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Genome-wide association and expression
quantitative trait loci in cattle reveals
common genes regulating mammalian
fertility

Check for updates

Mehrnush Forutan 1 , Bailey N. Engle 1,2, Amanda J. Chamberlain 3,4, Elizabeth M. Ross1,
LoanT.Nguyen1,Michael J.D’Occhio5, Alf CollinsSnr6, EliseA. Kho1, Geoffry Fordyce1, ShannonSpeight7,
Michael E. Goddard3,8 & Ben J. Hayes 1

Most genetic variants associated with fertility in mammals fall in non-coding regions of the genome
and it is unclear how these variants affect fertility. Here we use genome-wide association summary
statistics for Heifer puberty (pubertal or not at 600 days) from 27,707 Bos indicus, Bos taurus and
crossbred cattle; multi-trait GWAS signals from 2119 indicine cattle for four fertility traits, including
days to calving, age at first calving, pregnancy status, and foetus age in weeks (assessed by rectal
palpation of the foetus); and expression quantitative trait locus for whole blood from 489 indicine
cattle, to identify 87 putatively functional genes affecting cattle fertility. Our analysis reveals a
significant overlap between the set of cattle and previously reported human fertility-related genes,
impling the existence of a shared pool of genes that regulate fertility in mammals. These findings are
crucial for developing approaches to improve fertility in cattle and potentially other mammals.

Fertility in mammals is a complex trait, affected by many loci and envir-
onmental variation1. In both beef and dairy cattle, female fertility is a key
trait associated with productivity2. Identifying mutations underpinning
variation in fertility between individuals has been challenging, as the large
environmental variation typical of fertility traits3 means extremely large
sample sizes are required. Notwithstanding, progress has been made, and
several genome-wide association studies (GWAS) and quantitative trait loci
(QTL)mapping studies in cattle and human populations reported genomic
regions affecting female fertility traits4,5; In cattle, multiple significant
GWAS signals were reported in a number of studies4,6, however, the overlap
of QTL locations among different populations is generally poor7, demon-
strating the challenges in finding candidate genes and mapping causal
variants for cattle fertility.

The SNPs on standard SNP arrays are preselected to be highly poly-
morphic across breeds8 and, typically do not include causal variants. Array
SNPmay, therefore, not be in strong linkagedisequilbrium(LD)with rareor
breed-specific causal variants, therefore the effects of these variantsmay not

be captured in GWAS8. In contrast to SNP arrays, using whole genome
sequence data could improve the power of GWAS since the causal variants
should be included in the sequence data9. However, even using whole
genome sequencedata, the identificationof the causal variants for a complex
trait remains difficult, due to the small effect size ofmost causal variants and
LD between variants10. Particularly in cattle, there are typically many var-
iants in high LD, any one of which could be the cause of the variation in
phenotype9.

Causal variants are often pleiotropic, i.e. affecting more than one trait,
so multi-trait analyses may result in greater power to detect QTL and more
precise mapping11,12. For example, the conditional multi-trait (CMT)
GWAS considers the estimated effects of the variants as well as the p-value
and direction of effect for each trait8.

GWAS only identifies SNPs strongly associated with the trait of
interest, without revealing the underlying biological mechanism. Using an
expression quantitative trait loci (eQTL), where gene expression levels are
modeled as a phenotype, may identify mutations affecting complex trait
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variation via the regulation of gene expression13. Combining eQTL and
complex trait GWAS information could be a pathway to identify causative
mutations more precisely14.

This study was carried out to (1) identify the genetic variants and
genes associated with four fertility-related traits in a well-phenotyped
cattle population, and (2) investigate the overlap between the potential
cattle and human fertility-related genes. We first identified significant
variants and genes associated with four fertility-related traits including
days to calving (DTC), age at first calving (AFC), pregnancy status
(preg_st), and foetal age in weeks (wks_preg) (Fig. 1) by performing a
stepwise conditional multi-trait GWAS (CMT-GWAS) analysis in a
well-phenotyped Bos indicus (indicine) cattle population with imputed
whole genome sequence data (discovery population). The results were
validated in a cohort of 28k indicine, Bos taurus (taurine) and crossbred
cattle (validation population) recorded for Heifer puberty15. We also
identified eQTLs formore than 10,000 genes expressed in whole blood of
489 indicine cattle from the same population (discovery population).We
then identified genes whose expression levels were associated with fer-
tility due to pleiotropy or causality by integrating GWAS results with
eQTL data using summary-data-basedmendelian randomisation (SMR)
analysis. To explore the connection between fertility traits and func-
tional genomic regions, we explored the overlap of the lead eQTLs with
reported ChIP-seq and ATAC-seq peaks identified across publicly
available tissues in different studies16,17. We identified 12 genes that are
common between the set of potential cattle fertility related genes and
genes reported to affect age at natural menopause and menarche in
humans1,18, suggesting that a set of common genes regulates fertility in
mammals.

Results and Discussion
Single and multi-trait GWAS results in indicine cattle (discovery
population)
Single trait genome-wide association studies for four heifer fertility traits
(DTC, AFC, preg_st, wks_preg) were performed using phenotypes and
imputed genotypes (31 million whole genome sequence (WGS) variants)
from 2,119 indicine cattle (discovery population) (Fig. 1; Supplementary
Data 1). For all fertility traits, there was no indication of inflation of the test
statistic due to population structure (Fig. 2a).

In the single trait GWAS, the greatest number of associated SNPs were
detected for AFC (Supplementary Data 2). There were 59, 3, 4, and 18 sig-
nificant variants at a threshold of P < 5 × 0–8 for AFC, DTC, preg_st, and
wks_preg, respectively (Fig. 2b), in 21 clusters across the genome. This
corresponds to the false discovery rate (FDR) ranging from 0.51 (DTC) to
0.02 (AFC). The significant variants associated with AFC (P < 5 × 10–8)
clustered on chromosomes 2, 6, 14, 15, 16, 17, 18, and 19 (Supplementary
Data 2). The significant variants (P < 5 × 10–8) for DTC were on 14 and 21,
preg_st on7, 8 and19, andwks_preg on5, 6 and14 (SupplementaryData 2).
Someof thesewere close to or had overlapswithQTLs identified in previous
GWAS studies. For example, we detected two variants on Chr 19 associated
with preg_st at 12.1Mb, which were close to a missense mutation
(rs383232842, p.H210R) in TUBD1, previously detected for stillbirth in
Braunvieh and Fleckvieh cattle19. Consistent with our results, another study
inNordic Red andDanish Jersey cattle20 reported a haplotype at 10,920,596-
11,863,651 bp on Chr 19 associated with non-return rate at 56, 100, and
150 days. In the current study, a QTLwas also identified at 86Mb on Chr 6
forwks_preg,whichwas close to theQTLat 85.8Mbpreviously detected for
the interval between first and last insemination, a trait that is used for the

Fig. 1 | Flow chart of the analysis conducted in the discovery population (Bos
indicus cattle). Analysis was performed in order a to g as follows: a Single trait
genome-wide association studies for four fertility traits (DTC, AFC, preg_st,
wks_preg) were performed using 31 million imputed whole genome sequence
(WGS) variants. b A stepwise conditional multi-trait GWAS (CMT-GWAS) ana-
lysis was performed for fertility traits (DTC, AFC, preg_st, wks_preg). c Cis-eQTL
discovery was performed for a sample of 489 heifers and cows with RNA-seq and
imputed WGS data. d The most significant cis-eQTLs for each eGene (n = 4376,
FDR < 0.01) were selected. Additionally, we added 225 genome-wide significant

GWAS variants from the single trait and CMT-GWAS model described above,
applying a significance threshold P ≤ 5 × 10−8. We also added variants within 100 bp
either side of each selected variant. e Trans-eQTL mapping for significant variants
identified through cis-eQTLorGWAS analysis.We specifically targeted geneswhere
the variant was located more than 5Mb away from the gene on the same chromo-
some. f Summary-data-based mendelian randomisation (SMR) analysis was per-
formed by integrating GWAS with cis-eQTL results. g Follow-up study of the final
combined list of significant genes associated with fertility in cattle.
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capacity of cows to conceive andmaintain a pregnancy in bothChinese and
Nordic Holsteins4.

The CMT-GWAS (multitrait) method resulted in more highly sig-
nificant peaks and a lower FDR than any of the single-trait GWAS
(FDR < 0.01; P < 3.2 × 10−10) (Fig. 3). The genes closest to these peaks are

presented in Supplementary Data 3. The most significant putative causal
variant identifiedbyCMT-GWASwas an intergenic variantChr18:3753117
(P = 9.6 × 10–19) located 47 kb from the contactin-associated protein family
member 4 gene (CNTNAP4) and 88 kb from the LOC112442251.
CNTNAP4 is expressed in various regions of the brain, including the

a. b.

DTC preg_st

wks_preg
AFC

Fig. 2 | GWAS analysis of fertility traits in Bos indicus cattle (discovery popu-
lation). a Quantile-quantile (QQ) plot of the single-trait GWAS shown in b the
Manhattan plot of single-trait GWAS analysis for four fertility traits, from inner

most to outer most, heifer age of calving (AFC), heifer days to calving (DTC), heifer
pregnancy success (preg_st), and heifer weeks pregnant (wks_preg).

Fig. 3 | Conditional multi-trait GWAS in Bos
indicus cattle (discovery population). A condi-
tional multi-trait sequence GWAS discovers pleio-
tropic candidate genes and variants for four fertility
traits, including heifer day to calving (DTC), heifer
pregnancy success (preg_st), heifer weeks pregnant
(wks_preg) and heifer age of calving (AFC) in Bos
indicus cows. The red line represents the genome-
wide significance threshold (FDR < 0.01; P-value <
3.2 × 10−10).
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developing cortical interneurons and midbrain dopaminergic neurons in
mice21. In goats,CNTNAP4has been identified as one of themost promising
novel candidate genes for reproductive performancewhich could be used as
amarker of reproduction and fertility22. The secondmost significant variant
was Chr14:67,194,407 (P = 3.7 × 10–17) located in an intron of the gene
carboxypeptidase Q (CPQ), and 340 kb from Testis-specific protein Y-
encoded-like 5 (TSPYL5). In some genome-wide association studies
TSPYL5 was associated with plasma oestradiol levels in humans (e.g.,
ref. 23). Another putative causal variant (Chr2:61024817; P = 6.7 × 10–16)
was located 225 kb from Chemokine receptor type 4 (CXCR4). CXCR4
expression is a potential biomarker to predict implantation competence of
an embryo in human in vito fertilization24. It has also been implicated in the
ovulatory process in equine and bovine25.

Validation results in indicine, taurine and crossbred cattle (vali-
dation population)
Of the 225 significant GWAS variants (P < 5 × 10−8) identified from the
individual single-trait and conditional multi-trait GWAS analyses in the
(indicine) discovery population, 11 variants (P < 0.002; FDR = 3.8%; Sup-
plementaryData 4) onChr 5 (8between48,005,346and48,013,239 bp), and
Chr 14 (23,436,596 : 23,442,688 and 61,428,259 bp), were validated in the
validation population. This was substantiallymore than expected by chance
(P < 0.05). The validated, significant signal on Chr 5 is within 39 kb of the
geneHMGA2, whichhas been identified as an oncogene and shown to be an
upstreamregulator ofPLAG1 expression, a gene thatwas reported tohabour
a mutation with significant effects on fertility26,27. The two significant var-
iants near 23.4Mb on Chr 14 are in an intron and upstream of the gene
short-chain dehydrogenase/reductase family 16C member 5 (SDR16C5),
and about 60 kb from coiled-coil-helix-coiled-coil-helix domain containing
7 (CHCHD7) and PLAG1. Genes mapped on Chr 14, particularly PLAG1
and CHCHD7, have been reported to be associated with blood concentra-
tions of GH, IGF1, and IGF2 which were significantly associated with
puberty in indicine heifers6. Another validated variant, Chr14:61,428,259,
was located in an intron region of the gene ATPase H+ transporting
V1 subunit C1 (ATP6V1C1), a potential gene candidate that predicts oocyte
competence and is used to select embryos suitable for transfer to a
recipient28.

We estimated the proportion of phenotypic variance accounted for by
the 225 potential causal variants for indicine in the validation population
(animals with indicine content equal or greater than 0.80, as the breed
composition of these animals more closely matched the discovery popula-
tion) and found that these loci explained 2.8% of the variation, which was
more than the average variance explained by random subsets of 225 variants
(1.7% ± 0.004). The relatively low validation rate might reflect the fact that
different proxy traits were used for cattle fertility in the discovery and
validation population. The probability of observing false associations
between a specific trait and SNPs across different populations is low,
especially when significant associations are verified across two populations
and for different proxy traits. The current results provide strong evidence
that SNPs for heifer puberty are concentrated at certain areas on Chr 5 and
14, and these areas warrant further study to identify causal variants for
female fertility traits in beef cattle.

We also conducted a GWAS in the validation population, as the large
size of this population allows for a powerful GWAS, albeit for a single trait
(heifer puberty). This GWAS with 27,707 indicine, taurine and crossbred
cattle with imputed sequence data revealed four gene regions that were
highly associatedwith heifer puberty, including pleomorphic adenomagene
1 (PLAG1), high mobility group AT-hook 2 (HMGA2), ligand dependent
nuclear receptor corepressor-like (LCORL)/ non-SMC condensin I com-
plex, subunit G (NCAPG) and serpin family B member 9 (SERPIN9)
(Fig. 4a). Gene expression studies in indicine cattle29 and pigs30 have indi-
cated that PLAG1,HMGA2, and LCORL/NCAP are either not expressed or
expressed at significantly lower levels in adults compared to their expression
levels in foetuses (e.g., Fig. 4b, c31;Table 129). These genes, andeQTL for these
genes, are inlikely to be identified in whole blood of mature animals.

Interestingly, alleles of PLAG1 are associated with either early puberty and
lower mature size, or alternatively, later puberty and taller stature27,32,33.
Taken together, the effect of the alleles of PLAG1 and the lack of expression
of puberty-associated genes in heifers and cows from gene expression atlas
data (Fig. 4b, c) suggest thatmuchof the roadmap for allocation of resources
to reproduction versus growth likely occurs very early in life, primarily
during foetal development.

cis-eQTLs and trans-eQTLs in indicine cattle
To discover eQTL, gene expression data was obtained from whole blood
samples from 489 heifers and cows from the indicine discovery population
(Supplementary Data 5). Cis-eQTL (SNP-gene distance < 2Mb, default
value in OSCA34), and trans-eQTL (SNP-gene distance >5Mb on the same
chromosome) analyseswere performed using 10,455 autosomal genes from
489 cattle. We adopted a hierarchical multiple testing correction procedure
to account for multiple testing, which usually has better calibrated FDR in
contrast to pooled methods35. The reproducibility of our eQTL results was
assessed by splitting the sample into two approximately equally sized
samples and calculating the proportion of significant cis-eGenes (geneswith
significant cis-eQTL) in subsample1 observed in subsample2, and vice versa
(Supplementary Fig. 1a, b). On average we observed 81% internal repro-
ducibility of cis-eGenes between half-samples at global-FDR threshold 0.01.
All lead cis-eQTL (global-FDR < 0.01) identified in one half-sample showed
the same direction of effect size, with a correlation of 0.99 in the other half-
sample (Supplementary Fig. 1c, d).

Using the entire dataset, we identified 4376 cis-eGenes (41.8% of the
10,455 tested autosomal genes; global-FDR < 0.01; Fig. 5a). The five most
significant cis-eQTLs were detected on chromosomes 10, 22, 26, 11, and 12.
(Supplementary Data 6). All five cis-eQTLs were also detected using the
subsamples (global-FDR < 0.01).

The proportion of all tested genes that were cis-eGenes (ePercent) was
41.8%, which is within the range of reports from a previous study36. Liu et
al.36 reported a correlation of 0.85 between the ePercent and sample sizes
across 23 distinct tissues in cattle. Generally, the ePercent might be influ-
enced by the tissue, sample size, diversity of the breeds used for sampling,
sequencing depth, and sex, and age of animals36.

Seventy-eight percent of the lead cis-eQTLswere close to the respective
gene start site (within 100 kb) (Fig. 5b), and the lead cis-eQTLs with largest
effects had the smallest distance to the gene start site (within50 kb for 58%of
the top 25% lead cis-eQTL, Fig. 5c), in agreementwith previous studies (e.g.,
ref. 37). Also, around 22% of lead cis-eQTLs (951 out of 4376) were located
within the respective gene. Our results demonstrated 4 to 7.5 fold enrich-
ment of lead cis-eQTLs among promoter, proximal, five’- untranslated
region (UTR), and three’-UTR regions (basedon theARS-UCD1.2 genome,
the refGene table) as compared with what would be expected by chance
(Hypergeometric test; P-value < 6.3 × 10−9; Fig. 5d; Supplementary Data 7).
The enrichment level of lead cis-eQTLs within bovine ChIP–seq peaks16,17

(Methods) ranged from1.34 (H3K27me3) to 3.64 (H3K4me1).The smallest
and largest number of cis-eQTL were identified for Chr 12 and 7, respec-
tively (Fig. 6).

We identified 1105 trans-eQTLs and 401 trans-eGenes (genes with
significant trans-eQTLs; global-FDR < 0.01) (Fig. 7a). Overall, most of the
lead trans-eQTL (259 out of 401; 64%) were located within 5–7Mb up- or
downstream of gene start sites (Fig. 7b, c). In agreement with a previous
study37, trans-eQTL, for which the SNP was located distal to the gene
(>5Mb), had smaller effect sizes than cis-eQTL (t test; P-value < 0.001). The
average of absolute effect size across eGenes with at least one cis- and trans-
eQTL (397 eGenes) was 0.28 and 0.33 for trans-eQTLs and cis-eQTLs,
respectively. Võsa et al. 37 suggested that trans-eQTL could be relevant for
complex traits, compared to stronger cis-eQTL effects, because each trans-
eQTL effect is less likely to be dampened by compensatory post-
transcriptional buffering or removed from the population by negative
selection. They also reported that trans-eQTLs can affect many genes and
have a widespread impact on regulatory networks37. We observed 148
eQTLs having a trans effect on at least 2 genes contributing to 338 trans-
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eQTLs. Interestingly, 755 eQTLs exhibited both cis and trans effects, with
448 of them exerting a cis effect on at least 2 genes, contributing to a total of
1870 cis-eQTLs.

In agreement with a previous study in cattle32, the majority of lead cis-
eQTL and trans-eQTL variants were non-coding variants (Fig. 5d and 7d;
Supplementary Data 8). Thirteen (17.5) to 36 (31) percent of lead trans-

eQTLs (cis-eQTLs) were located within bovine ChIP–seq and ATAC-seq
peaks fromdifferent assays and tissues reported in different studies16,17, in all
cases more than expected by chance (Hypergeometric test;
P-value < 9.3 × 10−6). For lead trans-eQTLs, the enrichment level ranged
from 1.52 (ATAC-seq38) to 2.95 (CTCF binding site). This result indicates
that the lead trans-eQTLs and cis-eQTLsweremore likely to be in enhancer,

Fig. 4 | GWAS analysis for heifer puberty and gene
expression profile for PLAG1 and HMGA2. a.
Genome wide association with 48.8 million SNP for
heifer puberty. Odd chromosomes are coloured
blue, even chromosomes in red. The significance
threshold on the y-axis is 8.3 (e.g. -log10(5 × 10–8).
Only SNPs with significance > 3 (P-value < 0.0001)
are shown. b. Gene expression (Fragments Per
Kilobase of transcript per Million mapped reads) in
foetal and adult tissues for PLAG1 and c. HMGA2,
data from the bovine gene expression atlas (Fang
et al.31).
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repressor, or promoter regions of genes, therefore these SNPs are likely to be
involved in altering gene expression by changing the binding site sequences
of transcription factors or other regulatory proteins. The datasets derived
from ATAC-Seq and ChIP-seq experiments serve as valuable resources; by
integrating these datasets with eQTL analyses, we can establish connections

between genetic variants and functional genomic regions as well as path-
ways associated with complex traits.

Integration of GWAS and eQTL results
Previous studies have suggested that significant GWAS lociwhichwere also
eQTLs were more likely to be causal39. To identify the mutations that affect
both gene expression and fertility traits due to either pleiotropy or causality,
we performed a summary data-based mendelian randomisation (SMR)
test40.We identified eight genes that showed associations with fertility in the
SMR test (Bonferroni corrected P-valueSMR < 3.5 × 10−4; 0.05/141 genes
tested by the SMR analyses; Supplementary Data 9), suggesting that SNP
effects on fertility traits could be mediated by genetic regulation of expres-
sion levels of these genes in whole blood.

One such variant, Chr5:47593069 T>C associated
(P-value < 1.7 × 10−45) with expression of HELB (DNA helicase B), is an
interesting candidate. HELB encodes a DNA-dependent ATPase which
catalyses the unwinding of DNA necessary for DNA replication, repair,
recombination, and transcription5. It has a substantial role in DNA
damage repair in reproductive ageing5. A previous study identified nine
SNPs in coding regions that are fixed for different alleles between taurine
and indicine beef populations that affect the coding sequence of HELB41.
SNPs were located in a 430 kb selective sweep on Chr 5
(47,438,392–47,865,772 bp) and span several genes including HELB,
IRAK3, TMBIM4, GRIP1, and part of HMGA2. The authors suggested
this sweep has been a result of selective breeding for improved adaptation
of cattle to tropical conditions41. HELB has also been previously asso-
ciated with puberty in both male and female tropically adapted cattle42. In

Table 1 |CountsofRNA readsaligning tokeygenes from foetal
and adult tissues, in samples from a Brahman Cow and her
foetus (for details see ref. 29)

Foetal liver Foetal lung Adult Liver Adult Lung

IGF2 364,487 994,351 145,051 12,144

IGF2R 47,959 42,565 10,490 13,694

IGF2BP3 3663 2037 35 95

ZNF462 247 4934 85 2172

BMP4 601 5947 306 2517

LOC101905775 0 0 0 0

ASIP 16 22 13 17

ZP3 2 7 2 10

PLAG1 343 673 78 273

HMGA2 269 926 0 3

LCORL 827 383 542 1071

SNRPN 1489 2911 1246 1545

0.00 20.00 40.00 60.00 80.00

promoter

proximal

5'UTR

3'UTR

CDS

exon

intron

intergenic

CTCF

ATAC

H3K27ac

H3K27me3

H3K4me1

The proportion of sequence variants (%)

d
all variants in genome lead cis-eQTL

Fig. 5 | Results of the cis-eQTL analysis. aManhattan plot of lead cis-eQTLs for
eGenes (FDR < 0.01), b The relationship between lead cis-eQTLs adjusted P-value
and distance to transcription start site (TSS), c The relationship between lead

cis-eQTLs effect sizes and distance transcription start site (TSS), d Annotations of
the lead cis-eQTLs compared to the proportion of all sequence variants.
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Fig. 6 | Distribution of cis-eGenes (genes with significant cis-eQTL) and number
of cis-eQTLs discovered for each cis-eGene in whole blood across different
chromosomes. Each coloured box represents a different cis-eGene and the depth of

coloured box represents the number of identified cis-eQTLs at global-FDR
threshold 0.01.

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

promoter
proximal

5'UTR
3'UTR

CDS
exon

intron
intergenic

CTCF
ATAC

H3K27ac
H3K27me3

H3K4me1

The proportion of sequence variants (%)

d all variants in genome lead trans-eQTL

Fig. 7 | Results of the trans-eQTL analysis. aManhattan plot of lead trans-eQTL for
eGenes (FDR < 0.01), bThe relationship between lead trans-eQTLs adjusted P-value
and distance to transcription start site (TSS), c The relationship between lead trans-

eQTLs effect sizes and distance to transcription start site (TSS), dAnnotations of the
lead trans-eQTLs compared to the proportion of all sequence variants.
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addition, the HELB gene is involved in DNA damage response including
exposure to ultra-violet light, and thus, is relevant for tropical
adaptation41.

Several reasonsmay have contributed to a low level of overlap between
leadGWASSNPs and eQTLdetected inour study, including a lack of power
in theGWAS in the discovery population as a result of a sample size of 2119
cattle. Another reason for the limited overlap between eQTL and GWAS
peaksmay be due to the fact that some of the genes affecting fertility are not
expressed in the whole blood of heifers or cows. Although it is difficult to
sampleother tissues at scale in the sameway as blood, future eQTL studies in
foetal tissues are recommended.

Pathway analysis
Next, we conducted a follow-up study of the final combined list of
87 significant genes associated with fertility in cattle (Methods;
Supplementary Data 10). The most strongly enriched pathway identified
by Gene Ontology analysis of genes associated with fertility was Extra-
cellular Matrix (ECM)-receptor interaction pathways
(P-value < 6.2 × 10−4, FDR < 0.05) and 5 genes were identified including
CD44, ITGA6, ITGB5, LAMA2, and SV2B. In agreement with a previous
study, this outcome has highlighted that the balance of ECM degradation
and remodelling is vital to the regulation of maternal–foetal interface
including menstrual cycling, decidualization, embryo implantation, and
pregnancy maintenance and disorders in these events may eventually
lead to pregnancy failures43.

Common genes regulate fertility in cattle and humans
We next investigated the overlap of genes affecting fertility in cattle and
humans using the same gene list used forGeneOntology analysis (Methods;
SupplementaryData 10). Of the 87 cattle fertility-related genes investigated,
eight genes (BMP4, HELP, KCNIP1, KRT222, L3MBTL3, LAMA2, RBBP8,
SV2B), and four genes (SMC1B, THSD7B, SATB2, and LRP1B) were pre-
viously reported to be associated with age at natural menopuase1 and age at
menarche18 in humans, respectively, which is higher than expected by
chance (Fisher’s exact test; P-value < 0.05; Supplementary Data 11, 12, 13).
Of the 8 genes associatedwith fertility in cattle and age at naturalmenopause
inhumans, 4 genes (KCNIP1, LAMA2,KRT222, andSV2B)were reported as
being located at the centre of a multi-tissue co-expression network inter-
acting with many other genes near the age at natural menopause associated
variants in humans1.

Conclusion
In cattle, poor fertility is one of the most common reasons for culling,
and poor conception rates can affect the profitability and sustainability
of both beef and dairy production. Our results provide an extensive
resource of cis-eQTLs and trans-eQTLs at the gene level which may be
useful for elucidating the biological underpinnings of many SNPs
associated with fertility traits, as we have demonstrated for several genes.
The mutations we have identified, particularly those significant in the
validation tests, should be included on commercial SNP arrays to
improve accuracy of genomic estimated breeding values for fertility. We
have also highlighted that gene expression in blood may only help to
identify some of the mutations affecting fertility. Future eQTL studies in
foetal tissues is recommended, as it appears several genes responsible for
allocating foetal resources to growth or reproduction are - expressed at
much higher levels at the foetal stage. We found significant overlap
among the genes close to the SNP that were significant in our SMR and
GWAS analysis, and genes implicated in human GWAS for age at nat-
uralmenopause and age atmenarche. Furthermore, we highlight that the
pathway associated with the extracellular matrix (ECM) degradation,
critical for the regulation of the maternal–foetal interface including
menstrual cycling, embryo implantation, and pregnancy maintenance,
was enriched for significant cattle fertility-related genes includingCD44,
ITGA6, ITGB5, LAMA2, and SV2B.

Methods
Phenotypic data
For this study, females bornbetween1998and2018 inaCentralQueensland
Brahman cattle herd were assessed (discovery population; Supplementary
Data 1). Heifers (1st parity) and cows (2+ parity) were part of a seedstock
herd that was maintained on tropical pastures at latitude 20–220 South.
Therewas a singular emphasis on fertility where failure to give birth to a calf
was the primary culling criterion. Four fertility-related traits were recorded.
Heifer pregnancy status (preg_st) was recorded as a binary trait (1 = suc-
cessful, 0 = unsuccessful) indicating whether a heifer conceived before three
years of age. Foetal age in weeks (wks_preg) was recorded via manual
palpation at pregnancy diagnosis, to assess the age of the foetus, for all
heifers born in 2011 and later. This trait is a measure of fertility, as those
heifers with older foetuses have likely cycled and conceived soon after the
bull entered the paddock, whereas those with younger foetal ages have
cycled and conceived later. Age at first calving (AFC) was only available for
heiferswith a recordedbirthdateandwas calculated as thedifference indays
between first calving and birthdate. Days to calving (DTC) is a routinely
recorded trait in Australian Brahmans and was defined as the number of
days between the date of first bull exposure at the beginning of the breeding
season and calving date.

Genotyping
Heifers and cows were genotyped with the BovineSNP50 BeadChip (Illu-
mina, San Diego, CA) or the Neogen TropBeef 50k array. A detailed
description of the genotype quality control can be found in a previous
study44. Genotypes were imputed up to 709,768 SNPs (Bovine HD array)
using findhap445 and a reference panel of 4650 cattle genotyped for the
BovineHDarray (Illumina, SanDiego, CA) from relevant breeds, including
150 Brahman cattle. All genotypes were then imputed to WGS variants
using the 1000 Bull Genomes Run8, TaurIndicus reference 46, with 600
Holstein and 400 Simmental animals removed to avoid over-representation
of these genomes in the imputation, such that 1261 whole genome
sequenced animals remained. Eagle47 was used for phasing andMinimac348

for imputation. Sequence variants with fewer than 4 copies of the minor
allele were removed prior to imputation in an attempt to avoid including
sequencing errors in the data set. After this filter, 49,779,229 variants were
imputed. The imputation accuracy of Brahman genotypes using 1000 Bull
Genomes Run8 was greater than 0.85 for variants with minor allele fre-
quency (MAF) > 0.05 (Supplementary Fig. 2; SupplementaryData 14).Only
29 autosomes and variants with imputation accuracy of greater than 0.449

and MAF > 0.01 (31,140,417) were used for the GWAS study.

Genome-wide association analysis
For the discovery population with the four fertility traits, a linear mixed
model was performed using the fastGWA approach in GCTA software50,
fitting each sequence variant as a covariate, one at a time, and testing for
association with each trait as follows:

y ¼ 1nμþ Xβþ Zg þWiαi þ e;

where y is the vector of phenotypic values of the animals (up to 2,119
animals; Supplementary Data 1), 1n is an n × 1 vector of 1s (n=number of
animalswith phenotypes),μ is the overallmean,X is ann× xmatrix offixed
covariates, β is a length x vector of fixed effects, Z is a design matrix for the
random additive genetic effects, and g is a vector of random additive genetic
effects assumed to be distributed as ∼N(0, Gσ2g), where G is the genomic
relationship matrix (GRM) calculated from high-density genotypes using
the GCTA software. Wi is a vector of genotypes for each animal at the ith

variant,αi is the corespondingadditive effect (fixedeffect) of the variant.The
genotypes at each locus were coded as 0, 1, or 2, representing the number of
copies of a particular allele carried by an individual. e is a random vector of
length n as ∼ N (0, σ2e I), where σ

2
e represents non-genetic variance due to

non-genetic effects assumed to be acting independently on animals. The
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choice of fixed covariate effects for continuous and binary traits was done
using the lm and glm functions in R, respectively. For all four traits, year of
birth and contemporary group were considered as fixed covariates. The
contemporary group was defined as the year-season effects, with 7 levels.
Moreover, for trait AFC, calving success defined as 0 and 1, based upon
whether they calved before or after 900 days of age was considered as a fixed
effect. Also, for trait DTC, the effect of heifer age of joining (days) was fitted
as continuous covariate fixed effect. TheGRMwas generated using variants
with MAF higher than 0.01 (609,878 SNPs) using the Bovine HD data.

We performed a conditional multi-trait analysis (CMT-GWAS)
according to a previously described approach8 using WGS variant effects
estimated from the four single-trait GWAS to identify pleiotropic variants
that affected fertility traits. The multi-trait analysis (M-GWAS) X2 statistic
with 4 degrees of freedom (equal to the number of traits analysed) was
calculated as: X2 = tiV

−1ti, where ti is a vector of the signed t-values of the
effects of the ith sequence variants for the 4 traits andV−1 is the inverse of the
4 × 4 correlation matrix where the correlation was calculated over all esti-
mated sequence variant effects (signed t-values) between each pair of traits.
The CMT-GWAS approach cycles back and forward between the single-
trait GWAS for all traits and M-GWAS to re-test variants conditional on
jointlyfitting themost significant putative causal variants from independent
QTL (where we defined significant as P < 5 × 10−6). To determine inde-
pendent sequence variants, first, the most significant M-GWAS variant
from each chromosomewas selected and added to the list of putative causal
variants. If the pairwise LD between this variant and any other significant
variant on the same chromosome was greater than 0.1, these other variants
are considered as potentially tagging the same causal variant and were not
considered as independent QTL for this cycle. Then, from the remaining
significant variants in LD, r2 less than 0.1, the next most significant variant
was selected on each chromosome, LD was tested between these and the
remaining significant variants, and so on, until nomore significant variants
were identified in this cycle.

FDR was calculated as Pð1�A
TÞ

ðATÞð1�PÞ, where P is the p-value tested, A, is the

number of SNP that were significant and the p-value tested andT is the total
number of SNP tested12.

Validation
The validation population consisted of 27,707 indicine, Bos taurus, and
crossbred heifers genotyped with the Neogen TropBeef 50k array with
records for heifer puberty44. Heifer puberty was defined as a binary trait: 0
indicated the absence of a corpus luteum at approximately 600 days, while 1
indicated the presence of a corpus luteum at approximately 600 days51. All
animals were imputed to WGS as described for the discovery population.

To determine the proportion of variation explained by the 225
potential causal variants identified in single/multi-trait GWAS of the dis-
covery population, genotypes for the 225 SNPs were extracted for the
indicine animals in the validationpopulation (animalswith indicine content
equal greater than 0.80) and a GRM was estimated using these SNPs. The
proportion of variance explained by this matrix was determined for the
heifer puberty trait by fitting the model;

y ¼ 1nμþ Xβþ Zuþ e

where y is a vector of phenotype, 1n is a vector of ones, µ is themean,X is an
n × x matrix of fixed covariates, β is a length x vector of fixed effects, Z is a
design matrix allocating phenotypes to animals, u is a vector of breeding
values and e is a vector of random residuals. The effect of contemporary
group covariates and indicine content were fitted as class and continuous
covariatefixed effect, respectively. Thebreeding valuesuwere assumed to be
derived from a normal distribution u∼N(0,Gσ2

g ), where G is the GRM
created from genotypes at the 225 potential causal variants and σ2

g is the
additive phenotypic variance explained by the 225 potential causal variants.
Variance components were estimated with reml function in GCTA50. To
determine the proportion of variance expected to be explained by chance,

another 225 variants were randomly sampled from the sequence data, and
themodel abovewas fitted. This was done five times, and the proportions of
explained variance were averaged.

As an additional analysis, the significance of 225 potential causal var-
iants identified from single/multi-trait GWAS in the discovery population
was assessed in genome-wide summary statistic results for heifer puberty in
the validation population52.

cis-eQTLmapping
Gene expression levels in whole blood samples were profiled by RNA-seq.
Blood samples were collected from 489 indicine heifers and cows in the
discovery population in accordance with ethics approved by the University
of Queensland Animal ethics committee (SAFS /262/20, SAFS/253/20,
QAAFI/269/17, QAAFI/270/17). Pre-pubertal heifers born in 2018
(n = 116) selected for RNA sequencing were stratified by management
cohort, date of birth, and sire. All two-year-old heifers born in 2016
(n = 301) from this herdwere sequenced.A small proportionof these heifers
were pregnant. The mature cows (n = 72, number of calves ranging from
one to five) in this study were born between 1999 and 2009, and were
selected for RNA sequencing if they were genotyped, had yearly production
records, and were balanced across sire. All mature cows and two-year-old
heifers hadbeen exposed to bulls in anatural service,multi-sire breed season
lasting for five months. At the time of sample collection, the lactation and
pregnancy status (recorded as foetal age in weeks) of each female was
determined. Samples were collected over three separate days.

Blood was collected from the tail vein in 10ML EDTA vacutainers. A
500 ul aliquot of whole blood was immediately drawn from the vacutainer
and added the a Qiagen RNAprotect Animal Blood Tube. The tubes were
then incubated at ambient temperature for 2 h as per manufacturers
instructions. After incubation, the tubes were transported at −20 °C, then
stored at−80 °C until extraction. RNeasy Protect BloodKit (QIAGEN)was
used to extract total RNA from whole blood samples. RNA purity and
quantity were evaluated with a Nanodrop ND-1000 spectrophotometer
(v.3.5.2, Thermo Fisher Scientific) and QubitTM 4.0 Fluorometer with the
Qubit RNA BR (broad-range) assay kit (Thermo Fisher Scientific). The
assessment of RNA integrity was performed using the LabChip GX assays
(Perkin Elmer). RNA with integrity number greater than 6.9 was used for
library preparation for sequencing.

All RNA samples were sent to the Ramaciotti Centre for Genomics
(UNSW Sydney, Australia) for library preparation and sequencing using
TruSeq Stranded mRNA. Stranded paired-end RNA-seq libraries were
sequencedona2 × 100 bppaired-endNovaSeq6000 runwith anS4flowcell.

We used the pipeline described in Chamberlain et al. 53 to process the
gene expression data. Briefly, QuadTrim54 was used to trim and filter poor-
quality bases and sequence reads. Adaptor sequences were trimmed based
onpair overlap andbaseswith a quality score of < 20were removed from the
ends. Reads with amean quality score less than 20, greater than 3 N, greater
than three consecutive bases with a mean quality score of less than 15, or a
final length of fewer than 50 bases were discarded. After quality control, the
mean depth was 46,618,531 reads, with a minimum and maximum of
15,424,975 and 68,193,182, respectively. To avoid mapping bias, ARS-
UCD1.2 bovine genome55 assembly was masked at all known variant sites
from 1000 bull genomes run 8 with an allele not present at that position.
High-quality raw reads were aligned to this masked reference genome with
STAR56 using the 2-pass method. The gene counts were extracted with
FeatureCount57. Geneswith expression counts less than 3 counts permillion
mapped (CPM) in at least 25% of the population were excluded, leaving
10,455 genes included in this analysis.

Imputed WGS data for these animals was filtered based on MAF
greater than 0.05 and imputation accuracy > 0.4 for the cows used in the
analysis (no LDpruningwas performed) resulting in 24,902,617 variants for
eQTL analysis. For the cis-eQTL analysis, the association between gene
expression and each variant within a 2Mb upstream and downstream
window around the gene start site was estimated using amixed linearmodel
in OSCA34, fitting the genotype of the variant, birth year-contemporary
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group, lactation status, weeks pregnant and the first four principal com-
ponents of gene expression as fixed effects, to control for batch effects. The
animalwasfitted as a randomeffect, ~N (0,Gσ2g), whereGwas the genomic
relationship among the animals derived from Bovine HD genotypes to
account for the population structure.

Multiple-testing correction for cis-eQTL mapping
A two-step procedure was employed to perform hierarchical multiple
testing correction35. First, p-values of all cis-SNPs were adjusted for each
gene separately based on Bonferroni method for multiple SNPs tested
(locally adjustedp-value; Step1). The locally adjusted p-valuewas calculated
bymultiplying each p-value to the number of SNPs in the corresponding cis
window for the tested gene.Next, the eGeneswere identified as those having
the minimum locally adjusted p-value from Step 1, below the p-value
threshold of 0.01, and adjusted for the number of genes tested (10,455). The
cis-eQTLs were identified for each eGene as SNPs with a locally adjusted p-
value from Step 1 lower than the p-value threshold of 0.01 adjusted for the
number of genes tested (10,455). Supplementary Fig. 3 shows the enrich-
ment of top 20 most significant Gene Ontology terms among the genes
tested.

cis-eQTL inter-validation
To assess the reproducibility of eQTL findings, the animal cohort was
randomly divided into two distinct subsamples, comprising 244 and 245
animals each, respectively.The same statisticalmodel, as previously outlined
for cis-eQTLmapping was implemented independently in each subsample.
Pearson correlation coefficients were then computed to evaluate the con-
cordance of lead eQTL effects between subsamples and between subsample
and original sample across all eGenes. Additionally, the frequency of shared
cis-eGenes between subsamples and the original sample was quantified to
measure consistency across subsamples and subsample and the original
dataset.

trans-eQTL mapping
We aimed to perform trans-eQTL mapping for significant variants identi-
fied through cis-eQTL or GWAS analysis. We specifically targeted genes
where the variant was located more than 5Mb away from the gene on the
same chromosome. So, the most significant cis-eQTLs for each eGene
(n = 4376, FDR < 0.01) were selected. Additionally, we added 225 genome-
wide significant GWAS variants from the single trait and CMT-GWAS
model described above, applying a significance threshold P ≤ 5 × 10−8. We
also added variants within 100 bp on either side of each selected variant,
which yielded 14,268 variants. We tested the associations between all
selected variants and genes that were at least 5Mb away to ensure that they
did not tag a cis-eQTL effect on the same chromosome. Trans-eQTL
mapping was performed using the same model described for cis-eQTL
mapping. A two-step procedure based on the Bonferroni method and FDR
threshold of 0.01 described above was employed to perform hierarchical
multiple testing correction for the trans-eQTLmapping.

Integration of eQTLs with regulatory regions
The lead cis- and trans-eQTLs overlappedwith regulatory regions identified
from different ChIP-seq and ATAC-seq datasets from a range of tissues.
ATAC-seq and ChIP–seq peaks for H3K27ac from bovine liver were
downloaded (ArrayExpress accession number E-MTAB-2633)16; H3K27ac,
H3K4me1, H3K27me3, and CTCF from a range of bovine tissues including
liver, lung, spleen, skeletal muscle, subcutaneous adipose, cerebellum, brain
cortex, and hypothalamus (GSE158430)17.

Integration of GWAS results with eQTL
We applied the Summary data–based Mendelian Randomization analysis
(SMR) method40 to test for causation of mutations associated with the four
fertility traits and the expression level of each gene across the whole genome
using summary data from the single-trait GWAS in the discovery

population and cis-eQTL studies. We selected the top associated eQTL at
P < 5 × 10−8 andQTLs atP < 5 × 10−3 as an instrument for an SMRanalysis.

Follow-up study of fertility related genes in cattle
First, we performed Gene Ontology analysis on the list of genes associated
with fertility using the DAVID web server58 and considered the entire
taurine gene set as a reference data set. The genes associated with fertility
included: (1) genes that showed associations with fertility traits (P
SMR < 3.5 × 10−4), (2) genes overlapped or within ±5 kb of the most sig-
nificant GWAS variants for all fertility traits (P < 5 × 10−8), and 3) genes
nearest the top four most significant variants from GWAS analysis of the
validation trait (heifer puberty) (Supplementary Data 10).

Then, we estimated the number of orthologous genes in or close to
GWASpeaks for human fertility that were also located in or close to GWAS
peaks for fertility in cattle, and tested if the overlapwas greater thanwouldbe
expected by chance. Two human fertility traits, age at natural menopuase
and menarche, in about 201,323 women of European ancestry (data
obtained from Supplementary Tables 2, 17, and 181) and 368,888 women
(data obtained from Supplementary Tables 218) were considered, respec-
tively. The Fisher’s exact test was used for the analysis of significance level
(Supplementary Data 11, 12).

Statistics and reproducibility
We performed single-trait GWAS analysis and conditional multi-trait
GWASanalysis inup to2119 cowsandheifers for four fertility traits ofDTC,
AFC, preg_st, and wks_preg (discovery population; indicine subspecies).
We used a validation population consisting of 27,707 indicine, taurine and
crossbred heifers genotyped with the Neogen TropBeef 50k array, imputed
to whole genome sequence as described for the discovery population, with
records for heifer puberty, which was the presence or absence of a corpus
luteum at approximately 600 days assessed by ultrasound scanning. The
eQTL analysis was performed onwhole blood in 489 heifers and cows from
the discovery population. We assessed the reproducibility of cis-eQTL
analysis by splitting the data into random subsamples of 244 and 245
animals.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Supporting findings are included in the published article (including Sup-
plementary Data 1–14 and Supplementary Figure). The fastq files for gene
expression profile were depostited in ENA with the project accession
PRJNA1090634. The summary statistics for GWAS analysis are available at
figshare59.

Code availability
Script developed to perform multi-trait GWAS analysis is available in
GitHub60.
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