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Mediodorsal thalamus and ventral
pallidum contribute to subcortical
regulation of the default mode network

Check for updates

Yilei Zhao , Tobias Kirschenhofer, Michael Harvey & Gregor Rainer

Humans and other animals readily transition from externally to internally focused attention, and these
transitions are accompanied by activation of the default mode network (DMN). The DMN was
considered a cortical network, yet recent evidence suggests subcortical structures are also involved.
We investigated the role of ventral pallidum (VP) and mediodorsal thalamus (MD) in DMN regulation in
tree shrew, a close relative of primates. Electrophysiology and deep learning-based classification of
behavioral states revealed gamma oscillations in VP and MD coordinated with gamma in anterior
cingulate (AC) cortex during DMN states. Cross-frequency coupling between gamma and delta
oscillations was higher during DMN than other behaviors, underscoring the engagement of MD, VP
and AC. Our findings highlight the importance of VP andMD in DMN regulation, extend homologies in
DMN regulation amongmammals, andunderline the importanceof thalamusandbasal forebrain to the
regulation of DMN.

The default mode network (DMN) is a collection of brain areas that tend to
activate and deactivate together and exhibit enhanced functional
connectivity1,2. The DMN is active in humans during periods of inward
mental focus associated with disengagement from the external
environment3, and encompasses the brain regions that tend to be farthest
from the sensory-motor periphery4,5. The DMN, which is often assessed
using resting-state fMRI in human subjects, is receiving increasing attention
in recent years, as aberrant DMN activity appears to play an important role
in a considerable number of brain disorders6–8. Following the discovery in
humans, the DMN has also been described using functional neuroimaging
in several animal species, notably including rodents and non-human
primates9–12. Although there is some variation in the DMN between
species13, central featuresof theDMNappear tobe largely conserved across a
variety of mammals. While the vast majority of studies related to the DMN
employed functional neuroimaging, electrode recordings have documented
the neural circuit activation patterns underlying the DMN in both humans
and animals14,15 and revealed neural activitymodulations in theDMNat the
time of switching into a DMN brain state16,17. Intracranial recordings are
thought to be particularly useful for identifying how specific neural circuits
trigger and maintain a DMN-dominated brain state18.

While the DMN was initially conceptualised as a purely cortical net-
work, recent results have highlighted that several subcortical structures,
including the basal forebrain (BF), are also part of the DMN. In rats,
endogenous gamma-bandoscillatory activity in the ventral pallidum(VP), a
nucleus of the BF, is strongly enhanced during quiet, self-directed

behavioural states and suppressed during exploratory behaviours19,20, while
in humans functional imaging studies have delineated the BF as one of the
major subcortical DMN nodes21–25. Along similar lines, deactivation of the
anterior cingulate (AC) cortex, a major cortical DMN node, leads to
widespread activity suppression within other DMN nodes, including BF, as
well as triggering attentional behaviours such as exploration and rearing26.
Similarly, in rats, VP activation locks the animals in a DMN state, with
profound consequences for sensory learning, while VP inactivation facil-
itates transitions to states requiring external focus27. Furthermore, task-
related suppression was seen in multiple cortical DMN structures in rat
intracranial recordings during operant visually based behaviour28. In addi-
tion to the BF, the mediodorsal (MD) thalamus, and more generally the
limbic thalamus, has also emerged as another important subcortical DMN
node2,24. MD thalamus is strongly interconnected with medial prefrontal
cortical (mPFC) areas associated with the DMN, with these connectivity
patterns being highly conserved across mammalian species including in
humans29–31, andprojections in tree shrews are also consistentwith the other
species32,33. Furthermore, MD thalamus may serve as a functional relay
between VP and mPFC34, and electrical stimulation of VP modulates MD
neural activity34–36. The VP to MD projection has also been implicated in a
variety of higher cognitive functions37,38, regulating aspects of learning and
attentional influenceon taskperformanceconsistentwithan involvementof
the DMN. Emerging evidence thus indicates that the DMN encompasses
not only cortical brain areas, but also thalamic and neuromodulatory brain
structures. This study aims to study how these distinct components
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cooperate inDMN regulation. Ourmain hypotheses based on the literature
were thatVPnucleuswould be activated inDMN-related behavioural states
in the tree shrew, as it is in other mammals studied to date including
humans, and thatMDnucleus ismodulated in a coherentmanner withVP,
acting as a hub that regulates DMN cortical sites in concert with VP.

The most widely used experimental approaches for DMN investiga-
tions are acquiring brain activations during the so-called resting-state39.
Along similar lines, it has been shown that theDMNis generally activated in
rat and chimpanzee during periods composed largely of quiet wakefulness
in their home cage12,19. However, when examining animal behaviour during
longer time periods inside the home cage, animals tend to spontaneously
cycle through various behavioural states, offering another avenue for
studying neural mechanisms of DMN regulation. Here we therefore aimed
to study DMN regulation in the tree shrew (T. belangeri) during multiple,
~6 h duration time periods, when animals were in their home cage envir-
onment (HCE), andwhere animals spontaneously exhibit a variety ofDMN
and non-DMN associated behaviours. Although the DMN has not been
previously characterised in tree shrews, we selected themas an experimental
model due to their similarities to primates40, for example, in terms of basal
forebrain neuromodulation of sensory neural circuits, as well as wake-sleep
regulation41–44. In this context, it is necessary todetermine the behaviour that
tree shrews are engaged in over time, and it is not desirable to use manual
scoring by human observers for this purpose, given the large amounts of
video material. Fortunately, recently developed markerless pose estimation
algorithms based on a deep learning architecture have become available45,46.
These algorithms can be used to estimate the position of the nose and other
bodyparts followingmanual labellingof a restricted set of video frames.This
is achieved by training a convolutional neural network, e.g. a residual net-
work with 50 layers, to adapt its weights, which can be accomplished using
error backpropagation based on manually labelled body parts in a training
image set. When subsequently presented with a novel image not part of the
training set, the network then produces an output with its estimate of body
part positions within that image. With suitable supervised or unsupervised
postprocessing, estimated animal pose for each video frame can be used to
classify behavioural states47–49, although this step can be far from straight-
forward and requires adaptation to the particular details of the experimental
setting. With this approach, classified behaviours inside the home cage
environment can be linked to neural activity in brain regions of interest. The
advent of markerless pose estimation algorithms using deep learning thus
opensup thepossibility for novel investigations that hadnot beenpreviously
possible.

Results
We first characterised tree shrew behaviour inside their home cage, a 3-m3

cagewithmultiple branches andother enrichment elements aswell as access
to food andwater (Fig. 1a). Tree shrewswere implantedwith blunt tungsten
microelectrodes (see ‘Methods’), targeting the DMN brain structures of
interest, ventral pallidum (VP), anterior cingulate cortex (AC),mediodorsal
thalamus (MD), and primary visual cortex (V1) as a non-DMN control.
Local field potentials (LFPs) were registered with a wireless, battery-
poweredNeurologger device50. In addition to theLFPs, theNeurologger also
registered 3-d accelerometer data, and since theNeurologger is connected to
the head of the animal, the accelerometer registers sensitive information
about high-speed head motion including vibrations, providing one useful
indicator of behaviour exhibited by the tree shrew. To complement the
accelerometer data, we obtained speed data from home cage video
recordingsusingmarkerless pose estimationbasedondeep learning46. Based
on continuous video recordings from a single cameramounted at the top of
the cage, we manually labelled nose and neck in a limited number of video
frames and then used Deeplabcut (DLC) to estimate the body part position
for the remaining video frames (see ‘Methods’). The videowas appropriately
cropped and downsampled to 2 fps (ffmpeg, http://www.ffmpeg.org),
allowing DLC network training to proceed on 20-min segments in a rea-
sonable time of about 1–2 days for 500,000 iterations on available com-
puting hardware including CUDA on a GEForce graphics card. The DLC

analysis yielded the coordinates of the body parts and the corresponding
likelihood estimates,where likelihood reflects the confidenceof thenetwork,
between 0 and 1, that the predicted coordinates are accurate. Formost of the
frames, DLC accurately tracked the tree shrew, with likelihood values
exceeding 0.99 and body part position corresponding to human observer
estimationswhen viewing the video. For some frames, for examplewhen the
animal was partially occluded or in an unusual pose, DLC estimates
appeared inaccurate, and the estimation needed refinement. We thus
labelled an additional 50 frames where necessary and retrained the network
for an additional 200,000 iterations. Themean likelihood of both body parts
significantly increased after additional labelling (Fig. 1b, Wilcoxon signed-
rank test, P < 0.001, nose: P = 3.7e−10, neck: P = 1.1e−40. n = 28,800 frames,
from 12 video segments, 2400 frames each), and indeed position estimate
likelihood generally increased notably except for cases where it was already
close to 1.0 before additional labelling (Fig. 1c, Wilcoxon signed-rank test,
P < 0.01, nose: P = 0.0093, neck: P = 0.0024. n = 12 video segments).

From the position data, we estimated the speed of the animal as the
difference between nose positions on subsequent frames, providing infor-
mation related mostly to animal locomotion at a complementary temporal
scale to the accelerometer data. Examining the accelerometer (ACL) and
DeepLabCut (DLC) speed signals, we noted as expected generally similar
activations over the course of the home cage recording period typically
lasting about 6 h. Periods of low speed, corresponding to a stationary state
alternate with periods of mobility (see Fig. 1d for a 3-h segment from an
example tree shrew). Preliminary visual inspection revealed that low
mobility periods encompassed mostly ACL-defined epochs where the tree
shrew was typically curled up in a stereotypic sleeping posture, as well as
quiet wakefulness where the tree shrew remained immobile in a more
regular posture. High mobility periods contained the multiple active, ACL-
defined behavioural states that tree shrews exhibited in their home cage,
including locomotion, exploration, food andwater consumption, grooming
and quiet wakefulness. Examining the highmobility periods in more detail,
we made an interesting observation, in that there were periods of conjoint
high activation in both sensors as well as periods with high ACL but low
DLC activation (see Fig. 1e). Preliminary visual inspection indicated that
high/high ACL/DLC activation appeared to correspond mainly to loco-
motion or exploratory activities, whereas high/low ACL/DLC activation
occurred during periods where the tree shrewwas stationary but engaged in
various activities including eating, drinking, as well as grooming and quiet
wakefulness that we have considered previously as default mode-network
(DMN) associated behaviours. This observation suggests that the ACL and
DLC speed data provide complementary information about behavioural
state, and in particular disjunctions between these signals appear to tag a
specific set of behavioural states. We therefore decided to employ a hidden
Markov model (HMM) for unsupervised classification of behavioural state
based onACL/DLC information (Fig. 1f). A key element of theHMM is the
designation of the output symbols and number of states. Based on our
preliminary observations, we designated four output symbols, corre-
sponding to High/High, High/Low, Low/High and Low/Low combinations
of ACL andDLC signal values. These output symbols cover the entire set of
sensor readings, and it is ensured that each time point is associated with the
emission of a single output symbol. The threshold between High and Low
sensor valueswas determined basedon themedian value of the signal across
the recording session.We selected a three state HMM, with the intention to
capture the threegroups of behavioural states, locomotion,DMN, and sleep.
We usedmaximum likelihood estimation to findHMMstate transition and
output symbol emission probabilities and the Viterbi algorithm to compute
themost probable state sequence given the estimated parameters.We found
that the HMM was well able to capture the dynamics of the ACL/DLC
sensor signals (Fig. 1g). The HMM parameters for this example session are
summarised in Tables 1 and 2. As the probabilities were similar to those we
observed in a population of 15 sessions in 3 tree shrews, we continue here to
discuss directly the group data. For state transition probabilities (Fig. 2a), we
found, as anticipated, that the probability for remaining in the same state
was highest for all states (one-way ANOVA, n = 15 sessions, P < 0.05). The
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maximum probability 0.98 was seen for the 1→ 1 transition, yielding a
mean dwell time for state 1 of 398 ± 31 s for the curled-up posture state.
States 2 and 3 tended to have lower same state probabilities (one-way
ANOVA, n = 15 sessions, P < 0.05), with mean dwell times of 47 ± 6 s and
72 ± 5 s, respectively. State 2→ 3 transitions were more probable than
3→ 2 transitions (one-way ANOVA, n = 15 sessions, P < 0.05), suggesting

more frequent occurrence of the DMN-associated state followed by
exploration than vice versa. In terms of output symbol probabilities
(Fig. 2b), state 1 was almost exclusively associated with the Lo/Lo output
symbol, as both movement sensors were inactive during the curled-up
sleeping posture. State 2 was also associated with the Hi/Lo output symbol
(0.74 ± 0.04) that tended also to be unique to this state, with some

Table 1 | Example HMM parameters 1

To state 1 To state 2 To state 3

From state 1 0.98 0.01 0.01

From state 2 0.01 0.87 0.12

From state 3 0.04 0.06 0.90

Hidden Markov Model state transition probabilities.

Table 2 | Example HMM parameters 2

Lo/Lo Hi/Hi Lo/Hi Hi/Lo

State 1 0.98 0 0.01 0.01

State 2 0.01 0.21 0 0.78

State 3 0.08 0.59 0.29 0.04

Output symbol emission probabilities. Lo/Hi refers to low ACL and high DLC activation.

Fig. 1 | Segmentation of behavioural states. a Top view of the home cage envir-
onment showing a freely moving tree shrew equipped with the wireless recording
device. The coloured points represent the body parts tracked byDeepLabCut. bDLC
likelihood before and after relabelling of misclassified frames. Error bars represent
SEM. c Scatter plot shows the likelihood before and after relabelling from 12 seg-
ments of a 4-h session. dA3-h segment showing both accelerometer (ACL) and nose

movement speed signals from DeepLabCut (DLC). e A 10-min segment taken from
(d) with a detailed view of the complementary movement sensor signals ACL and
DLC. fHiddenMarkovModel with three states (S1, S2, S3) and four output symbols
(Hi/Hi, Hi/Lo, Lo/Hi, Lo/Lo). g Three states assigned by Hidden Markov Model
based on ACL/DLC input. Error bars represent standard error of the mean, SEM.
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occurrence also of the Hi/Hi symbol. This symbol was indeed shared with
state 3, where it co-occurredwith symbol Lo/Hi that tended to be specific to
this state. Notably, there was some animal-specific variation in output
symbolprobability particularly for state 3, such that in animal 1777 the state-
specific symbol Lo/Hi occurred significantlymore frequently than the other
two animals. We consider that this probably reflects different behavioural
patterns in this animal, which is consistent with the analysis described in
Fig. 3 below. Overall, across animals, during active behaviours, each state
tended to emit a mixture of output symbols suggesting some overlap on
sensor activation patterns in these two states.

To validate the results of the unsupervised behaviour classification
using the HMM, we manually labelled each of the epochs identified by the
HMM by visual inspection. Each HMM epoch was assigned one of seven
labels: curled-up sleeping posture, quiet awake, eating/drinking, grooming,

in or near nest box, locomotion and exploration.Weparsed these labels into
three behavioural sets. Behavioural set 1 represents sleep posture, while set 2
encompasses quiet wakefulness, eating/drinking, grooming and nest-box-
associated behaviours. These set 2 behaviours are those with an internal
focus that we have previously also linked to activation of the brain default
mode network (DMN). Behavioural set 3 comprises locomotion and
exploration, where attention is directed to external environment. By com-
paring the HMM states with these manually scored behavioural sets, taking
one session as an example, we found that the HMM states indeed corre-
sponded well to the sets of behaviours (Fig. 3a). Note however that the
correspondence was not perfect, such that in a minority of cases the
assignments diverged. Quantifying the overlap, we found that in 95% of
HMM state 1 time periods tree shrews were in curled-up sleeping posture,
86% of HMM 2 segments were DMN-associated activities, and 84% of

Fig. 3 | HMM classification performance. a Shows an example of the typically high
correspondence between the states output by the HMM, and the behavioural sets
derived from the manually labelled data. b–d Pie charts showing the composition of
different behaviours observed in the 3 HMM states. e Mean overlap of the HMM

output and manually scored behavioural sets. fOverall distribution of time spent in
the different states revealed by the HMM for all animals and all sessions. Error bars
reflect SEM. Lines represent P < 0.01.

Fig. 2 | State transitions and output probability. a Group analysis of the transition probability for the Hidden Markov Model. b Group analysis of the output probability
distribution of the Hidden Markov Model. Here, Lo/Hi refers to low ACL and high DLC activation. Error bars, SEM.
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HMM 3 consisted of locomotion and exploration (Fig. 3b–d). Only a
minority of between 5% and 16% of time segments did not directly corre-
spond, such that therewas amismatch betweenHMMandmanually scored
behavioural sets. We confirmed these findings for a single example session
across a set of 5 videos from 3 tree shrews that were processed using DLC/
HMM analysis as well as manually classified by visual inspection. In par-
ticular,HMMandbehavioural sets corresponded to eachother for over 80%
of respective time periods (Fig. 3e, one-way ANOVA test, P = 0.5431, n = 5
datasets). Taken together, this analysis shows that HMM states largely
capture behaviours of the three sets, allowing us to proceed with the HMM
state assignment for a larger number of datasets without arduous, manual
annotation. In the 15 sessions of videoclassifiedbyHMM,we foundout that
on average, 54 ± 3% of time the tree shrews are in the HMM state corre-
sponding to sleeping posture, 15 ± 2% in the HMM state corresponding
DMN activation, and 30 ± 3% in the HMM state corresponding to loco-
motion/exploration (Fig. 3f, one-way ANOVA test, P = 1.9e−13, n = 15 ses-
sions). The behavioural patterns for the tree shrews were similar to each
other; but note that animal 1777 tended to spend less time in sleeping
posture and more time in exploration behaviours.

We proceeded to analyse the local field potential (LFP) data registered
at the four brain sites: ventral pallidum (VP) of the basal forebrain, med-
iodorsal (MD) nucleus of the thalamus, anterior cingulate (AC) cortex and
primary visual cortex (V1), which is not part of the DMN and serves as a
control brain region in the present study. An example LFP power spectrum
recorded in VP is shown in Fig. 4a for the three HMM-defined behavioural
states. We note prominent modulations in the gamma range that were
associated with behavioural state, such that spectral power in both the
gamma (40–60Hz) and high gamma (60–150Hz) bands was largest during
DMN behaviours, attenuated during exploration and strongly attenuated
during sleep. Comparing gamma activity during DMN and explorative

behaviours, we found that the attenuation was indeed significant in VP as
well as the other DMN brain areas MD and AC (t tests, P < 0.01, VP:
P = 1.5e−6, AC: P = 0.0011, MD: P = 1.6e−5 n = 15 sessions) but not in V1
(Fig. 4b, c, t tests, P = 0.1967, n = 9 sessions); note that V1 data was available
for only two animals. Generally similar results were found in the high-
gamma band (Fig. 4d, e), with significant attenuation during exploration
relative to DMN behaviours observed in VP andMD, but not in V1 or AC.
Taken together,VP,MDandACexhibit elevatedgammaoscillationsduring
DMN-associated behaviours compared to active exploration, with high-
gamma modulations occurring specifically in the subcortical areas. This
finding extends previous observations of elevated gamma activity in DMN
nodes VP and AC of the rat to the tree shrew20, and strongly implicates the
MD thalamus as a participant node of the DMN. To examine directional
interactions between the recording sites, we used Granger causality mod-
elling, which allows us to compute to what degree past values of one
timeseries canpredict future values of another timeseries.Wefirst examined
all 12 possible gamma-band directional interactions during the DMN
behavioural state among the four recording sites (n = 9 sessions), which
revealed that 6 interactions among DMN-related sites (VP, MD, AC) were
overall larger than 6 interactions betweenV1 and theDMNsites (see Fig. 4f,
Wilcoxon test, P = 0.0039). This finding validates specific enhancement of
functional coupling amongDMNbrain areas. Focusing thenon interactions
within the DMN-related sites, we used a Kruskal–Wallis non-parametric
ANOVA to examine if there were significant differences between the
interactions. We found that three gamma-band interactions were particu-
larly elevated, namely MD→AC, MD→VP and VP→AC (see Fig. 4g,
left. Kruskal–Wallis test, P = 1.7e−6, n = 15 sessions), whereas for the high-
gamma band none of the Granger directional influences differed sig-
nificantly (see Fig. 4g, right. Kruskal–Wallis test, P = 0.4722, n = 15 ses-
sions). For Granger causality, we also wanted to examine if these differed

Fig. 4 | LFP Gamma power and its relation to behaviour across brain areas.
a Example PSD of LFPs recorded from a single animal in the VP during the three
HMM-derived states. b Scatter plots showing the spectral power at gamma fre-
quencies (40–60 Hz) during DMN-related behavioural activity vs exploratory
behaviours in the four brain areas. Axes are the same as in (d). Symbol colours denote
different animal subjects, see the legend. c Average magnitude of the difference in
gamma power between DMN and exploration behaviours in the four brain areas.
Error bars depict SEM. d, e same as (b, c) but for the high-gamma band (60–150 Hz).

f Average directional interaction strength (Granger causality) calculated for the
gamma band (40–60 Hz) betweenVP, AC,MD,V1 duringDMN-related states. Line
thickness proportional to the magnitude of the Granger Causality. g Directional
interactions among DMN-related sites (VP, AC, MD) during DMN-related states
for gamma, left, and high-gamma band, right (lines represent P < 0.01). h Scatter
plots comparing overall Granger causality values within VP, AC and MD between
DMN and exploratory behavioural states. Error bars depict SEM.
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within DMN sites between behavioural states. Here, we grouped all six
values together and found overall that in both gamma and high-gamma
band, Granger causality values were significantly enhanced during DMN
behavioural states compared to the locomotion/exploration behavioural
state (see Fig. 4h, t tests, P < 0.01, gamma band: P = 0.0034, high-gamma
band: P = 0.002. n = 90, 6 values from 15 sessions). This is consistent with
the idea that the DMN brain network nodes VP, MD and AC are engaged
during DMN behavioural states. The above analysis focused on oscillatory
brain activity in the automatically labelledbehavioural states identifiedusing
markerless pose estimation combinedwithHMMclassification. For the five
datasets with manual scoring, we repeated the analysis to examine brain
activity among the individual behaviours contributing to each HMM-
identified state. Results for VP in an example session are shown in Fig. 5a,
illustrating gammaactivation during the chronological progression through
the behavioural states. Note that gamma amplitude tended to be low during
sleep posture and appeared elevated during DMN-related behaviours; a
tendency that was confirmed by examiningmean gamma amplitude across
all occurrences of the respective behaviour (Fig. 5b). Analysing all five
available datasets with manual scoring (Fig. 5c), we found that gamma
activation was significantly elevated for quiet wakefulness, eating/drinking,
and nest-box proximity (n = 5 for each genre of activity, paired t test,
P < 0.05. Quietwakefulness: P = 0.001, eating/drinking: P = 1.5e−4, nest box:
0.0127) but not for periods of grooming (paired t test, P = 0.5770).

In addition to gamma modulations, robust variations in delta band
activity (0.5–4Hz) were evident in our recordings. An example of delta
power during the three HMM states is shown in Fig. 6a, illustrating
enhanced delta power during sleeping posture, which is expected since
prominent delta waves occur during slow-wave sleep44. The effects were
largest in the AC cortex, but also evident in V1 and the subcortical regions
(Fig. 6b, c). For an example session, we examined delta amplitude during
manually labelled states (Fig. 6d) and found that only a subset of the sleep
posture epoch actually corresponded to slow-wave sleep, with delta
amplitude reaching around 2mV. During the remaining sleep posture
epochs, delta amplitude was similar to other behaviours, suggesting that the
tree shrew was probably engaged in rapid eye movement sleep. A
Warren–Sarle test of bimodality showed that delta amplitude distribution
was indeed bimodal for this example dataset (Fig. 6e), and that across
datasets the tree shrewwas in sleeping posture in over 80% of epochs where
high delta activity occurred (Fig. 6f, threshold of high delta activity defined
by Min+ (Max-Min)/2). Delta and gamma activity often occur in a coor-
dinated manner in the cortex, and subcortical regions, and the relationship
between gamma power and phase of the delta cycle can provide useful

information about local circuit activations. An example of delta–gamma
coherence recorded in the MD thalamus is shown in Fig. 7a for a repre-
sentative delta cycle, illustrating that gamma activity tended to occur in the
negativity/trough of the delta cycle and also during the rising phase. Fig-
ure 7b shows the delta–gamma cross-frequency coupling (cfc) in polar
format, with the cfc vector computed to the centroid of the angular cfc
distribution.For this delta cycle, thepreferred angle occurredat adelta phase
of about -π/4. In Fig. 7c–e, cfc vectors are shown across the 15 datasets from
3 tree shrews for sleeping posture, DMN behaviours and locomotion/
exploration respectively. Cfc coupling strength was largest inMD thalamus,
intermediate in AC and smallest in VP (two-way repeated-measures
ANOVA, ***P < 0.001, *P < 0.05, main effects of brain area and beha-
vioural state and significant interaction, see Fig. 7f). At the same time, cfc
coupling strength was greatest during DMN behaviours, intermediate
during locomotion or exploration and smallest during sleeping posture. The
low cfc coupling strength during sleeping posture is consistent with the
overall low prevalence of gamma activity in this behavioural state. The
analysis of cfc preferred angle51 revealed interesting differences between the
three brain regions, with gamma activity occurring earliest in the delta cycle
inVP, followedbyMDandfinally byACduringexplorationaswell asDMN
behaviours (Circular Median test, P < 0.01, see Fig. 7g). No significant dif-
ference in cfc preferred angle were seen during sleeping posture. These
findings suggest that the local relationship between delta cycle and gamma
activation varies between brain regions, with gamma activations tending to
occur earliest in VP, and later inMD andACwith respect to the local phase
of the delta cycle.

Discussion
Our findings show that tree shrew basal forebrain nucleus VP exhibits
robust oscillations in the gamma range (40–60Hz), that are enhanced
duringbehavioural states associatedwith theDMNcompared tonon-DMN
states such as locomotion and exploratory behaviours. This extends pre-
vious findings in the rat19,52,53 that have demonstrated enhanced gamma
oscillations in VP and adjacent ventral striatum during quiet immobility
compared to locomotive behaviour, underscoring that in both mammalian
species, theVP can be considered as a subcorticalDMNnode. This evidence
corroborates results fromhuman fMRI studies that have also implicated the
basal forebrain as an important subcortical component of the DMN24.
Causal evidence from optogenetic activation of the basal forebrain using
optogenetics further supports its important role inDMN regulation27,54.We
also observed elevated VP gamma activity during food and water con-
sumption, compatible with previous data suggesting a role forVP in feeding

Fig. 5 | Gamma power during individual behaviours. a Example of average gamma
power (40–60 Hz) for behavioural epochs in chronological order throughout a single
session. bAverage gamma amplitude of all epochs for the different behaviours in the

session in (a). c Scatter plots showing gamma amplitude during each of the DMN-
related behaviours vs gamma power during active states (Locomotion and
Exploration) in all five manual labelled datasets.
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behaviour. The medial VP receives a direct GABAergic projection from the
shell region of the nucleus accumbens (AcbSh), and sends a direct
GABAergic projection to the lateral hypothalamus. Both deactivation of
AcbSH, and pharmacological blockade of GABAA receptors in VP lead to a
marked increase in feeding activity, with the AcbSh-mediated effects abol-
ished by lesions of the medial VP55,56. Further, gamma oscillations in the
ventral striatum, including accumbens, have been directly linked to food

consumption, with these oscillations carryingmultiple types of food-related
information57. There is also evidence for the regulation of drinking by
forebrain nuclei. Water intake and homoeostasis are controlled by lamina
terminalis structures including the median preoptic nucleus58, which is in
close proximity to our VP recording site and contains a coupled network of
glutamatergic and GABAergic neurons that might potentially contribute to
the generation of gamma oscillations59, although this remains to be

Fig. 6 | Delta band activity and behaviour. a Example of LFP power spectral density
(PSD) in AC for three behavioural states. b Scatter plots showing delta band
(0.5–4 Hz) PSD during sleep posture vs active states (including DMN and
Exploratory states) in the four brain areas. Symbol colours denote different animals,
see the legend. cAveragemagnitude of the difference between delta bandPSDduring
sleep posture and two active states (DMN and Exploration). d Average delta

amplitude of each epoch in chronological order throughout one session.
eWarren–Sarle test of bimodality showing the delta amplitude distribution of sleep
posture epochs was bimodal for the example session. (Warren–Sarle coefficient =
0.83). f Across the datasets, the percentage of sleeping posture in epochs with high
delta activity occurred. Error bars reflect SD.

Fig. 7 | Delta–gamma coupling across brain areas. a A raw segment of the LFP
taken fromMD thalamus with prominent delta and gamma activity is shown at top,
at the bottom the amplitude of delta and gamma power for the same segment. b The
delta–gamma cross-frequency coupling in polar format. The cfc vector is computed
to the centroid of the angular cfc distribution. c–e The cfc vector distribution for

sleeping posture (c), DMN behaviours (d) and locomotion/exploration (e) in MD,
AC andVP. fCfc coupling strength inMD,AC andVP (two-way repeated-measures
ANOVA, ***P < 0.001, *P < 0.05, error bars indicate SD). g Cfc preferred angle in
MD, AC and VP (error bars indicate SD, lines represent P < 0.01).
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demonstrated. Finally, previous reports in humans have shown diminished
DMNactivity and interconnectivity during both bulimia and anorexia-type
eating disorders60,61, suggesting the possible connection between the DMN
activity and the regulation of food intake. As for self-grooming, we observe
here a discrepancy between rat and tree shrew. Whereas grooming is
associatedwith large amplitude gamma oscillations in rat VP, no such effect
was seen in the tree shrew in the present study. Since grooming can help
regulate stress62, this difference in DMN regulatory mechanisms might
contribute to the particular sensitivity to stress that tree shrews tend to
exhibit63. We speculate that grooming in the tree shrew may fail to activate
the DMN as it does in other species, and that reduced DMN activation and
interareal coherence might have a negative impact on stress regulation in
this species64. This hypothesis is supported by human neuroimaging
showing that following a highly stressful experience, a major earthquake,
there is a decrease in functional coupling between theVP and cortical DMN
nodes including posterior cingulate and precuneus cortical areas65 It is
interesting to note that rodents that receive less maternal grooming, show
heightened stress responses66, and that unlike rodents, maternal care,
including grooming, is largely absent in the tree shrew. Tupaia mothers
practice absenteematernal care, spendingvery little timewith their pups and
only returning to the nest to nurse their young for roughly 5min every 48 h.
During these brief nest visits mother/pup grooming is not observed, pre-
sumably due to time constraints67. Together with emerging evidence, our
study thus supports the important role of the basal forebrainVP and related
structures in activating the DMN and triggering associated behavioural
states. Across species, these DMN-associated brain states include inward-
focused quiet wakefulness and occupancy of a highly familiar nest-box
environment, as well as consumption of food and water when it is freely
available as in our study, but perhaps not in an exploratory or active foraging
context.

Our experimental findings confirm the involvement ofMD thalamic
nucleus inDMNregulation in the tree shrew, as has been shown inhuman
neuroimaging and dynamic causal modelling24,25. Our observations of
enhanced activations in gamma and high-gamma bands during DMN-
associated behaviours inMD, aswell as enhancedGranger causal coupling
among DMN brain areas during these behaviours both support this
conclusion. Indeed, significant Granger coupling from the mediodorsal
thalamus to the frontal cortex has previously been observed in humans
with intracranial implanted electrodes68. Harrison and colleagues con-
cluded that the basal forebrain impact on the DMN is likely direct, rather
thanmediated via theMD, but that MD serves to stabilise and coordinate
DMN cortical activations. This is consistent with two aspects of our
gamma-band Granger causality modelling: first, we find a significant bi-
directional modulation between VP and anterior cingulate (AC) cortex
underscoring the importance of the direct influence of basal forebrain VP
nucleus onDMN cortex. Second, an elevatedmodulation fromMD toVP
compared to the reverse direction, favouring the view that MD is more
crucial in coordinating and stabilising activations rather than broad-
casting VP activity to DMN cortex. AC was chosen as a cortical DMN
region of interest as it has been shown to be a part of the DMN in rats,
monkeys and humans9,69,70, it has a strong reciprocal connection with the
MD of tree shrews32,71, and is tightly correlated with VP activity during
DMN states in the rat19,27. While a direct inhibitory projection fromVP to
MD is well documented72,73, the reverse projection appears to be poly-
synaptic; as we did not find evidence for a direct projection in the litera-
ture. Nevertheless, our findings and those of Harrison and colleagues
suggest a significant coordinated functional influence of MD and VP on
the DMN. The importance of thalamic influence on the DMN is sup-
ported by findings in patients suffering from mild cognitive impairment,
where white matter integrity from thalamus to DMN cortical areas is
compromised, along with reductions in Granger causal influence from
thalamus to these DMN regions74, This is consistent with emerging evi-
dence suggesting that thalamic circuits play a more important role than
previously acknowledged75, in structuring and coordinating cortical
activations. Furthermore, our results are compatible with the notion that

medial thalamic nuclei exert control over distributed cortical networks
and mediate alternating activations of the DMN and task-positive
networks22,76. The presence of gamma oscillations in MD in a DMN
context has not been documented to our knowledge. However, there is
some evidence compatible with this idea. For example, walking on a
treadmill, which we consider as a potential DMN behaviour, as it is highly
repetitive and unlike exploration or regular locomotion does not require
attention to the environment, elicits gamma oscillations in MD77. More
generally, current thinking about the MD thalamus revolves around the
notion of cortical network regulation78, compatible with a role in
the DMN.

In addition to the regular gamma-band effects (40–60 Hz), we also
document state-dependent changes in thehigh-gamma (60–150Hz)band
that are largely consistentwith the regular frequency gammabandbut that
were distributed in nature, and lacked a specific peak frequency. We did
find that high gamma tended to be more pronounced in subcortical brain
regions MD and VP rather than in cortical brain regions. Not much has
been reported about high gamma in the subcortical regions we investi-
gated here, but high gamma has been observed in visual cortex where it is
known to be more closely related to spiking activity than regular gamma
activity79,80. A closer connection of high gamma to local spiking activity is
indeed compatible with our own observation that no long-range Granger
causalitymodulations amongDMNnodes reached statistical significance.
Future studies incorporating the recording of spiking activity in cortical
and subcortical DMN structures and their relation to the different
gamma-band activations are needed to confirm this idea and to reveal in
more detail the nature of information flow within the DMN. We also
analysed delta oscillatory activity (0.5–4 Hz), and these were, as expected,
most pronounced in AC cortex. Since our behavioural scoring was related
to sleeping posture in the present study, we had no way of distinguishing
different sleep states during the epochs that tree shrews spent in this
posture. Examining AC delta in more detail, confirmed that in a subset of
these epochs tree shrew were engaged in slow-wave sleep, whereas other
epochs might correspond to REM sleep or another wakeful or drowsy
states.We have reported details of overnight sleep brain activity dynamics
in tree shrews previously44, and focus here on the various activities that
occur during wakefulness. Nevertheless, our findings show that our ani-
mals in the housing facility do spend a significant fraction of the day
engaged in slow-wave sleep, in contrast to wild tree shrews that are almost
continuously engaged in foraging behaviours when they leave their nest
during daytime81. Finally, we document a striking relationship between
the amplitude of gamma oscillations and the phase of local delta oscilla-
tions at the different DMN sites. While during sleeping posture, cross-
frequency coupling strength and preferred angle were similar across brain
sites, we found significant differences during wakeful behaviours in terms
of coupling strength and phase preference, such that VP gamma occurred
early in the delta cycle, followed by MD and AC late in the cycle. Cross-
frequency coupling has been previously observed in cortical and sub-
cortical brain circuits82, and it is thought to organise and structure
information flow and inter-site communication between distant brain
structures.

Our study is part of a rapidly advancing literature studying brain
activities in freely moving animals in conjunction with pose estimation,
which promises to deliver unprecedented insights into neural mechanisms
underlying physiological and cognitive functions83. The novel algorithms
based on residual neural networks are useful and can be adapted to a wide
range of tasks ranging from high-resolution tracking of limb kinematics to
tracking of animal position in cluttered environments45,84. Our application
falls into the latter category and is distinct fromwork in rodents in that tree
shrews navigate, often at high speed, in a large and complex three-
dimensional home cage environment containing multiple enrichment ele-
ments, where the animal is frequently partially occluded.On the otherhand,
rodent work typically involves monitoring in much smaller enclosures that
often do not contain substantial three-dimensional structure47. Our setup
involves a single wide-angle camera mounted in the centre of the cage
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ceiling, such that we obtain only video material of a limited resolution,
particularly when the animal is on the cage floor. For this reason, we
employed pose estimation with relatively low spatial and temporal resolu-
tion and combined the video-based estimates with accelerometer data
available from theNeurologger device85,86 that was also for recording neural
activations.Our study thus combined video-based and accelerometer-based
information regarding tree shrew behavioural state, which proved very
useful as the two types of sensor data provide complementary information.
While a variety of tools are becoming available for classifying behavioural
state based on pose48,49, we used a simple hiddenMarkov model (HMM) to
combine the two types of available sensor data in our application. This
approach was successful in terms of reliable performance on our datasets in
assigning behaviours into the three groups of sleeping posture, DMN-
associated, and exploration/locomotion. For classification among beha-
viours within the groups, we did resort to manual scoring, but this process
was much facilitated by the segmentation done in the pose estimation
algorithm. Overall, our experience suggests that the new algorithms do
permit the discovery of functional relationships between brain activations
andbehaviour, but good results are obtainedonlywith substantial effort and
expertise. We feel that cooperation across laboratories will be key in the
future to develop robustmethods of behavioural classification for particular
species and experimental settings.

Methods
The local ethical committee on animal experimentation (canton of Fri-
bourg), approved all experimental procedures.

Animals
Three adult tree shrews,T. belangeri, of either sexwerehousedunder a 13/11
LD cycle in a 3-m3 cage with branches, some enrichment elements, and ad
libitum access of food and water. The cage was connected to a nest box
with a tube.

Surgical procedures
Animals first received i.m. injections of Alfaxan (40mg/kg) to induce
anaesthesia and Atropine (0.08mg/kg) to prevent secretions. Animals were
then intubated using a modified otoscope (Bebird, Alhambra, CA), venti-
latedat 100bpm(SmallAnimalVentilator,HarvardApparatus,Cambridge,
MA), and placed in a stereotactic frame (David Kopf Instruments Tujunga,
CA). Anaesthesia was maintained with isoflurane (1–3%) in pure oxygen,
and end tidal CO2 was monitored (Physiosuite, Kent Scientific Torrington
CT) and maintained at ~4%. Lidocaine (0.5 ml 1%) was injected near the
incision site, a midline incision was made and the skull was exposed. Three
1.5mm stainless-steel bone screws (WPI Hertfordshire, UK) were
implantedwith two located above the cerebellumas a reference and ground.
Burr holes were drilled, and epoxy coated tungsten electrodes (FHC Bow-
doinME) with a tip resistance ~150 kΩwere lowered to the recording sites:
Ventral pallidum (AP 7.6mm, ML 3.0mm, DV −7.8mm), anterior cin-
gulate cortex (AP 11.1mm, ML 0.8mm, DV −1.5mm) mediodorsal tha-
lamus (AP 4.9mm, ML 1.0mm, DV −5.4 mm) and primary visual cortex
(AP 2.0mm, ML 1.4mm, DV −1.0mm). All coordinates are from the
interaural line. Electrodeswere fixed to the skull with super glue (LOCTITE,
Westlake OH) and Paladur dental cement (Kulzur Inc. Hanau Germany).
Electrodeswerewired to a socket connector, and the connectorwas attached
to the skull with dental acrylic. The incision was closed about the connector
with sutures, and the animal was allowed to recover for at least one week
prior to testing.

Data acquisition
LFP and accelerometer datawere collected using awireless battery-powered
data logger (Neurologger 2A, Zürich Switzerland). Additionally an infrared
receiver on theneurologgerwasused for aligning theLFP and accelerometer
data with video recordings. All channels of neural signals and accelerometer
data were digitised at 400 Hz and no further filtering was performed on the
LFP data.

Home cage recording
Video recordings of the animals in their home cage were made using a
wide field, 103° × 58°, CMOS camera (DS-2CD2143G0-IS, HIKVISION,
Hangzhou China) mounted on top of the cage. After connecting the
Neurologger, tree shrews were initially kept in their nest box for 10min
in order to acclimate to the Neurologger device. Home cage recordings
typically lasted for 5–6 h, between 9:00 and 18:00 during the animals’
perspective daytime.

DeepLabCut tracking
DeepLabCut (DLC)46,84 was used track the animal’s location in the home
cage. First, videos were pre-processed by cropping appropriately and
downsampling to 2 fps, and then cut into 20-min segments. Themodel was
trained for 500,000 iterations after manually labelling 50 frames from each
video segment. For each frame, we labelled the nose and neck. The output
consisted of bodypart coordinates in x, y coordinates and the corresponding
likelihood estimate, using the samemodel to analyse all the video segments
from the same animal. Inmost circumstances, DLC can accurately track the
tree shrews in most of the frames. For those videos with obvious missing
frames, an additional 50 frames were hand-labelled, and the network was
retrained with additional 200,000 iterations.

Preprocessing and spectral analysis
We partitioned the LFP data into 0.5-s epochs for further analysis. Power
spectra were calculated by fast Fourier transforms (FFT).We calculated the
band power by calculating the mean value of the power spectrum between
40 and 60Hz (gamma band) and 60 and 150Hz (high-gamma band).

Hidden Markov model
We designed an HMM with three states to capture the three groups of
behavioural states detailed in the results, and four output symbols cor-
responding to High/High, High/Low, Low/High and Low/Low combi-
nations of ACL and DLC signal values based on preliminary observations
of our data. The thresholds between High and Low sensor values were
determined based on the median value of the signal across the recording
session. We used maximum likelihood estimation to find HMM state
transition and output symbol emission probabilities and the Viterbi
algorithm to compute the most probable state sequence given the esti-
mated parameters.

Granger causality
To test the information transfer between VP, AC, MD and V1 brain
regions, we used LFPs and a multivariate linear vector autoregressive
(VAR) model from Matlab Multivariate Granger Causality (MVGC)
toolbox87 for granger causality analyses. The maximum model order for
model order estimation was 20ms, and Akaike information criteria
(AIC) was used. The model parameter for the VARmodel estimation was
the locally weighted linear regression (LWR). We used F-testing with a
false discovery rate (Q < 0.05) for the pairwise conditional Granger
causality estimation. Kruskal–Wallis test was applied to determine the
significance between the information transfer directions. T test was
applied to compare the significance of Granger causality between the
DMN state and the exploration state.

Cross-frequency coupling
Cross-frequency coupling is estimated by accumulating the amplitude of
gamma for eachphase of thedelta cycle, i.e. phase-amplitude coupling. First,
the LFP is filtered into delta (0.5–4Hz) and gamma (40–60Hz) bands using
a Butterworth band pass filter. The delta-filtered data is then transformed
into a continuous series of phase angles using the Hilbert transform, while
the gamma-filtered data is transformed into a continuous series of gamma
amplitude values, also using the Hilbert transform. Finally for each point in
the vector of delta phases, we accumulate the corresponding gamma power
at that phase, resulting in the magnitude of gamma power for each phase of
the delta cycle.
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Statistical analyses reproducibility
Experiment details are provided in the text and “Methods”. All the statistical
analyseswereperformed inMatlab. In comparisonof likelihood inFig. 1, we
applied the non-parametric Wilcoxon signed-rank test as the data did not
follow a normal distribution. For the same reason, to compare granger
causality values within VP, AC and MD, we used Kruskal–Wallis test
(Fig. 4g). For normally distributed data with equal variance, t test or
ANOVA tests were applied according to group number. In Fig. 6e, we
applied the Warren–Sarle test in order to assess the bimodality of the delta
band amplitude distribution for sleep posture epochs. In Fig. 7g, we used the
CircularMedian test (MatlabCircStatToolbox) for anon-parametricmulti-
sample test of equal medians for circular data.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Received: 30 January 2024; Accepted: 2 July 2024;
Published online: 23 July 2024
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