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SOFB is a comprehensive ensemble deep
learning approach for elucidating and
characterizing protein-nucleic-acid-
binding residues

Check for updates

Bin Zhang1, Zilong Hou1, Yuning Yang2, Ka-chun Wong 3, Haoran Zhu 1 & Xiangtao Li 1

Proteins and nucleic-acids are essential components of living organisms that interact in critical cellular
processes. Accurate prediction of nucleic acid-binding residues in proteins can contribute to a better
understanding of protein function. However, the discrepancy between protein sequence information and
obtained structural and functional data rendersmost current computationalmodels ineffective. Therefore,
it is vital to design computational models based on protein sequence information to identify nucleic acid
binding sites in proteins. Here, we implement an ensemble deep learning model-based nucleic-acid-
binding residues on proteins identification method, called SOFB, which characterizes protein sequences
by learning the semantics of biological dynamics contexts, and then develop an ensemble deep learning-
based sequence network to learn feature representation and classification by explicitlymodeling dynamic
semantic information. Among them, the language learning model, which is constructed from natural
language to biological language, captures the underlying relationships of protein sequences, and the
ensemble deep learning-based sequence network consisting of different convolutional layers together
with Bi-LSTM refines various features for optimal performance. Meanwhile, to address the imbalanced
issue, we adopt ensemble learning to train multiple models and then incorporate them. Our experimental
results on several DNA/RNA nucleic-acid-binding residue datasets demonstrate that our proposedmodel
outperforms other state-of-the-art methods. In addition, we conduct an interpretability analysis of the
identified nucleic acid binding residue sequences based on the attentionweights of the language learning
model, revealing novel insights into the dynamic semantic information that supports the identified nucleic
acid binding residues. SOFB is available at https://github.com/Encryptional/SOFB and https://figshare.
com/articles/online_resource/SOFB_figshare_rar/25499452.

Protein-nucleic acid interactions are part of many fundamental cellular
functions, such as DNA transcription, replication, protein synthesis, reg-
ulation of gene expression, post-transcriptional modifications, and cellular
regulation1,2. The identification of specific binding sites in proteins is par-
ticularly crucial for understanding the function of proteinmolecules and for
designing new therapeutic compounds to modulate protein functions in
diseases3. To accelerate the characterization of protein-DNA and protein-
RNA interactions, computational methods have been proposed to detect
DNA or RNA-binding residues in protein sequences using the sequence
information or structural information of the protein4.

Generally, the algorithms can be divided into two broad categories: (1)
models that rely on sequence information and (2)models that use structural
information. The former approach investigates the protein by sequence
information and leverages a model to target the nucleic-acid-binding resi-
dues: for instance, iDRNA-ITF constructs an induction and transfer fra-
mework to enable the representation of residues including functional
description5. In addition, other sequence-based methods such as
TargetDNA6,DRNApred1, TargetS7, SVMnuc8, RNABindRplus9, have been
widely employed. The advantage of the sequence-based approach is that all
proteins with known sequences can be examined, which is practical10. The
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second approach, introduces structural information on top of the former
information to make joint prediction: for instance, Xai et al. developed
GraphBind that uses hierarchical graph neural networks to process spatial
features for classification2. On this basis, despite the proliferation of protein
sequence data driven by advancements in second-generation sequencing
technology, the information gap between protein-nucleic-acid complexes
and their corresponding structural and functional data in the Protein Data
Bank (PDB)11,12 remains large, posing a challenge for the development of
effective computational methods for proteins lacking structural informa-
tion. As such, the urgency to develop a high-throughput, precise, and
resilientmethod that canpredict nucleic-acid-binding residues based purely
on sequence information cannot be understated.

On the other hand, the current sequence-based protein feature
representations are still limited to biological features, which typically, only
extract a portion of the interactions between residues and do not provide a
complete protein sequence map. As we know, protein sequences are like
human language in both representation and semantics, and inspired by this,
many researchers have solved problems by considering sequences as lan-
guages, and then use approaches in that field. However, these studies have
only utilized static language models, neglecting the global-based dynamic
semantic information of protein sequences and, thus, inadequately repre-
senting the deeper information of sequences. To address the shortcomings
of these methods, the Transformer-based language model approach has
been successfully extended to the protein domain. There have been studies
that have utilized that to encode biological sequences13,14. Specifically,Wang
et al. proposed SMFM15, which utilizes a fine-tuned BERT16 model to
comprehensively identify and analyze enhancers from regulatory DNA
sequences. Zhu et al. proposedHDRNet17, which employeddynamic coding
to predict dynamic RBP binding events across diverse cellular conditions,
providing different insights into the pathological mechanisms underlying
RNA-RBP interactions from various perspectives. Like the static approach,
the language model treats the entire protein sequence as a sentence and its
constituent amino acids as individual words18,19. Then, by self-supervised
pre-training of a large-scale unlabeled text corpus, efficient representations
containing global sequence information with including deeper semantic
information can be generated.

Here, we propose the SOFB, an ensemble deep learning-based
Sequence network that utilizes Only sequence information to Find
nucleic-acid-Binding residues. Specifically, for a given protein sequence, we
aim to identify whether each amino acid in the protein sequence is a nucleic
acid binding residue. To capture a more accurate and detailed representa-
tion of amino acids within proteins, multi-source biological features and
dynamic residue language embeddingmodel are employed to represent the
protein sequences, where dynamic residue language embedding model can
maximize the characterization power of the dynamic semantic information
of protein sequences. After that, an ensemble deep learning-based sequence
network, consisting of a diverse range of convolutional layers in conjunction
with Bi-directional Long Short-Term Memory (Bi-LSTM), is designed to
process and refine the various features for optimal performance. To validate
the effectiveness and good performance of SOFB, we conducted several
experiments based on several DNA/RNA nucleic-acid-binding residue
datasets, demonstrating that SOFB outperforms currently available meth-
ods. In addition, to elucidate the underlying reasons for the identified
nucleic acid binding residues, we conducted an interpretability analysis
based on the attention weights of the language learning model, revealing
novel insights into the dynamic semantic information supporting the
identified nucleic acid binding residues.

Results
Data sources
To evaluate the effectiveness of SOFB and establish a valid comparison
with alternative methodologies, we collected two benchmark datasets of
nucleic-acid-binding proteins from the reference2. Each of these datasets
comprises a training set and a test set, termed as DNA-573_train, DNA-
129_test, RNA-495_train, and RNA-117_test. Specifically, the nucleic-

acid-proteins in these datasets were sourced from the BioLip database20,
which stores information on biological ligand-protein interactions. Bio-
Lip contains multiple types of DNA-RNA-protein complexes in which
many nucleic-acid-binding sites are labeled at binding residues defined as
amino acids with a minimum atomic distance of less than 0.5 Å between
the target residue and the nucleic-acid molecule, plus the sum of the Van
der Waal’s radius of the two nearest atoms. To facilitate subsequent
training, protein complexes containing only DNA or RNA in BioLip
were selected. Ultimately, 9574 DNA-protein chains and 7693 RNA-
protein chains were chosen among the protein chains containing nucleic-
acid-protein binding sites. In addition, we increased the number of
positive samples by amplifying the annotation with similar protein
sequences, which effectively reduce the effect of imbalance between
positive and negative samples.

In particular, we first identify the analogous protein chains by calcu-
lating sequence identity and structural similarity using bl2seq (E-value
<0.001) and TM-align21 between pairs of protein chains. Then, we per-
formed clustering on protein chains exhibiting sequence identity >0.8 and
TM score >0.5. Subsequently, annotations from the protein chains within
each cluster were transferred to the chain with the largest number of resi-
dues.Moreover, to refine the training sets, we further pruned protein chains
with sequence identity lower than 30% using the CD-HIT method22. As a
result, the number of DNA and RNA binding residues were increased by
30.7% and 24.3%, respectively.

In particular, the DNA training and test sets consist of 573 and 129
protein chains, respectively, while theRNA training and test sets encompass
495 and 117 protein chains, respectively. The DNA training set contains
14,479 binding residues and 145,404 non-binding residues, whereas the
RNA training set comprises 14,609 binding residues and 122,290 non-
binding residues. To demonstrate the predictive performance and ensure a
rigorous assessment of the model’s capabilities, we partitioned the initial
training sets into a training set (80%) and a validation set (20%). Subse-
quently, we processed the test sets, which contained 2,240 and 35,275
binding and non-binding residues for DNA, and 2,031 and 35,314 binding
andnon-binding residues forRNA, respectively, to performan independent
test. (See Supplementary Table 1, Supplementary Note 1)

The overview of SOFB
The overall network architecture of the SOFB is illustrated in Fig. 1, showing
a sequence-driven nucleic-acid-binding residue prediction model using an
ensemble deep learning-based sequence network. In general, it involves two
parts: the protein language learning enhancement and feature construction,
the ensemble deep learning-based sequence network.

Given a protein sequence, our method first uses the strategies to
construct various features. Then, these features can be recursively processed
by the ensemble deep learning-based sequence network, which contains
threemodules (the stacked convolutionalmodule, convolutional layerswith
different convolutional kernels sizes and the integrated multi-feature pre-
diction module) under ensemble learning. In the first step, NABert
embedding obtained from our language learning model is fed into the
stacked convolutional module containing a single convolutional layer at the
front, 13 normal blocks and 3 extra connected blocks to reduce redundant
information and to obtain precise global dynamic protein semantic infor-
mation. Both types of blocks have two convolutional layers. In addition, the
state change records are created to record the features before they enter the
stackedmodule, after they leave themodule and each time theypass through
the extra connected blocks, describing the changes of the features. Then, the
75-dimensional features are united with the features leaving the stacked
convolutional module to yield global and particular ranges of local infor-
mation of proteins by using convolutional layers with convolutional kernel
size of 1, 3, 5 and 7, respectively. Then, the integrated multi-feature pre-
diction module is composed of the Bi-LSTM containing 64 units with fully
connected layers. To get a better performance of SOFBon unknownprotein
sequences, we feed this module with the ProtT5 embedding combined with
the output of the previous module and the NABert embedding change
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records, to achieve complementarity between all features. This results in
better identification of DNA and RNA-binding residues in the sequence.

SOFB can provide a more efficient scheme for characterizing
nucleotide sequences
To demonstrate the powerful superiority of dynamic language models and
their ability to better learn the relationships between amino acids in protein
sequences, we compared our model with several other protein word
embeddingmethods, includingProtVec23,ESM(esm1_t34_670M_UR100)24,
ESM2 (esm2_t12_35M_UR50D)25 and ProGen26. Specifically, ESM, ESM2
and ProGen are protein language models based on the Transformer model,
which can provide dynamic contextual embedding for proteins. Moreover,

for the ESM and ESM2, we conducted fine-tuning on the training set with 1
epoch and learning rate 0.00005 to enhance its ability to generate word
embeddings better suited for the current task. For a fair comparison, we
replaced the embeddings generated by other word embedding methods with
theNABert embedding learned by theNABert languagemodel in ourmodel.

The experimental results are summarized in Fig. 2 and the Supple-
mentary Fig. 1 of the Supplementary Note 2, where for the DNA-binding
test set, the results of Rec, Pre, F1 andMCCmetrics are presented in Fig. 2a.
As depicted in this figure, the average Rec, Pre, F1 and MCC of dynamic
language embeddings in our SOFB are 73.0%, 40.4%, 43.5%, and 40.9%,
respectively. It is worth noting that F1 is 0.072 to 0.176 higher than the value
of the other methods, including ESM, ProGen, ESM2, Finetune_ESM,

Fig. 1 | The overview of SOFB. aA comprehensive framework for SOFB, an end-to-
end architecture for identifying nucleic-acid-binding residues. Concretely,
sequences are fed into the language learning model for fine-tuning. Firstly, the
representation of the hidden layer (NABert embedding) is fed into the stacked
convolutional module within SOFB, and the states of the features of several con-
volutional layers are also recorded as one of the features to be used subsequently.
Moreover, the extracted features are combined with the biological features and
passed through the convolutional layers with different convolutional kernel sizes
within SOFB. Afterwards, the learned features are integrated into the Bi-LSTM

together with the ProtT5 embedding learned in large-scale sequences. Finally, the
prediction is performed using the fully connected layer prediction module. b The
settings of the stacked convolutional module within the ensemble deep learning-
based sequence network. c Details of the convolutional layers with different con-
volutional kernel sizes within the ensemble deep learning-based sequence network.
d Location and settings of the integrated multi-feature prediction module in SOFB.
e Further experimental analysis of specific experiments and algorithms, including
correlation analysis, prediction analysis, case study and the language model inter-
pretability analysis, etc. Source data are provided with this paper.
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Finetune_ESM2 and ProtVec. We also provide the ROC curves of all
methods with PR curves in Fig. 2c.We observe that the area under the ROC
curve of SOFB on the DNA-binding test set is 93.4%, which is much better
than the other methods. The reason is the adaptability of the language
learning model used by the multi-feature of SOFB on the nucleic-acid-
binding residue task. It enables better learning compared to other dynamic

contextual embeddings. For the RNA-binding test set, the results are
summarized in Fig. 2b. Compared to the other protein word embedding
approaches, SOFB fared thebest infindingRNA-binding residues inprotein
sequences, asmeasured by allmetrics. SOFB increasedF1 andMCCmetrics
by 6.2% and 7.0% over the second-best embedding method, respectively.
From the ROCand PR curves in Fig. 2c, we see that the area under the ROC

Fig. 2 | SOFB utilizes a feature combination strategy that works better than other
protein characterization approaches. a The average Recall (Rec), Precision (Pre),
F1, MCC of ten runs of six dynamic contextual embeddings (ProtVec, ESM,
Finetune_ESM, ESM2, Finetune_ESM2, ProGen) on DNA-binding test set;
b shows the average Recall (Rec), Precision (Pre), F1, MCC of ten runs of six
dynamic contextual embeddings (ProtVec, ESM, Finetune_ESM, ESM2, Fine-
tune_ESM2, ProGen) on RNA-binding test set; (c) provides ROC curves with

AUC values, PR curves with AP values for DNA-binding residue and RNA-
binding residue predictions, respectively, where SOFB performs best by both
metrics. d The heat maps of correlation analysis of six dynamic contextual
embeddings and NABert embedding on DNA-binding test set; e shows the
performance of SOFB on different combinations of features on DNA-binding
and RNA-binding test sets, where SOFB is PSSM + HMM + Bio + Dynamic
residue language embeddings. Source data are provided with this paper.
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curve of SOFB on the RNA test set is 86.5%, which is 4.3% greater than the
better performing ESM2 and 11.2% greater than the worse performing
ProtVec and ProGen.

To explore the learned features further, we computed their correlation
matrix, as visualized in Fig. 2d for DNA-binding task (see Supplementary
Fig. 2, Supplementary Note 3).We observe that SOFB performs better than
all other approaches in categorizing amino acids and dividing the amino
acids in the sequence into two groups for later identifying nucleic-acid-
binding residues. In addition, SOFB uses multiple features for protein
representation, includingPSSM,HMM,Bio (physicochemical features, PKx
and RAA, one-hot), and dynamic language embeddings. To demonstrate
the impact of the different feature combinations on SOFB, we evaluated
SOFBwith the following six feature combinations: (i) PSSM, (ii) HMM, (iii)
PSSM+HMM, (iv) PSSM+HMM+Bio, (v)HMM+Bio+Embeddings
and (vi) PSSM+HMM+Bio+Embeddings (SOFB). Figure 2e depicts the
effects of the different feature combinations on theDNA-binding andRNA-
binding test sets, respectively.Whenusing individual features forprediction,
HMM has a better separation ability compared to PSSM. SOFB worked
better in the RNA task when combining HMM and PSSM, which also
reflects the complementarity between the features and the differences
between the two tasks. In terms of the PSSM feature, we can observe from
Fig. 2e that PSSM plays important in the prediction task of amino acid-
nucleic acid binding. Finally, combining all the features, including dynamic
residue language embeddings, yielded the highest metrics in all of SOFB,
indicating that fusing multi-source biological features and natural language
processingmethods can learnmore information about amino acid positions
and deep semantic information about protein sequences.

SOFB has better performance than most machine learning
methods
In this section, we compared SOFB with six machine learning algorithms
including XGBoost27, KNN28, GaussianNB29, Decision Tree30, Random
Forest31 and SVM32. To carry out a fair comparison, we used the same
feature representation to measure the performance of these machine
learning methods to identify nucleic-acid-binding residues in the two
datasets. In addition, to ensure that we do not have any human intervention
or bias in parameter tuning, all parameters of different machine learning
methods follow the default settings of scikit-learn. As demonstrated in Fig. 3
(a) and (b), comparedwith the six othermachine learning algorithms, SOFB
performs better on both the DNA-binding and RNA-binding test sets, and
achieves the highest AUC, MCC and F1 values. Moreover, we observe that
SOFB improves the AUC from 0.023 to 0.283 on the DNA-binding test set.
Further, it is worth noting that SVM outperforms the other machine
learning algorithms in both tasks, which may be due to its internal kernel
function that can oversee the high-dimensional features well. Our proposed
model implies that deep learning is better at learning potential representa-
tions of the high-dimensional features to provide superior performance. In
addition, we also measure the performance of the different methods by
plotting the PR curves based on the prediction, as illustrated in Fig. 3b. We
see that the areas under the PR curves of SOFB for the DNA-binding and
RNA-binding test sets are 0.543 and 0.322, respectively. These are the best
results of all the computationalmethods, showing that SOFBworkswell and
finds more positive samples.

In addition, to further explore the performance of the various com-
putational methods to identify positive samples, we selected DNA-binding
protein sequences and RNA-binding protein sequences for in-depth ana-
lysis. The results on the two benchmark tests are displayed in Fig. 3c. For the
DNA-binding test set, the sequences contains 20 binding sites. SOFB and
GaussianNBboth successfully found all binding sites. SVMandKNNfound
16 and19binding sites,DecisionTree andRandomForest found13binding
sites, and XGBoost only found 10 binding sites. SOFB actually found more
binding sites as it achieved the highest overall index. GaussianNB, on the
other hand, predicted19pseudo sites,which results in its performancebeing
lower than that of SOFB. For the RNA-binding test set, there are 16 binding
sites in the sequence. Decision Tree, SVM, Random Forest, XGBoost and

KNN identified 4, 5, 1, 6, and 6 binding sites, respectively. In contrast, SOFB
andGaussianNBsuccessfully identified 13 and12binding sites, respectively.
Notably, GaussianNB predicted 12 incorrect sites, whereas SOFB predicted
only one incorrect locus. Consequently, SOFB performs better than Gaus-
sianNB. The absence of erroneously predicted loci in SVM, Random Forest
and KNNgives them a very high Pre value, yet these approaches overlook a
large number of positive sites. Ultimately, their overall metrics are poor.We
can conclude that SOFB effectively finds more DNA and RNA-binding
residues while reducing the prediction error rate.

SOFB can provide better performance than the compared deep
learning methods
To furtherdemonstrate the superiority of SOFB,wewent on to compare it to
five deep learning algorithms, including TextCNN, RNN, ResNet, Deep-
Forest andMLP. The experimental results are summarized in Fig. 3d. SOFB
outperforms all the deep learning algorithms, and achieved 93.4% and
86.5%ofAUC in theDNA-binding andRNA-binding test sets, respectively.
Inparticular, SOFBoutperformedTextCNN,RNN,ResNet andDeepForest
by 2.3%, 3.0%, 6.2% and 7.9%, respectively in the RNA task. In addition,
MCC provided an improvement of 0.041 to 0.203 in the overall results, and
F1 provided an improvement of 0.025 over the TextCNN, rated second.
Besides, we also compare the simple deepnetwork structureMLP.Although
the MLP outperforms all the other deep learning based methods, which we
hypothesize is due to the robustness of our features that allow theMLP to fit
in well. However, the MLP is still not as good as SOFB. For example, our
metrics are all better thanMLP in Fig. 3d, and in the ROC plot we find that
theAUCofMLP inDNAbinding residue recognition reaches 91.5%, which
is 1.9% lower than SOFB. In RNA binding residue recognition, the AUC is
84.6%, also 1.9% lower than ours, which reflects the rationality and effec-
tiveness of the structure of our SOFB. We also note that RNN outperforms
the rest of the deep learningmethods except for SOFB on theDNA-binding
residue recognition task, while as stated above, TextCNN achieved the
second-best result to SOFB on the RNA-binding residue recognition task,
demonstrating the inherent variability in these two identification tasks and
the large performance differences between the differentmodels. Besides, we
conducted another experiment to investigate the effect of chain interactions
on the prediction performance of our SOFB, as illustrated in the Supple-
mentary Table 2, the Supplementary Fig. 3 of the Supplementary Note 4,
from which we can observe that although the number of protein chains in
the training set had a slight impact on the performance of SOFB, an increase
in the number of chains enhanced the interaction between protein chains,
thereby further improving the predictive capability of SOFB.

SOFB can perform better than other nucleic-acid-binding resi-
due identification methods
To verify that the features and network architecture used by SOFB can learn
the sequence information of proteins better and effectively identify the
nucleic-acid-binding residues,we compared themodelswith several current
state-of-the-art methods for predicting nucleic-acid-binding residues in
proteins. For DNA-binding residue predictions, we compared TargetDNA,
DNABind33, GraphBind, etc. And for RNA-binding residue predictions, we
compared aaRNA34, RNABindRPlus and iDRNA-ITF, etc. We used Rec,
Pre,MCC, F1 andAUROCmetrics tomeasure howwell themethods work,
as well as the different computational models work. In Fig. 4, the perfor-
mance of the different state-of-the-art methods and SOFB on the two
nucleic-acid-binding test sets, we see that our method SOFB achieves a
particularly good performance in both identification tasks. The perfor-
mance of SOFB was obviously improved, however, only the Pre of
NCBRPred was slightly higher than that of SOFB. In addition, we see that
SOFB achieves 0.520 (0.358), 0.505 (0.337) and 0.934 (0.865) for F1, MCC,
and AUROC on the DNA-binding and RNA-binding test sets, respectively.
Notably, the value of AUROC improves by 5.1% on the DNA-binding test
set and by 10.5% on the RNA-binding test set compared to the current best
performing method, iDRNA-ITF (See Supplementary Table 3, Supple-
mentary Fig. 4 of Supplementary Note 5). The reason could be that the
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Fig. 3 | SOFB has a better performance than other machine learning and deep
learning methods. a The performance comparison of SOFB with six machine
learning algorithms on two nucleic-acid-binding test sets; b gives the PR curves and
ROC curves of machine learning algorithms and SOFB on two tasks, where SOFB’s
AUC is higher than the other algorithms; c shows the predictions of the different
methods on a particular DNA (RNA)-binding protein(the highest MCC),where the
greenmeans the nucleic-acid-binding residues, the blue represents the nucleic-acid-

binding residues that were successfully predicted and the redmeans the false positive
residues; d shows the F1 value vs.MCC value for the different deep learningmethods
in the DNA-binding residue and RNA-binding residue recognition task, where the
result of SOFB is better than all othermethods, which also shows theROCcurves and
AUROC, PR curves andAP for different deep learningmethods in theDNA-binding
residue versus RNA-binding residue recognition task. Source data are provided with
this paper.
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dynamic language embedding of SOFB learning can effectively characterize
the relationship between the different amino acids of a protein, and the
complementary effect between multiple features allow a clear-cut under-
standing of the properties of each amino acid, ensuring better identification
results. In addition, we also conducted experiments on evaluating the per-
formance of our SOFB on predicting nucleic acid binding residues of pro-
teins across different protein families. And we have validated that there
exists particular types of proteins that SOFB performs well, as summarized
in the Supplementary Fig. 5 of the Supplementary Note 6.

Ablation studies on SOFB
To demonstrate the improvement brought by the different modules of
SOFB,weperformed ablation experimentswith testing on theDNA(RNA)-
binding test sets. We eliminated different modules within SOFB, including
the stacked convolutional module, convolutional layers with different
convolutional kernel sizes, the integrated multi-feature prediction module
and module that memorize the NABert embedding change records. The
different settings are described as four cases: (a) removing the Bi-LSTM of
the integrated multi-feature prediction module from SOFB for simple fea-
ture union; (b) removing the convolutional layers with different convolu-
tional kernel sizes from SOFB and using only the stacked convolutional
module for prediction; (c) removing the stacked convolutionalmodule from
SOFB and using only convolutional layers with different convolutional
kernel sizes for prediction; (d) removing the Bi-LSTM that processes the
feature (f state) from SOFB to verify its contribution. Experimental results on
the DNA-binding and RNA-binding test sets under these different condi-
tions are shown in the Supplementary Fig. 6 of the Supplementary Note 7.
We see from these plots that the results for SOFB complete are higher than
all other settings. TheAUCwas lower in theDNAandRNAprediction tasks
by 0.2%–2.9% and 0.3%–4.3%, respectively and F1 decreased by 0.8%–7.6%
and 0.1%–4.7%, respectively and MCC decreased by 0.8%–7.9% and
0.4%–5.8% respectively. Thus, each module in SOFB contributes to the
prediction. Settings (a) verifies that the Bi-LSTM in the integrated multi-
feature prediction module can integrate perfectly all the information to
improve the prediction results. From settings (b), we understand that the
convolution by the different convolutional kernel sizes can obtain different
ranges of effective information. The setting (c) of SOFB illustrates that the
stacked convolutional layers can extract a large amount of effective infor-
mation in the features. Finally, the setup in (d) provides valuable evidence
that the Bi-LSTM that processes the feature (f state) plays an active role. In
conclusion, the experiments in this section illustrate the rationality and
complementarity of the module setup of SOFB.

We also performed ablation experiments for the feature matching, i.e.,
ablation of matching the relationships between the distinct features and
different modules of SOFB. For this purpose, three experiments were set up:

(e) replacing the NABert embedding with ProtT5 embedding for prediction;
(f) replacing the ProtT5 embedding with the NABert embedding for pre-
diction as well; (g) exchanging the processing modules of the NABert
embedding and the ProtT5 embedding for prediction. The results of the
three ablation experiments on the DNA-binding and RNA-binding test sets
are also shown in the Supplementary Fig. 6 of the Supplementary Note 7.
The AUC of all three experiments e, f, and g decreased by 0.3%-2.9% and
0.3%-3.6% on the two test sets, respectively. F1 decreased by 1.1%-5.5% and
0%-3.5%, respectively. MCC decreased by 1.0%–6.2% and 0.3%–4.6%,
respectively. The results of the setting e and f show that both features contain
particular information. In addition, the setting g shows that the distinct
features contain information with specific meaning. The NABert embedding
contains information adapted to the nucleic-acid-binding residues datasets,
and it is difficult to mine its complex information in Bi-LSTM. Thus, the
processing of the stacked convolutional module is needed to get valuable
information. And the ProtT5 embedding contains generalized information,
while the excessive processing will make the model lose its task-specific
nature. Only an appropriate processing of each feature brings out its best
effect, and an unsuitable operation will lead to ignoring the effective infor-
mation. SOFB achieves an excellent match with its features. Furthermore, to
explore and compare the predictive capabilities of SOFB, we collected
YFK16, YK17 andMW15 test datasets from ref. 35 to verify the effectiveness
of SOFB. We also selected the YK17 training dataset as our large-scale
benchmark dataset to examine the performance of SOFB on a larger number
of protein sequences as summarized in the Supplementary Table 4, the
Supplementary Table 5 of the Supplementary Note 8. The results show that
SOFB achieves the best performance on numerous datasets.

Case study
To further explore the performance of our proposedmethods,we compared
SOFB with the second-best method iDRNA-ITF to visualize the nucleic-
acid-binding residues in the DNA-binding and RNA-binding test sets. We
selected the three protein chainswith thehighestMCCscore in twodatasets.
For the DNA task, we chose 5h3r_A, 6c31_A, 6enb_A DNA-binding pro-
teins, and for the RNA task, we chose the 6htu_A, 5www_A and 5wzg_A
RNA-binding proteins (see Supplementary Fig. 7, Supplementary Fig. 8 of
Supplementary Note 9).

The DNA-binding protein 5h3r_A consists of 141 amino acids and 20
DNA-binding residues, as depicted in Fig. 5. SOFB accurately predicted all
20 binding residues of this protein. However, iDRNA-ITF predicted more
false positives than we did, so our precision (Pre) was 0.188 higher than
theirs. SOFB achieved the F1 of 0.909 and the Mathews correlation coeffi-
cient (MCC) of 0.898. In contrast, iDRNA-ITF resulted in F1 and MCC
values of 0.784 and 0.766. This example demonstrates SOFB’s superior
ability to detect true nucleic-acid-binding sites in sequences that prove

Fig. 4 | SOFB predicts nucleic-acid-binding residues more accurately than the
other state-of-the-art methods. It provides a comparison of SOFB with other state-
of-the-art algorithms on the DNA (RNA)-binding test sets, where other algorithm
results are reported in Ref. 5. The violin plots depicting multiple performance

metrics of different baselinemethods along with SOFB, where SOFB outperforms all
other methods. The triangle markers means Recall (Rec), Precision (Pre), F1 score,
Matthews correlation coefficient (MCC) and Area Under the Curve (AUC) (n=5).
Source data are provided with this paper.
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challenging for alternativemethods. Although SOFB predicts false positives
for amino acids at various positions, they are predominantly spatially
proximate to the nucleic acid. This finding suggests that SOFB can glean
spatial structure information from one-dimensional sequence data, such as
residue positions in three-dimensional space post-protein folding, and
utilize it for nucleic-acid-binding residue identification.

The RNA-binding protein 6htu_A comprises 76 amino acids and 16
RNA-binding residues, as shown in Fig. 5. SOFB missed three binding
sites on this protein chain, while iDRNA-ITF only missed predicting one
binding site. However, its success in predicting more binding sites was at
the cost of eighteen false-positive amino acids (the number of false
positives for SOFB was one). This resulted in its F1 andMCC being 0.254
and 0.313 less than SOFB. The disparity between the two methods
indicates that SOFB can reduce the number of predicted false positives
when the number of positive examples identified is similar, which
accounts for its superior performance.

Interpretability analysis
To investigate the extraction of dynamic semantic information from the
NABert model, as illustrated in Fig. 6, we examined the attention weight
implementation within the model. Figure 6a displays the two attention layers

in the NABert model for the DNA-binding residue recognition task (Sup-
plementary Fig. 9, Supplementary Note 10 for RNA task), encompassing the
attention distribution of the fifth layer (in purple) and the fourteenth layer (in
red). We observed that as the sequence iterates through the model’s layers,
the attention scores of the attention heads within those layers transition from
initially aggregating special characters to focusing on key regions of the
sequence. These key regions contain residues that exert a substantial influ-
ence on the final nucleic-acid-binding residue recognition decision.

In addition, Fig. 6b illustrates the manner in which attention heads
across various layers of the NABert compute attention scores for protein
sequences within the DNA-binding test set (Supplementary Fig. 9, Sup-
plementaryNote 10 for RNA task). In this context, theQuery vector (q) and
Key vector (k) represent the respective Query and Key components within
themodel.Utilizing theQuery andKeyvectors, the attention scores between
distinct markers can be determined through the attention formula. The
figure denotes positive values in blue and negative values in orange. As an
exemplar, we have selected the attention score for the sequence token ’S’, as
computed by one of the attention heads in the 14th layer of theNABert. It is
evident that the attention values between token ’S’ and other tokens in the
chosen attention head do not exhibit substantial decay as the distance
increases. This observation signifies that the NABert effectively maintains

Fig. 5 |Visualization of two cases predicted by SOFBand the second-bestmethod,
iDRNA-ITF. For the protein chain 5h3r_A from DNA-129_Test, the results pre-
dicted by iDRNA-ITF (left) and SOFB (right) are shown. For the protein chain
6htu_A from RNA-117_Test, the results predicted by iDRNA-ITF (left) and SOFB

(right) are shown, where the red spheres are residues predicted as false negatives, the
blue spheres are residues predicted as false positives, the green represents true
positive residues, and the yellow are true negative residues. Out of the white protein
surface are the nucleic-acids. Source data are provided with this paper.
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both long-distance and short-distance dependencies within the sequence,
thereby ensuring its capacity to acquire profound semantic information
pertaining to the sequence.

In the subsequent step,wegenerated attentionmapsutilizing the scores
from all attention heads within each layer of the model. As depicted in
Fig. 7a, heat maps representing attention scores for the second (in red) and
fourth (in orange) attention heads in layer 14 are displayed. It can be
observed that the majority of tokens in the second head target token ’V’,
while most tokens in the fourth head target token ’L’. Distinct attention
heads are clustered into separate regions, thereby augmenting the model’s
ultimate predictive capability. Furthermore, we integrated the attention
scores from all heads in each layer to produce attention maps for the thirty
layers within the model. As illustrated in Fig. 7b, the fourth layer (in red)
exhibits similarity to the vertical pattern36, suggesting attention towards
individual tokens, typically ’SEP’ (special tokens indicating sentence end-
ings) or ’CLS’ (full sequence used as input classifier representation of the
specialmodel token) tokens.Conversely, the twenty-eighth layer (in orange)
resembles the block pattern36, denoting a consistent concentration on all
tokens within the sequence. This outcome also demonstrates that, in most
instances, not all attention results from the NABert model are necessarily

meaningful. Moreover, we conducted statistical analysis on the attention
maps. The experimental results are demonstrated in the Supplementary
Fig. 10of the SupplementaryNote10, suggesting that SOFBhas the ability to
concentrate more attention on biologically relevant positions, indicating its
potential for discovering functional sites. These statistical results and
hypothesis tests provide evidence for the effectiveness and potential inter-
pretability of SOFB, offering different insights into the identification of
functional sites.

We further conducted analysis of the features within SOFB. The SHAP
analysis of the three features within SOFB for the DNA-binding residue
prediction task and the RNA-binding residue task are illustrated in the
Supplementary Fig. 11 and Supplementary Fig. 12 of the Supplementary
Note 11. In summary, the SHAP visualization provides valuable insight into
the contribution of various features to the prediction results, demonstrating
that most feature values positively affect a specific number of samples.

Application of predicted nucleic acid binding residues in mole-
cular docking
Determining the docking location between proteins and nucleic acids is of
great importance. To verify the feasibility of SOFB, we conducted experiment

Fig. 6 | The general view of the different attentional distributions within the
NABert model. a The attention heads distributed in two different layers, with the
columns representing the attention heads in each layer, and the rows representing
the particular heads in each layer. b The computation of the attention scores, where

the first and second columns represent the query vector and the key vector,
respectively. The vectors in the box show the two most-relevant tokens in the
sequence. Source data are provided with this paper.
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of docking position identification. In particular, we picked the two proteins
5h3r_A and 6htu_A with the highest MCC in the DNA and RNA binding
test set, respectively, and used our SOFB along with iDRNA-ITF to predict
the binding residues for comparison. We then employed HDOCK37, a
protein-protein and protein-DNA/RNA docking server, for visualizing

docking positions using protein sequences, binding nucleic acids structure
obtained from PDB database12 and predicted binding residues as input.
Finally, by calculating the docking scores through HDOCK, we can evaluate
whether the model is capable of identifying docking positions by predicting
the binding residues. The experimental results are summarized in Fig. 8.

Fig. 7 | The visualization of the attention scores in the NABert model. a The
attention maps of the 14th layer for DNA and RNA tasks, the graph in red box is the
attention score of the second head, and the graph in orange box is the attention score

of the fourth head. b The attention maps of all layers for DNA and RNA tasks, the
graphs in red and orange boxes show the attention scores for the fourth and twenty-
eighth layers, respectively. Source data are provided with this paper.
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Figure 8a illustrated the predicted docking position of SOFB and
iDRNA-ITF for protein 5h3r_A that binds to DNA, where the green
color in the figure represents the docking position predicted by the true
label, blue color indicates the result of SOFB prediction, and red color
indicates the result of iDRNA-ITF prediction. From the figure we can
observe that although both SOFB and iDRNA-ITF can provide accurate
residue predictions, our SOFB exhibits a better docking score with
-196.21 (a more negative docking score means a more possible binding
model). For Protein 6htu_A, despite iDRNA-ITF achieving a better
docking score than our SOFB, SOFB outperforms iDRNA-ITF in pre-
dicting the true docking positions. As depicted in Fig. 8b, we can observe
that the predictions of SOFB were highly consistent with the result
predicted by true labels, while iDRNA-ITF exhibits a considerable dis-
tance from the true labels. It is also important to note that the docking
score obtained from HDOCK should not be treated as the true binding
affinity of two molecules because it has not been calibrated to the
experimental data37. Therefore, these results and analyses will contribute
to utilizing SOFB for docking position identifications, providing different
insights into how proteins interact with nucleic acids. Moreover, we
conducted additional experiments and employed RoseTTAFold38, the
prototype of RoseTTAFoldNA39, to generate the extensive information of
protein structures and integrate it as part of the bio-information into our
SOFB to predict the nucleic acid-binding residues, as illustrated in the
Supplementary Table 6 of the Supplementary Note 12. These results
shows the incorporation of the RoseTTAFold method enriches the bio-
logical features of SOFB and enhances its performance.

Discussion
In this study, we present SOFB, an ensemble deep learning model-based
approach for the identification of nucleic-acid-binding residues in proteins.
To better represent proteins if only sequence information is available, we
explore several protein representation schemes from different perspectives,
including learning dynamic biological contexts in the language learning
model and learning general representations from multiple biological fea-
tures. Then, we adopted the ensemble deep learning-based sequence net
consisting of different convolutional layers andBi-LSTM to characterize the
various features. Finally, DNA-binding residues and RNA-binding residues
in nucleic-acid-binding proteins are predicted by the fully-connected layer.
In addition, we used ensemble learning to trainmultiplemodels to solve the
sample imbalance problem. We performed training using datasets con-
taining 573 DNA-binding proteins and 495 RNA-binding proteins and
evaluated themodels independently on twobenchmark test sets. Our results
show that SOFB can identify binding sites accurately and efficiently, over
both independent test sets andmultiple different datasets, and outperforms
other state-of-the-artmodels such as iDRNA-ITF. Specifically, SOFB is able
to accurately perform molecular docking, providing different insights into
how proteins interact with nucleic acids. The case study also demonstrates
that SOFB can learn part of the protein structure information from protein
sequence information, which can potentially help in protein structure
prediction. The interpretability analysis based on the attention scores
demonstrates that SOFB can also explain some biological mechanisms,
providing a basis for subsequent biomedical and drug discovery. In con-
clusion, SOFB is an excellent competitive model for nucleic acid binding

Fig. 8 | SOFB can perform molecular docking
more accurately than the other methods. a The
docking results of SOFB, iDRNA-ITF, and real
labeling predictions in protein 5h3r_A, where the
lower right corner is the Docking Score of the two
methods. b The docking results of SOFB, iDRNA-
ITF, and true label prediction in protein 6htu_A,
where the bottom right corner is the Docking Score
of the two methods. Green color in the figure
represents the result of real label prediction, blue
color indicates the result of SOFB prediction, and
red color indicates the result of iDRNA-ITF pre-
diction. Source data are provided with this paper.
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residue recognition, providing a reliable tool for the studyof proteins lacking
structural information.

Methods
Problem formulation
For each protein sequence, we compute different features for each amino
acid and get the probability that each amino acid within each protein
sequence is a nucleic acid binding residue through themodel. Thus, protein-
nucleic-acid-binding site prediction is solved as a residue-level prediction.
And the binding residue prediction task is applied as a binary classification
problem, where the protein sequence is considered as the input and the
output of themodel is a L*2matrix, and L denotes the length of the protein
sequence and 2-dimension indicatewhether the amino acid at each position
is a binding residue or not.

Protein representation schemes
Dynamic residue language embedding. In the protein domain, tra-
ditional protein representation methods often fail to capture the deep
semantic meaning of the internal amino acid sequence, which is a major
reason for their low efficiency in different tasks. However, recent lan-
guage models have shown promising results in the protein field by using
unsupervised learning to treat amino acids as words and capture the
complex inter-sequence information. Therefore, we use two language
model to extract as much semantic information within sequences as
possible, where the sequences contain a total of 20 amino acids such as R,
T, P, K, etc. The sequence ’ARRI’ is first segmented into individual tokens
’A’, ’R’, ’R’, ’I’, and then special tokens ’SEP’ and ’CLS’ are added to
represent the sequence’s beginning and end, respectively. The vocabulary
of the model contained 22 tokens40.

The language model comprises a bidirectional Transformer encoder
model41 that performs both masked language modeling (MLM) and next
sentence prediction (NSP) tasks. The core of the Transformer is the multi-
head mechanism, which can capture unique features through Q, K, V
vectors by using 16 different attention heads in 30 layers. In this way, we can
obtain a richer representation by combining the features obtained by dif-
ferent heads:

AttentionðQ;K;VÞ ¼ softmax
QkTffiffiffiffiffi
dk

p
 !

V ð1Þ

headi ¼ ðQWQ
i ;KW

K
i ;VW

V
i Þ ð2Þ

MultiHeadðQ;K;VÞ ¼ ½head1 � head2 � � � � � headn�WM ; ð3Þ

where the four variousWsareweightingmatrices, anddk is thedimensionof
K,⊕ represents the concatenation.

For a sequence: a1, a2,…, an, the pre-training of the model will max-
imize the likelihood function pi that predicts the ith amino acids based on the
amino acids before and after it42:

pi ¼ pðaija1; � � � ; ai�1Þ þ ðaijaiþ1; � � � ; anÞ: ð4Þ
In our task, considering the diversity of protein sequences, we used the

ProtT5model18, which has achieved effective performance in other tasks, to
learn the representation of amino acids. The weight parameters of it were
trained on the BFD and then fine-tuned on UniRef5043. As a result,
the model can learn more general semantic properties of protein sequences
due to the fact that learning has been performed on a larger number of
protein sequences, in other words, when learning representations on
unknown protein sequences, the model obtains representations that are
more generalized compared to othermethods. Finally, we take the output of
the ProtT5 encoder as the features of the protein. Each amino acid can be
expressed as a 1024-dimensional vector.

In addition, while the ProtT5 model improves the capability of the
method partly, too many different tasks and too many protein sequences
can further limit its ability. Toovercome this limitation,wekeep thenumber
of layers as well as the number of heads of the original Bert language model
and add a fully connected prediction layer. Then we fine-tune it with an
epoch on the training sets to improve its ability on the nucleic-acid-binding
residue recognition task, which is named NABert. During the fine-tuning
process, the accuracyof theprediction results areusedas an evaluationof the
model. Moreover, we only need to extract the hidden states from the last
layer of the model and drop the vector representation obtained from the
special tokens ’CLS’ and ’SEP’ added before and after the sequence to
generate the (n, 1024)matrix, where n is the length of the sequencemarkers
and 1024 is the dimension of the vectors generated by NABert for each
amino acid.

Evolutionary information. We use Position specific scoring matrix
(PSSM)44 and hidden Markov models (HMMs)45 to obtain the evolu-
tionary information of the sequences. For the PSSM, sequences are first
scored by sequence matching in the NCBI’s non-redundant database46

with three iterations andE-value < 103, which represents the possibility of
amino acid interconversion. The scoring of each value x is then nor-
malized to [0, 1] using sigmoid:

�x ¼ 1
1þ e�x

: ð5Þ

The HMM is calculated by aligning the sequences in the uniclust30
database47. Its generatedmatrix consists of observed frequencies of 20 amino
acids in homologous sequences, transition frequencies and local diversity.
For each amino acid score, h1,⋯ , h20 are the observed frequencies,
h21,⋯ , h27 are the transition frequencies, h28, h29, h30 represent the local
diversity. We converted each value hi to [0, 1] by the equation

2 below:

�hi ¼
hi

10000
: ð6Þ

Physicochemical and biological characteristics. After that, to make
our description of amino acids more specific, we choose three features of
physicochemical characteristics: the number of atoms per amino acid
(pc1), the electrostatic charge (pc2) and potential hydrogen bonding
(pc3)

48. The features of each type of amino acid are summarized in an
array phychemtype, and finally each feature will be normalized.

phychemtype ¼
½pc1; pc2; pc3� � phychemmin

phychemmax � phychemmin
: ð7Þ

Then, to make our method include more biological properties of
proteins and thus be more consistent with the biological characteristics, we
also selected Relative amino acid propensity (RAA)49 and PKx50 to represent
them. Specifically, RAAmeans the amino acid propensity for binding, which
shows the relative difference in abundance between binding residues and the
corresponding non-binding residues located on the protein surface. Positive
(negative) values mean enrichment (depletion) among binding residues
compared with the non-binding residues. Each amino acid has a fixed value.
The PKx value for each amino acid type means the negative of the logarithm
of the dissociation constant for any other group in the molecule.

Finally, tomarkdifferent aminoacid species,weuseone-hot encoding to
distinguishbetweendistinct aminoacids.Ourdatasetshave20 typesof amino
acids, then we construct a 20-dimensional vector whose values are all 0, and
only one position is assigned a value of 1 to represent one type of amino acid.

To summarize the above, we use the ProtT5 embeddings as well as the
NABert embeddings as two inputs with feature matrices of (n, 1024).
Additionally, we also combine PSSM, HMM, physicochemical biological
characteristics, RAA, PKx, and one-hot as 75-dimensional features (n, 75).
Thus, we construct the input features for three different aspects of SOFB.
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Ensemble deep learning model-based sequence network
Stacked convolutional module. Although the obtained protein repre-
sentation contains rich global semantic information about the protein, it
also contains much internal redundant information.We therefore built a
stacked convolutionmodule that is adapted on the image field’s ResNet51,
to analyze the NABert embeddings to enable extraction of more com-
plicated feature patterns and to guarantee the retention of accurate
information. The stacked convolution module contains two types of
blocks totaling 32 convolutional layers and a single convolutional layer at
the beginning. There are 13 normal blocks and 3 extra connected blocks.
Specifically, the normal blocks have two convolutional layers and the
transmission system is directly summed, the extra connected blocks also
have two convolutional layers, and the transmission system is passing the
original input through a extra convolutional layer and then sums:

f layeri ¼ ðHi f layeri�1
þ biÞ þ f layeri�1

ð8Þ

f layeri ¼ ðHi f layeri�1
þ biÞ þ ðHe f layeri�1

þ beÞ: ð9Þ
where f layeri and f layeri�1

are the output and input of the ith convolutional
layer, respectively.Hi and bi represent theweightmatrices andbiases, andHe

and be represent the extra weight matrices and biases. The formula below
represents the the calculation system in the extra connected blocks.

Through the handling of this module, every amino acid can get repre-
sentation in a lower dimension, which contains better refined information
than before. Besides, the information contained in the representation is
constantly changing from f as1 to f asn as it passes through the extra connected
blockswithin the network. Thus, we document the change via stacking them:

f state ¼ f as1

� �
� f as2

� �
� � � � � f asn

� �h i
ð10Þ

f R ¼ ½ f layeri ; f state�: ð11Þ

where f state is the description of the state change records of the NABert
embedding,⊕ is the concatenation operation, fR is theNABert embeddings
refined by this module. We believe that during the training process, the
changeof features also records specific information, so that the statewill also
serve as a support for the subsequent prediction.

Convolutional layers with different convolutional kernel sizes. To
extract effective information at different scales of protein sequences described
by biological features and NABert embeddings (fD), we set up four side-by-
side convolutional layers52 with different convolutional kernel sizes to deal
with them. For a sequence with feature dimension ’m’ and containing ’n’
amino acids, if the length of the convolution kernel is k, then the size of the
convolution kernel Wi is k*m and the output dimension becomes a one-
dimensional vector of length n-k+1. The outputs of multiple filters are
concatenated to obtain the characteristics of each amino acid:

f D ¼ ½ f layeri ; f Bio� ð12Þ

f GL ¼ pðW1f DÞ � pðW2f DÞ � � � � � pðWq f DÞ: ð13Þ
where fBio is the 75-dimension feature and fD represents the features before
convolution,Wi represents the weightmatrix, fGL represents the amino acid
features after this module,⊕ represents the concatenate operation, q
represents the number of filters and p represents the pool operation.

This way, each feature representation includes both local features that
describe amino acids in relation to their immediate neighbors and global
features that describe the protein sequence.

Integrated multi-feature prediction module. To minimize the long-
distance dependency problem caused by long protein sequences, we set

up the integrated multi-feature prediction module based on LSTM53

with its gate mechanism (forget gate (f), input gate (i) and output
gate (o)):

f t ¼ σðWf � ½ht�1; xt � þ bf Þ ð14Þ

it ¼ σðWi � ½ht�1; xt � þ biÞ ð15Þ

est ¼ tanhðWs � ½ht�1; xt � þ bsÞ ð16Þ

st ¼ f t � st�1 þ it �est ð17Þ

where st−1 contains the state of all cells prior to the current one. es is the
current cell state while st denotes the information that is passed to the next
cell. In addition, σ is the logistic sigmoid function:

ot ¼ σðWo � ½ht�1; xt � þ boÞ ð18Þ

ht ¼ ot � tanhðstÞ: ð19Þ
The output of the current cell (ht) is obtained by combining the output

gate (ot) with the information passed to the next cell (st):

Integ ¼ ½ ft ; it ; st ; ot �: ð20Þ
The module includes three 64-unit LSTMs and a fully connected

prediction layer. Two work with the state change records preserved by the
NABert embeddings to mine the change patterns of features, and the other
deals with the fusion of both global and local representations (fGL) and
ProtT5 embeddings (fP). The fully connected layer receives the feature
representation for categorization:

V ¼ softmax Integ fGL � f P
� �� Integ f state

� �� � ð21Þ
where fP is the ProtT5 embeddings and V is the prediction result.

Ensemble settings. To further improve the performance and stability of
SOFB andmitigate the effects of positive and negative sample imbalance,
we add parallel model ensemble settings. At present, Bagging is one of the
mainstream ensemble methods that can incorporate the results of mul-
tiple side-by-side models, and decide the final sample results using the
formulated rules. In this way, it can reduce the variance and improve the
generalization performance of the model:

VarðmXÞ ¼ E ðmX � E½mX�Þ2� � ¼ m2VarðXÞ ð22Þ

whereX represents a sample,Var(X) is the variance, andE(X) represents the
mean of X. Considering that it is a put-back sampling, the condition of
independence between samples is not available. Under this condition, the
variance can be described as:

Var
1
n

Xn

i¼1
Xi

	 

¼ σ

n2
þ n� 1

n
ασ2 ð23Þ

Therefore, an increase in classifiers and a decrease in inter-model
correlation both lead to a reduction in variance. Motivated by this, we
utilize ensemble learning for the protein dataset D.We build up n sets of
learning processes, in which we take all positive samples as Dp and
separate 1/n subsets Di of Dn from the negative samples, Dn each time
we learn. This process continues until all of the negative samples are
learnt. This allows us to eventually obtain several classifiers simulta-
neously. After that, we sum the values obtained by thesemodels for each
sample in the test set and compute them by softmax to obtain the final
recognition results.
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Parameter settings
In thiswork, all parameters of the SOFB implementation are set as follows. In
the stackedconvolutional layersmodule,we add13normalblocks and3extra
connected blocks after a 1D convolutional layer, where each block contains
two 1Dconvolutional layers. Each convolutional layer contains 32filterswith
a convolutional kernel size of 3. The stride in the 3 extra connected blocks is
set to 3 while the others are set to 2. Among the convolutional layers with
different kernel sizes, we set four parallel convolutional layers to manage the
biological features and the previous features with kernel sizes of 1, 3, 5, and 7
andfilters set to 64. In the integratedmulti-feature prediction, we set up three
LSTM layers, each of which contains 64 units. We also add dropout layers
with rates of 0.4 and 0.5. Finally, a fully connected layer with 2 hidden units is
used with a softmax activation function. In the ensemble setting, we set the
number of negative sample subsets to 4. Ourmodel is trained onTensorFlow
2.7.0 and Keras 2.7.0, and the parameters of the hidden layer in the model
adopts the default initialization of Keras.We employ an early stop controlled
by the validation loss to avoid overfitting. Our network is trained end-to-end
by theAdamoptimizerwith abatch size of 64 anda learning rate of 0.0005. In
addition, the model is trained on an NVIDIA GeForce RTX 3090 GPU.

Evaluation metrics
Nucleic acid-protein binding site prediction is solved as a binary classifi-
cation problem. Consequently, we follow our previous studies using Recall
(rec), Precision (pre), F1-score (F1) and Matthew’s correlation coefficient
(MCC) as metrics to evaluate the performance of our method5. Calculation
formulas are as follows:

Precisionmeasures the probability of being positive in all samples that
are predicted to be positive:

Precision ¼ TP
TP þ FP

: ð24Þ

Recall measures the probability of being predicted as positive in a
sample that is positive:

Recall ¼ TP
TP þ FN

: ð25Þ

F1 measures the Harmonized average of the precision and recall:

F1 ¼ 2× Precision×Recall
Precsionþ Recall

: ð26Þ

MCCuses all four elements of the confusionmatrixTP, TN, FP andFN:

MCC ¼ TP ×TN � FN × FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞ þ ðTP þ FPÞ þ ðTN þ FNÞ þ ðTN þ FPÞ

p ;

ð27Þ
whereTP,FN,TNandFPdenote thenumbersof truepositives, falsenegatives,
true negatives and false positives, respectively. Specially, when the positive-
negative sample ratio is not well balanced, F1 and MCC are more objective
measures compared to Rec and Pre. The area under the receiver operating
characteristic (ROC) curve (AUC), which reflects the most comprehensive
prediction performance54, serves as another important evaluation metric.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All datasets in this study are available on https://figshare.com/articles/
online_resource/SOFB_figshare_rar/2549945255 and https://github.com/
Encryptional/SOFB56. And the feature used can be generated following
the usage tutorial on https://github.com/Encryptional/SOFB. In addition,

the numerical source data for the graphs in themain figures can be found in
the Supplementary Data file.

Code availability
SOFB is implement by Python. All supporting source codes can be down-
loaded from https://github.com/Encryptional/SOFB, and the NABert
models used and the SOFB models trained in this study are available on
https://figshare.com/articles/online_resource/SOFB_figshare_rar/
25499452.
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