changes of stages: To examine neural activity
changes (delta: EG-LG) over the two generalization phases, we
performed a group (TE, HC) by stimuli-type two-way ANOVA.
No significant group by stimuli interaction was found. Only a
corrected significant main effect of group emerged in SN and
RECN (SN: F= 7.01, p= 0.008; RECN: F= 10.25, p= 0.001).
This main effect of group was driven by HC displaying a higher
reduction of SN and RECN activity, compared to TE who
remained consistently higher SN and RECN activity, over the two
generalization phases (Fig. 2, Fig. S2). Other networks indicated
no significant findings.

Next, we accessed the changes of LDS across two stages in each
of these ICNs using one-way ANOVA. Results indicated a

significant group difference in SN LDS (F= 7.492, p= 0.04
Bonferroni corrected). This was driven by higher LDS reduction
in HC compared to TE (p= 0.04 Bonferroni corrected; Fig. 3,
Fig. S4).

Taken together, these analyses suggest that both groups were
able to differentiate between the CS+ and the CS−, and rated the
other generalization stimulus-type comparably during the task.
However, compared to the TE, HC displayed a higher reduction
of SN and RECN activity over the generalization stages,
indicating a better learning effects. Additionally, compared with
TE, HC displayed better discrimination learning over the two
stages across different stimuli measured by LDS in SN. These
findings suggest that while trauma exposure maintains high SN
and RECN activity over time, it reduces the ability to use the SN
to discriminate between the stimuli, as per the LDS.

Resilience markers
Behavioral markers changes of stages: To examine the behavioral
differences over the two generalization phases (EG, LG), we first
assessed the changes of behavioral risk rating over the two stages
(EG-LG) of resilience by comparing TEHC, TEPG and HC using
a group (TEHC, TEPG and HC) by stimulus-type (vCS−, oCS−,
GS1, GS2, GS3 and unreinforced CS+) repeated measures
ANOVAs. Results indicated no significant group by stimuli
interaction of the changes of behavioral risk rating over the two
stages (EG-LG; p > 0.05). A significant main effects group was
found (F= 6.69, p= 0.001), where TEPG, compared to the other
two groups, showed consistently higher risk ratings across the two
stages (TEPG vs. HC: p= 0.045; TEPG vs. TEHC: p= 0.005
Bonferroni corrected; Fig. 1).

Table 1 Demographic information of the sample.

HC TE TEPG TEHC

N 26 62 31 31
Sex, N Male 15 37 19 18

Female 11 25 12 13
Race, N Black/African American 12 29 13 16

White/Caucasian 10 15 9 6
Asian 1 6 2 4
Others 2 12 7 5

Age, mean years (SD) 34.58 (11.56) 37.05 (12.35) 37.19 (13.06) 36.9 (11.81)
Education, mean (SD) 15.83 (2.64) 14.65 (2.47) 14.36 (2.78) 14.93 (2.14)

CAPS, mean (SD) - 17.74 (16.36) 31.03 (11.95) 4.45 (6.03)
HAM-D, mean (SD) 0.4 (0.82) 7.16 (7.26) 12.43 (6.78) 2.06 (2.56)
LSAS, mean (SD) 11.54 (13.29) 40.05 (35.06) 59.55 (34.11) 19.90 (22.66)
PDSS, mean (SD) 0.46 (1.84) 5.2 (6.16) 8.97 (6.18) 1.30 (2.84)
SF36, mean (SD) 87.85 (7.63) 66.62 (23.39) 51.23 (20.28) 82.53 (13.84)
GAD-7, mean (SD) 1.08 (2.43) 6.15 (6.16) 9.94 (5.76) 2.23 (3.60)

Current PTSD 0 26 26 0
MDD 0 11 11 0
PDD 0 5 5 0
SAD 0 1 1 0
PD 0 3 3 0
OCD 0 1 1 0
ADHD 0 1 1 0
Insomnia 0 1 1 0
Eating Disorder 0 1 1 0
Subthreshold PTSD 0 2 2 0
Subthreshold MDD 0 2 2 0

CAPS Clinician-Administered PTSD Scale-5, HAM-D Hamilton Depression Scale, LSAS Liebowitz Social Anxiety Scale, PDSS Panic Disorder Severity Scale, PTSD Posttraumatic Stress Disorder,MDDMajor
Depression Disorder, PDD Persistent Depressive Disorder, SAD Social Anxiety Disorder, PD Panic Disorder, OCD Obsessive-Compulsive Disorder, ADHD Attention Deficit Hyperactivity Disorder, HC
Healthy Control, TE Trauma Exposed, TEPG Trauma Exposed Psychopathology Group, TEHC Trauma Exposed Healthy Control.
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Next, we assessed the changes of LDS using one-way ANOVA.
Results indicated no significant changes of LDS, indicating no
group discrimination learning differences during the
generalization phase.

Neural markers changes of stages: To examine neural activity
changes (delta: EG-LG) over the two generalization phases, we
performed a group (TEPG, TEHC, HC) by stimuli-type two-way
ANOVA. No significant group by stimuli interaction was found
(p > 0.05). Only a corrected significant main effect of group
emerged in SN and RECN (SN: F= 7.13, p= 0.005; RECN:
F= 12.74, p= 0.00002 Bonferroni corrected). This main effect of
group was driven by TEHC maintain higher SN and RECN
activity, compared to TEPG (SN p= 0.035 Bonferroni corrected;
RECN p= 0.0006 Bonferroni corrected) and HC (SN p= 0.001
Bonferroni corrected; RECN p= 0.000015 Bonferroni corrected)
who displayed higher reduction of SN and RECN activity, over
the two generalization phases (Fig. 2, Fig. S3). Other networks
indicated no significant findings.

Next, we accessed the changes of LDS across two stages in each
of these ICNs using one-way ANOVA. Results indicated a
trending group difference in SN LDS (F= 3.70, p= 0.029) and
RECN LDS (F= 4.04, p= 0.021). These results were driven by
higher SN LDS reduction in HC group compared to the other two
groups (HC vs.TEHC: p= 0.018, HC vs.TEPG: p= 0.021) and
lower RECN LDS reduction in TEPG group compared to the
other two groups (TEPG vs.HC: p= 0.029, TEPG vs. TEHC:
p= 0.01; Fig. 3).

Taken together, these analyses suggest that while all groups
could differentiate between the CS+ and CS−, TEPG, compared
to TEHC and HC, had higher risk ratings particularly during the
LG stage. Resilience findings could be explained by maintaining
high SN and RECN activity over the two stages in the TEHC,
compared to the TEPG and HC. Interestingly, higher LDS
reduction of SN was found in the HC, compared to TEPG and
TEHC, while higher LDS reduction was found in RECN in both
the HC and TEHC groups, compared to TEPGs. That is, while

TEHC had maintained higher SN and RECN activity over time,
the results show higher LDS in the RECN, suggesting a
compensatory input used for discrimination. Overall, these
results suggest that while trauma-exposed resilient individuals
show a higher SN activity, a refined engagement of the RECN
could potentially enhance their ability to successfully discriminate
between stimulus-type resembling the one predicting threat.

Discussion
To examine whether exposure to trauma is associated with
measurable behavioral and neural markers this study utilized an
fMRI generalization/discrimination task among trauma-exposed
adults with and without psychopathology, as well as healthy none
trauma-exposed controls. This study is the first to assess both
behavioral and neural network markers of longitudinal threat
overgeneralization and discrimination. Group differences
between TE and HC revealed a distinct signature of trauma
exposure. TEs, compared to HC, showed lower activity reduction
in SN and RECN across two stage, and worse discrimination
learning in SN measured by LDS. Additionally, group differences
between TEPG, TEHC, and HC further revealed a resilience
signature of network connectivity differences in the RECN during
generalization learning. Overall, trauma-exposed resilient indivi-
duals demonstrated better discrimination learning over time in
the RECN, compared with those who developed psychopathol-
ogy. These findings may suggest a trauma exposure phenotype
that has the potential to significantly advance treatment devel-
opment by targeting specific well-delineated neural dysfunction
among trauma-exposed individuals, across different
psychopathologies.

When exploring the temporal sequence of generalization, HC
and TEHC participants showed a good discrimination between
GS and CS+, while TEPG exhibited higher risk ratings between
GS3 and CS+ during generalization. Our behavior results suggest
that the TEs showed overall higher risk ratings than HC. These
results were driven by lower risk rating in TEHC and HC,
compared to TEPG, further supporting a potential resilience

Fig. 1 Behavioral risk rating of the generalization task. a Risk rating in early generalization phase for TE and HC groups. b Risk rating in late generalization
phase in TE and HC groups. c Risk rating of delta changes over time (EG-LG) in TE and HC groups. n= 88, error bar stand for ±2 standard error (SE). d Risk
rating in early generalization phase in TEPG, TEHC and HC groups. e Risk rating in late generalization phase in TEPG, TEHC and HC groups. f Risk rating of
delta changes over time (EG-LG) in TEPG, TEHC and HC groups. n= 88, error bar stand for ±2 standard error (SE). TE trauma-exposed participants, HC
non-trauma-exposed healthy controls, TEHC trauma-exposed healthy controls, TEPG trauma-exposed psychopathology group, EG early generalization, LG
late generalization.
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signature. The results support the premise that TEPG have a
harder time discriminating between cues (overgeneralizing cues)
particularly as they resemble the CS+. In turn, resilient trauma-
exposed counterparts were able to discriminate between the cues
comparably to HC. Indeed, our findings support previously
reported discrimination deficits in PTSD21 and anxiety25, where
PTSD groups show increased generalization to stimuli resembling

the CS+. These results suggest that trauma exposure by itself does
not necessarily hamper one’s ability to discriminate between cues,
unless one develops psychopathology following exposure to
trauma.

Studying generalization across the two stages, TE participants
maintained higher overall activity in the SN, indicating a general
trauma exposure marker. The SN plays an important role in

Fig. 2 Neural activity changes (delta: EG-LG) over the two generalization phases. Neural activity changes (delta: EG-LG) over the two generalization
phases to conditioned and generalization stimuli (vCS-, oCS-, GS1, GS2, GS3, CS+) for (a) salience network (SN); (b) right executive control network
(RECN); (c) left executive control network (LECN); (d) anterior default mode network (a-DMN); and e) posterior default mode network (p-DMN) across
two stages, n= 88, error bar stand for ±2 standard error (SE). CS+ conditioned stimuli, danger cue, oCS- conditioned stimuli, o shape safe cue, vCS-
conditioned stimuli, v shape safe cue, GS generalization stimuli, HC non-trauma-exposed healthy controls, TEHC trauma-exposed healthy controls, TEPG
trauma-exposed psychopathology group.
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graded levels of threat-related salience detection35,36, with usually
highest levels to CS+ which gradually diminishes with decreasing
CS+ resemblance. In this case, results show that HC have a
higher reduction in SN activity over time, not evident in TE
participants. Additionally, the HC group had higher LDS in the
SN when compared to the TE group, further indicating a trauma
exposure signature. Specifically, within the HC group, the iden-
tified neural signature of overgeneralization measured by steep-
ness of gradients (LDS) was improved over time, suggesting better
discrimination in the late generalization stage, compared with the
earlier one. The SN in the TE group had less of a generalization
gradient and remained the same over time, suggesting poor dis-
crimination learning in the TE group. Interestingly, when TE
participants were further divided into TEPG and TEHC, we
found that this SN effect was driven by the TEHC group as
compared to the other two groups (TEPG; HC). This is further
supported by the SN LDS analysis, which revealed that in TEHC,
like in TEPG, showed less discrimination learning measured by
the change of LDS over the two stages. Overall, these results
suggest that while HC are able to use the SN to improve the
detection and discrimination of threat, trauma-exposed indivi-
duals cannot.

Examining the ECN, we found that TE maintained RECN
activity from EG to LG. However in TEHC, like in HC, RECN
was associated with increased discrimination learning (LDS).
Generalization effects in the ECN may represent graded decreases
in cognitive load that are proportional to decreases in fear reac-
tivity as stimulus-type differentiate from CS+. According to
attentional control theory, cognitive correlates of anxiety,
including worry, attentional bias toward threat, and top-down
efforts to manage anxiety, consume limited working-memory
resources37. Our TEHC group findings, that the low RECN
activity and the increased discrimination learning, suggest that
less cognitive control network is needed as anxiety reduces over
time. That is, trauma-exposed resilient individuals might rely on a
refined detection and monitoring system to discriminate between
stimulus-type, reducing their cognitive load, and therefore redu-
cing their anxiety. The opposite is seen in the TEPG group, which

showed high SN and RECN activity and low discrimination
learning associated with these networks. This may further sug-
gests that the ECN is needed in order to regulate anxiety and fear
to discriminate those stimulus-type which more resemble the CS-.

Several limitations of the present study should be noted. First,
while we were expecting to find limbic area differences, particu-
larly in the hippocampus, this was not the case. It could be that as
the present task did not involve context, there was a lack of
modulatory response by the hippocampus38. Future studies could
emphasize context learning and discrimination following trauma
exposure to test this hypothesis. Second, the data was collected in
two scanners, and while we ensured that data was properly har-
monized and controlled for scanner across all analysis, we cannot
exclude the possibility that noise might be introduced when
combining the two datasets. Third, we excluded patients with
psychosis, schizophrenia, and bipolar illness for which there is
some evidence for trauma history, which may limit the general-
izability of obtained results. Future research may consider using
more lenient inclusion/exclusion criteria by expanding the range
of included disorders. Finally, and most interesting, it is tempting
to consider the current results as potential targets for prevention
or identifying risk-factors for the development of psychopathol-
ogy after trauma-exposure. However, due to the limitations of
cross-sectional studies, such as this one, we cannot infer whether
the observed results in this study are caused by trauma-exposure
or are developed prior to trauma-exposure. Future longitudinal
studies should focus on these neural signatures, to identify their
potential applicability for prevention of future psychopathologies.

In summary, our study shows evidence for both a trauma
exposure signature and a resilience signature, not limited to
specific psychiatric psychopathologies. The plasticity of threat
and memory networks identified here may present significant
opportunities for developing interventions aiming to target
trauma exposure-related neural abnormalities. The SN and ECN
activity emerged as key circuits of threat generalization following
trauma exposure. However, higher activity in the SN in concert
with higher RECN related to discrimination learning may
represent a resilience signature in healthy trauma-exposed

Fig. 3 Neural activity changes measured by Linear deviation scores (LDS). a LDS changes for SN in TE and HC groups. b LDS changes for SN in TEPG,
TEHC and HC groups. c LDS changes for RECN in TE and HC groups. d LDS changes for RECN in TEPG, TEHC and HC groups. n= 83, error bar stand for
±2 standard error (SE). LDS linear deviation scores, SN salience network RECN right executive control network, HC non-trauma-exposed healthy controls,
TEHC trauma-exposed healthy controls, TEPG trauma-exposed psychopathology group.
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individuals, who do not develop psychiatric disorders following a
traumatic experience. Interventions directed at neurogenesis of
the SN and ECN circuits might help increase discrimination in
those who developed psychiatric disorders. Emerging research
suggests that brain stimulation, particularly transcranial direct
current stimulation (tDCS), a non-invasive technique, which
elicited its action via multifaceted mechanisms, such as immu-
nomodulation and neurogenesis, is a promising treatment for
fear-related abnormalities by modulating threat memories and
enhancing cognitive control via application to the prefrontal
cortex39. Interventions, such as tDCS, of the SN and ECN may
have relevance in reducing long term effects of trauma exposure
and the development of post-trauma psychopathology.

Methods
Participants. One hundred fourteen participants (79 TE and 35 HC) completed
the study protocol (see Table 1 and Fig. S5). Of the 79 TE participants, 41 had
psychopathology at the level of a psychiatric diagnosis (TEPG), and 38 were
trauma-exposed healthy controls with no diagnosis (TEHC; see Table 1). Partici-
pants were recruited by local advertisements, websites, and word-of-mouth refer-
rals and evaluated at the New York State Psychiatric Institute (NYSPI). The
methods were performed in accordance with relevant guidelines and regulations
and approved by NYSPI IRB. All participants provided written consent to take part
in the study.

To ensure substantial range of psychopathology in the TE sample, and
consistent with a large body of work suggesting dose-response relationships
between trauma exposure severity and psychopathology40, we methodically
characterized type, severity, number and timing of trauma exposures, and included
both childhood and adulthood trauma exposure. Index trauma exposure met DSM-
5 Criterion A of a traumatic event.

An independent MD or PhD/PsyD clinical evaluator administered the
Structured Clinical Interview for DSM-5 Disorders (SCID-5)41 and the Clinician-
Administered PTSD Scale-5 (CAPS-5)29,42. The CAPS-5 is a 30-item instrument
containing 0-4 Likert-style items of frequency and intensity for PTSD symptoms. It
has good reliability and validity43. Depressive symptoms were assessed using the
Hamilton Depression Scale (HAM-D, 17 item)30, a reliable clinician-rated measure
of depressive severity. Social anxiety symptoms were assessed using the Liebowitz
Social Anxiety Scale (LSAS), a well-validated 24-item clinician-rated scale for Social
Anxiety Disorder (SAD) severity, widely used in studies of SAD31. Panic disorder
symptoms were assessed using the Panic Disorder Severity Scale (PDSS)32, a self-
report measure for panic severity. Self-rated instruments also included the
Generalized Anxiety Disorder assessment (GAD-7)33, and the SF-3634, a 36 item
measure of generic health status, designed for use in clinical practice and
research44. Out of the 62 TE participants, 26 had PTSD, 11 had MDD, 5 had
persistent depressive disorder (PDD), 3 had PD and 1 had SAD (See Table 1).

Trauma-exposed participants were excluded due to: 1) Prior or current
diagnosis of schizophrenia, psychotic disorder, bipolar disorder, dementia; (2)
HAM-D score >25 reflecting significant depression and/or depression related
impairment that warranted pharmacotherapy or combined medication and
psychotherapy; (3) Individuals at risk for suicide; (4) History of substance/alcohol
dependence within the past six months, or abuse within past two months; (5) Any
psychotropic medications including antipsychotic, antidepressant, mood stabilizer,
or stimulant medications in the last four weeks prior to the study (6 weeks for
fluoxetine); (6) Pregnancy; (7) Medical illness that could interfere with assessment
of response or biological measures (fMRI); (8) Paramagnetic metallic implants or
devices contraindicating magnetic resonance imaging or any other non-removable
paramagnetic metal in the body; and (9) Significant claustrophobia that would
preclude ability to remain calm within the MRI scanner.

Healthy control participants were excluded due to: (1) Any current or past
psychiatric diagnosis; (2) A history of trauma exposure that fulfills DSM-5 PTSD
criteria A; (3) HAM-D score> 7; (4) Lifetime history of substance/alcohol
dependence or abuse history; and point 6–9 as above.

fMRI Task. This task has been described in previous study by Lissek et al., 201423.
Briefly, this task consists of six types of stimuli including conditioned stimuli (CS+:
danger cue; oCS−: o shape safe cue; vCS-: v shape safe cue) and three general-
ization stimuli (GSs including GS1, GS2, GS3). The GSs (i.e., GS1, GS2 and GS3)
formed a continuum-of-size between the CS+and oCS− with GS3, GS2 and GS1
demarcating the GS with most to least similarity to the CS+, regardless of CS+
size. The inclusion of the vCS− allows for an assessment of brain responses to
the CS+ (vs vCS−) that are independent of generalization effects to all
ringed stimulus-type. Such an assessment is important because brain activations to
the CS+ was used as functional regions of interest in which to test gradients of
threat generalization and should thus be orthogonal to the generalization process.
The dimensions and size increments for employed rings are described in Fig. S6.
There were a string of colored crosshairs (blue, yellow, red, green, and purple)
presented serially for a duration of 800 ms each, in a quasi-random order in the

center of the viewing screen during 4 s presentation of each stimulus. The inter-
trial interval (ITI) periods last 2.4 s (three crosshairs) or 4.8 s (four crosshairs),
during which participants focused their gaze on crosshairs in the center of the
screen.

Procedure. Participants were not instructed of the CS/US contingency but were
told they might learn to predict the shock if they attend to the presented stimulus-
type. All CSs and GSs were presented for 4 s on a rear-projection viewing screen
mounted at the foot of the scanner with a viewing distance of 6.71 feet (204.47 cm).
The unconditioned stimulus (US) was a 100 ms electric shock (3–5 mA) delivered
to the participant’s right ankle. Prior to the start of the experiment, a sample shock
procedure was performed during which participants received between one and
three sample shocks and a level of shock rated by participants as being ‘highly
uncomfortable but not painful’ was established. Shock intensity varied by partici-
pant and had an average intensity of 4.6 mA (s.d.= 0.80).

Next, participants practiced using the button box to respond to the red
crosshairs, which appeared both at the center of CSs and GSs and during the ITI
periods. Participants were then placed in the scanner. Participants were instructed
to continuously monitor the stream of colored crosshairs and rate their perceived
level of risk for shock as quickly as possible following each red cross using a three-
button fiber optic response pad (Lumina LP-404 by Cedrus, San Pedro, Los
Angeles, USA), where 0= ‘no risk’, 1= ‘moderate risk’ and 2= ‘high risk’. Risk
ratings were recorded with Presentation software (Neurobehavioral Systems,
Berkeley, CA, USA). Structural scans were acquired followed by pre-acquisition,
acquisition, and generalization fMRI scans. Participants rated their anxiety to CS+,
oCS− and vCS− after pre-acquisition, acquisition, and generalization
between scans.

Behavioral ratings. Finally, self-reported anxiety to CS+, oCS−, and vCS− were
retrospectively assessed following the pre-acquisition, acquisition, and general-
ization phases using a 10-point scale. The behavioral risk rating and neural network
analysis excluded non-learner participants, indicated by rating the vCS- higher
than CS+ during task-related risk rating or the post-task questionnaire27.

Design. The generalization paradigm included three phases (Fig. S6): (i) pre-
acquisition-consisting of 20 trials of each stimulus type (CS+, GS1, GS2, GS3, oCS-
and vCS-), all presented in the absence of any shock US; (ii) acquisition-including
15 CS+, 15 oCS−, and 15 vCS-, with 12 of 15 CS+ co-terminating with shock
(80% reinforcement schedule;14 and (iii) generalization-including an early gen-
eralization (EG) stage and late generalization (LG) stage, each comprised of 10
trials of each stimulus type (unreinforced CS+, GS1, GS2, GS3, oCS−, vCS−)
and an additional 5 CS+ co-terminating with shock (33% reinforcement
schedule) to prevent extinction of the conditioned response while leaving 10
unreinforced CS+ to index responses uninfluenced by the shock US. Trials of all
three phases were arranged in quasi-random order such that no more than two
stimulus-type of the same class occurred consecutively. An additional constraint
for the generalization phase was the arrangement of trials into six blocks of 13 trials
each (i.e., two unreinforced CS+, one reinforced CS+, two oCS-, two vCS-, two
GS1, two GS2, two GS3) to ensure an even distribution of trial types
throughout runs.

Image Acquisition and analysis. Seventy-seven participants were scanned using a
3 T General Electric MR750, and 37 participants were scanned using a 3 T General
Electric PREMIER (GE Medical Systems, Waukesha, WI, USA) equipped with a
32-channel receive-only head coil. For each participant a high-resolution T1-
weighted 3D BRAVO sequence was acquired using the following parameter:
T1= 450 mm, Flip angle= 12°, field of view= 25.6 cm, 256 × 256 matrix, slice
thickness= 1 mm. Whole brain T2*-weighted echo-planar images (EPIs) depicting
the blood-oxygen-level-dependent (BOLD) were acquired for each participant with
TR= 1.3 sec, TE= 28 msec, FA= 60°, FOV= 19.2 cm, number of slices= 27, slice
thickness= 4 mm. A head cushion was used to limit head motion.

Image Preprocessing. All fMRI images were preprocessed using MATLAB ver-
sion R2018a (The MathWorks, Inc., Natick, Massachusetts) and statistical para-
metric mapping software (SPM12; Welcome Trust Centre for Neuroimaging, UCL,
London, United Kingdom). (1) Functional images were spatially realigned to the
first image in the time series using a six-parameter rigid body transformation; (2)
then slice-time correction was performed; (3) outlier detection was carried out
using artifact removal tools (ART). The principal component-based noise-correc-
tion method, “CompCor,” implemented in this toolbox, was used for additional
control of physiological noise and head motion effects. Outlier volumes in each
participant were identified as having large spiking artifacts (i.e., volumes >3 stan-
dard deviations from the mean image intensity), or large motion (i.e., 0.5 mm for
scan-to-scan head-motion composite changes in the x, y, or z direction); (4) each
functional image was then spatially normalized to the standard T1 template
included in SPM12; functional images were then resliced to 2 × 2 × 2mm voxels,
according to the resulting spatial realignment and normalization parameters; (5)
anatomical images were segmented into grey matter, white matter, and cere-
brospinal fluid (CSF) regions; (6) functional scans were smoothed with an 8 mm
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full-width-at-half-maximum (FWHM) Gaussian kernel; (7) covariates corre-
sponding to head motion (6 realignment parameters and their derivatives), outliers
(one covariate per outlier consisting of 0 s everywhere and a 1 for the outlier time
point), and the BOLD time series from the participant-specific white matter and
CSF masks were used in the GLM and connectivity analysis as predictors of no
interest, and were removed from the BOLD functional time series using linear
regression.

From the original 114 sample, four participants were excluded due to being late
for scan and not able to finish the generalization task (two participants), or
task failure of delivering shock (two participants). Twenty-two additional
participants (15 TE and 7 HC) were excluded with greater risk rating to vCS−,
compared to CS+ during acquisition phase in the fMRI task, or greater rating to
vCS−, compared to red cross in post questionnaires. No participant was excluded
from further analysis because of movement exceeding ±1 mm. Consequently, the
final neural imaging analysis included 88 participants: 62 TE and 26 HC. Sum of
root mean square (RMS) of 6 relative head motion parameters (movement from
this time point to the next one) was calculated for each participant in all groups
(TEPG, TEHC, and HC). No significant difference in head motion was found
between each pair of groups (p > 0.5). Linear regression was performed to study the
linear relationship between the dependent variable (sum of head motion) and
independent variable (groups). The regression analysis results showed that the total
head motion could not predict groups (p > 0.05).

fMRI network analysis. Group independent components analysis was performed
using the GIFT toolbox (v3.0b, http://icatb.sourceforge.net), implemented as a
MATLAB toolbox (Matlab 2020b, MathWorks Inc., Sherborn, MA, USA), to
obtain functional networks that underlie fMRI data. Two data reduction steps were
performed using principal component analysis (PCA). First, participant-specific
PCA was performed to reduce the dimensionality of each participant’s functional
data45. Second, participant data were concatenated into one group and PCA was
performed again prior to performing ICA. Independent components, or networks,
were calculated using the Infomax algorithm46. Number of independent compo-
nents were estimated from the fMRI data by using the minimum description length
(MDL) criteria, yielding 30 components. The infomax algorithm was repeated fifty
times with randomly initialized decomposition matrices and the same convergence
threshold using the ICASSO approach to assess the reliability of the generated
components47. For each IC the”centroid” (i.e., the most stable result) was deter-
mined following the agglomerative hierarchical clustering with average-linkage
criterion, and its consistency was calculated with a cluster quality index (Iq) ran-
ging from 0 to 147. Single-participant component time courses were then back
reconstructed using the GICA-3 back-reconstruction approach.

A systematic approach was used to identify non-artifactual ICs, or intrinsic
connectivity networks (ICNs)48. First, the Iq index from ICASSO was assessed as the
criterion to validate the IC decomposition stability. Components with an Iq value less
than 0.7 from 50 ICASSO repetitions were excluded. Second, visual evaluation of IC
spatial patterns (e.g., ringing) as well as frequency inspection of IC time course spectra
(e.g., time courses vastly dominated by low-frequency fluctuations) allowed additional
components related to artifacts to be excluded from analysis. All the ICs that involved
the majority of activation falling outside the cerebral cortex, for instance in the spinal
cord, eyes, borders of the skull, ventricles, etc., were considered noise components and
excluded from further analyses. After careful visual inspection of the spatial–temporal
characteristics of each IC, 6 components were categorized as noise components, leaving
24 components for further analyses. Identification of the remaining components was
accomplished by performing spatial correlation with publicly available GIFT network
templates49. Each IC was correlated with the given templates and best network template
was selected based on the maximum correlation values. To identify the components
most involved in each trial type, a GLM analysis was performed. We examined the role
of each ICN for each condition (CS-, GS, CS+ etc.) and how this differed according to
trial type. These conditions were modeled using a GLM with the canonical
hemodynamic response function (HRF) in SPM12 to examine the association between
component time courses and different trial types. The resulting β-weights, a measure of
each component’s trial-specific amplitude, were entered into statistical analysis to
identify those components significantly more engaged in each condition.

Statistical analysis. All statistical analysis was carried out in SPSS (Armonk, NY,
USA). Levels of conditioning were assessed with paired sample t-tests comparing
behavioral risk ratings to CS+ vs. oCS-, and CS+ vs. vCS− in HC and TE sepa-
rately during pre-acquisition, acquisition and generalization phases. The sig-
nificance threshold for these behavioral analyses were set at p < 0.0167 to adjust for
multiple comparisons using Bonferroni correction (corrected for 3 comparisons).

To examine the generalization phases over time (EG, LG), for both behavior
and neural markers, we first assessed changes (delta) in behavioral and neural
markers over the two stages (EG-LG) for trauma exposure by comparing TE and
HC using a group (TE and HC) by stimulus-type (vCS-, oCS-, GS1, GS2, GS3 and
unreinforced CS+) repeated measures ANOVAs, and then assessed the changes of
behavior and neural markers over the two stages (EG-LG) of resilience by further
comparing TEHC and TEPG with HC using a group (TEPG, TEHC, HC) by
stimulus-type (vCS-, oCS-, GS1, GS2, GS3 and unreinforced CS+) repeated
measures ANOVAs.

Next, we assessed the changes in steepness of the generalization gradients across
early and late stages (i.e., changes/ delta of generalization magnitudes: EG-LG)
measured by linear deviation scores (LDS25. LDS reflect the degree to which
participant level gradients depart from linearity: LDS= ([CS+, CS−] ∕2)− [GS1,
GS2, GS3] ∕3)), where [CS+, CS−] ∕2 reflects the theoretical, linear midpoint of the
gradient, and [GS1, GS2, GS3] ∕3 the average response to GSs. This equation
provides a single number index reflecting the steepness of generalization gradients,
with larger values indicating stronger generalization. We then assessed the
behavioral and neural markers of trauma exposure by measuring the delta of LDS
across two stages using one-way ANOVA, and then assessed the behavioral and
neural markers of resilience by further comparing TEPG and TEHC with HC using
one-way ANOVA. Effects of covariate corresponding to different scanners, age and
sex was used in all analysis as a covariate of no interest.

For assessing the neural markers of trauma exposure and resilience, the five
intrinsic connectivity networks (ICN) meeting selection criteria were used
(Table S1). These networks included the salience network (SN), left executive
control network (LECN), right executive control network (RECN), anterior default
mode network (a-DMN) and posterior default mode network (p-DMN). All neural
imaging results were corrected for multiple comparison at p < 0.01 (5 networks).

Statistics and reproducibility. To ensure the stability of the ICA maps obtained in
this study, the infomax algorithm was repeated fifty times with randomly initialized
decomposition matrices and the same convergence threshold using the ICASSO
approach to assess the reliability of the generated components47. For each IC
the”centroid” (i.e., the most stable result) was determined following the agglom-
erative hierarchical clustering with average-linkage criterion, and its consistency
was calculated with a cluster quality index (Iq) ranging from 0 to 147.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used for visualizations in Figure, 1, 2, 3 are available in Supplementary Data 1. All
other datasets generated during the current study are available from the corresponding
author on reasonable request.

Code availability
The code generated during the current study are available from the corresponding author
on reasonable request.
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