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Erroneous predictive coding across brain
hierarchies in a non-human primate model
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In autism spectrum disorder (ASD), atypical sensory experiences are often associated with
irregularities in predictive coding, which proposes that the brain creates hierarchical sensory models
via a bidirectional process of predictions and prediction errors. However, it remains unclear how these
irregularities manifest across different functional hierarchies in the brain. To address this, we study a
marmoset model of ASD induced by valproic acid (VPA) treatment. We record high-density
electrocorticography (ECoG) during an auditory task with two layers of temporal control, and applied a
quantitative model to quantify the integrity of predictive coding across two distinct hierarchies. Our
results demonstrate a persistent pattern of sensory hypersensitivity and unstable predictions across
two brain hierarchies in VPA-treated animals, and reveal the associated spatio-spectro-temporal
neural signatures. Despite the regular occurrence of imprecise predictions in VPA-treated animals, we
observe diverse configurations of underestimation or overestimation of sensory regularities within the
hierarchies. Our results demonstrate the coexistence of the two primary Bayesian accounts of ASD:
overly-precise sensory observations and weak prior beliefs, and offer a potential multi-layered
biomarker for ASD, which could enhance our understanding of its diverse symptoms.

Autism spectrum disorder (ASD) is a neurodevelopmental condition
that includes challenges in social interaction and communication,
repetitive behaviors, sensory hypo/hypersensitivity, and difficulties
adapting to change. A leading mechanistic investigation of ASD focuses
on its atypical sensory perception, such as hypersensitivities to light or
sound, which is reported in around 90% of autistic adults'. Several the-
oretical models have been proposed to explain these sensory atypicalities.
The enhanced perceptual functioning theory’ and the weak central
coherence theory’ suggest that individuals with ASD have a bias toward
locally-oriented processing, attending to details rather than global pat-
terns. The temporal binding theory” suggests that individuals with ASD
integrate sensory information over a prolonged time window, leading to a
blurred or smeared perception of stimuli. The intense world theory’
posits that excessive functioning of neural circuits causes heightened low-
level sensory perception in ASD, leading to an overwhelming and frag-
mented sensory experience of the world. While these frameworks

significantly shape our understanding of ASD, they do not directly cor-
respond to the underlying neural mechanisms.

In this study, we investigate ASD using the mechanistic framework of
Bayesian inference®, as its neural correlates are defined and accessible™.
Through the Bayesian lens, sensory atypicalities in ASD could arise from
various factors: overly precise sensory observations'*"’, weak prior
beliefs”", slow updates of these beliefs', and imbalanced control of
precision'*'*'%, and overestimation of environmental volatility'’. However,
the corresponding behavioral evidence are inconsistent and conflicting. For
example, prior beliefs in ASD have been shown to be both attenuated'®'” and
intact'***', and their variability has been reported to be both increased” and
unaffected'". To directly test these Bayesian accounts, it is critical to identify
their underlying neural implementations in ASD, which remains unknown.

The most promising implementation of Bayesian inference is pre-
dictive coding, which proposes that the brain creates internal models of the
sensory world by a hierarchical and bidirectional cascade of large-scale

"International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 113-0033 Tokyo, Japan. ?Institute of Innovative Research, Tokyo
Institute of Technology, 226-8503 Tokyo, Japan. *RIKEN Center for Brain Science, 351-0198 Wako, Japan. ‘Department of Ultrastructural Research, National
Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 187-8502 Tokyo, Japan. *Department of Preventive Intervention for Psychiatric
Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), 187-8553 Tokyo, Japan. < e-mail: zenas.c.chao@gmail.com;
mskkomatsu@gmail.com; nichinohe72@gmail.com

Communications Biology | (2024)7:851 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06545-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06545-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06545-3&domain=pdf
http://orcid.org/0000-0001-9402-0851
http://orcid.org/0000-0001-9402-0851
http://orcid.org/0000-0001-9402-0851
http://orcid.org/0000-0001-9402-0851
http://orcid.org/0000-0001-9402-0851
http://orcid.org/0000-0003-4464-4484
http://orcid.org/0000-0003-4464-4484
http://orcid.org/0000-0003-4464-4484
http://orcid.org/0000-0003-4464-4484
http://orcid.org/0000-0003-4464-4484
http://orcid.org/0000-0002-8323-4552
http://orcid.org/0000-0002-8323-4552
http://orcid.org/0000-0002-8323-4552
http://orcid.org/0000-0002-8323-4552
http://orcid.org/0000-0002-8323-4552
mailto:zenas.c.chao@gmail.com
mailto:mskkomatsu@gmail.com
mailto:nichinohe72@gmail.com

https://doi.org/10.1038/s42003-024-06545-3

Article

cortical signaling in order to minimize overall prediction errors™ . Speci-

fically, higher-level cortical areas predict inputs from lower-level areas
through top-down connections, and prediction-error signals are generated
to update the predictions through bottom-up connections when the pre-
dicted and actual sensory inputs differ. The theory has been applied to
explain how atypical internal models are created in ASD”"**. Experimen-
tally, prediction-error signals have been probed by surprise responses when
expected stimuli are replaced or omitted. A key neural indicator of pre-
diction error is the mismatch negativity (MMN), an event-related potential
triggered by unexpected oddball stimuli, has been shown to vary in
amplitude between individuals with ASD and typically developing
individuals”~'". However, meta-analyses on these reports revealed no con-
sistent trend in these differences™. Furthermore, the MMN amplitude can
be influenced by statistical regularities over longer timescales™*, with this
modulation found to be reduced in ASD™. This suggests that the interaction
of prediction errors across hierarchical levels may be disrupted in ASD.

We hypothesize that the heterogeneous behavioral and neural evidence
is caused by a diverse combination of erroneous predictive-coding com-
putations occurring across cortical hierarchies, thus cannot be identified by
a single neural representation where prediction-error signals across all
hierarchies are mixed together. To test this hypothesis, we extract
prediction-error signals across hierarchies and examine their atypical
characteristics using a marmoset model of ASD™". This model was created by
administering valproic acid (VPA) during pregnancy, a well-known risk
factor for ASD. Maternal exposure to VPA induces ASD-like behavioral
abnormalities and stress responses in marmoset offspring”**. Importantly,
the transcriptomic profile of the cerebral cortex in VPA-treated marmosets
—reflecting the interactions between genetic and environmental factors—
shows strong correlations with post-mortem brain transcriptomes from
human ASD populations™. This correlation has not been observed in any
rodent models previously used. Furthermore, the observed similarity in
dysregulated neuronal gene networks between VP A-treated marmosets and
humans with ASD suggests that this animal model could accurately
represent major ASD subtypes, whose existence has been proposed due to
weak interactions within individual gene networks™*.

To assess multi-level predictive coding, we use a local-global auditory
oddball paradigm, where the subject passively listens to tone sequences with
the temporal regularities established at two hierarchical levels". This
paradigm allowed a separation of hierarchical prediction-error signals™**~*.
To acquire large-scale neuronal dynamics with millisecond resolution, we
use high-density hemisphere-wide electrocorticography (ECoG)”. To
provide a mechanistic quantification of erroneous predictive coding, we use
a hierarchical predictive-coding model that was previously used to disen-
tangle prediction and prediction-error signals across hierarchies and
quantify the integrity of prediction at each hierarchy™.

Our results reveal sensory hypersensitivity and highly-variable pre-
dictions in the VPA-treated animals, which confirms the simultaneous

presence of the two primary Bayesian accounts of ASD: overly-precise
sensory observations and weak prior beliefs. Furthermore, we find distinct
patterns of underestimation and/or overestimation of the sensory regula-
rities at different hierarchies in the VPA-treated animals, supporting our
hypothesis of erroneous hierarchical predictions as a source of ASD het-
erogeneity. Our findings map computational theories to their neural
implementations and provide a potential neural marker for ASD that is
multi-level, high-resolution, and mechanistic.

Results

Local-global auditory oddball paradigm to establish hierarchical
regularities

Five marmosets, identified as Ji, Rc, Yo, Ca, and Rm, were used in this study.
Among those, Ca and Rm were prenatally exposed to VPA (see Methods).
During the task, subjects were seated with the head fixed and passively
listened to a series of short tone sequences based on the local-global auditory
oddball paradigm (Fig. 1a). Cortical activity was recorded with a 96-channel
ECoG array covering nearly an entire cortical hemisphere (left hemisphere
for Ji, Ca, and Rm, and right hemisphere for Rc and Yo) (Fig. 1b). For Rm, 5
channels in the orbital frontal area and 3 channels in the temporal area were
surgical removed during the implantation due to tissue adhesions (88
channels remained).

During each trial, a series of 5 tones were delivered (Fig. 1a). The
first 4 tones were identical, either low-pitched (tone A) or high-
pitched (tone B) (jointly denoted as the standard tone x), and the fifth
tone could be either the same (tone x) or different (jointly denoted as
the deviant tone y). This resulted in two types of sequences: xx
sequence (AAAAA or BBBBB) and xy sequence (AAAAB or BBBBA).
Tone sequences were delivered in blocks of 100 trials, where two
types of blocks were used: xx or xy blocks. In the xx block, 20 xx
sequences were initially delivered as a standard sequence to habituate
the subject; then there was a random mixture of 64 xx sequences (the
trial type is denoted by xx|xx: xx sequence in xx block) randomly
mixed with 16 xy sequences (xy|xx: Xy sequence in xx block). Con-
versely, in the xy block, 20 xy sequences were initially delivered as a
standard sequence, followed by a random mixture of 64 xy sequences
(xy|xy: xy sequence in xy block) and 16 xx sequences (xx|xy: xx
sequence in xy block).

This paradigm was designed to establish two levels of temporal
regularity. A local regularity is established within a trial by the repe-
tition of the first 4 tones, which is either followed or violated by the
fifth tone. A global regularity is established by habituating the subject
to a 5-tone sequence, which is either followed or violated by sub-
sequent sequences. Local and global regularities are orthogonally
varied, yielding four trials types: local and global standards (xx|xx),
local and global deviants (xy|xx), local deviant but global standard (xy|
xy), and local standard but global deviant (xx|xy).

Fig. 1 | Local-global paradigm and ECoG layouts. a
a The local-global paradigm and the tone and
sequence designs. b The layout of the 96-channel
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Fig. 2 | Source signals and deviant responses. a Examples of ICs. For each IC, the
absolute spatial coefficients were normalized by the maximal value across electrodes,
and shown on the top panel. The time courses of all the trials are shown in the second
panel. Time zero represents the onset of the first tone, and the vertical black lines
indicate the onsets of the 5 tones. The corresponding mean (blue) and standard error
of the mean (red) across all trials are shown in the bottom panel. b The deviant

responses from IC 58 in Ji. The spatial contribution of the IC is shown on the left. The
ERSP for each trial type and the corresponding contrasts are shown. The black
contours indicate the deviant response with a significant difference in ERSP in
contrasts xy|xx - xx|xx and xy|xy - xx|xy. ¢ Example of a non-significant IC. The
same representation is used as in b.

Deviant responses to local and global regularity violations

To examine the effect of VPA on how the local and global regularities were
learned and represented in the brain, we evaluated the deviant responses in
the brain when the regularities were violated. We compared ECoG signals
from the xy and xx sequences in both the xx and xy blocks, i.e. xy|xx - xx|xx
and xy|xy - xx|xy. By contrasting xy|xx and xx|xx trials, we can isolate
deviant responses that arise when both local and global regularities are
violated, i.e. a local deviant response that is also unpredicted by the global
rule. Similarly, by contrasting xy|xy and xx|xy trials, we can capture the local
deviant response that is predicted by the global rule.

To analyze the large-scale ECoG data, we first identified signal sources
over the 96 electrodes (or 88 in Rm) by independent component analysis
(ICA) (see Methods). Each independent component (IC) represented a
cortical area with statistically-independent source signals (see examples of
ICs in Fig. 2a). ICA could extract the reference signal (e.g. IC 4 in Rg, see
Fig. 2a), artifacts introduced in different recording sessions (e.g. IC 3 in Rm),
and artifacts introduced by the recording system (e.g. IC 33 in Yo). More-
over, ICA could help identify spatially-overlapped signal sources (e.g. ICs 13
and 33 in Ca). Therefore, our further analysis was performed based on
individual ICs, instead of individual electrodes. See all ICs for each subject
(96 for Ji, 92 for Rc, 88 for Yo, 90 for Ca, and 84 for Rm) in Fig. S1. Note that
the numbers of ICs were different across subjects due to different numbers
of bad channels were removed (see Methods).

The spatio-spectro-temporal dynamics of ECoG signals were
quantified by the event-related spectral perturbation (ERSP) measured
in decibel (dB) (with the baseline from 300 to 0 ms before the onset of the
first tone, see more details in Methods). Each ERSP represents the in-
trial cortical dynamics from an IC, during the time from 300 ms before

the first tone to 900 ms after the fifth tone (a total of 600 time bins), across
the frequencies between 0 and 150 Hz (a total of 150 frequency bins).
Examples of ERSP for all four trial types and their contrasts are shown in
Fig. 2b for IC 58 in Ji (located in the anterior temporal lobe) and in Fig. 2¢
for IC 65 in Ji (located in the dorsal prefrontal cortex). A deviant response
was defined as a significant difference in ERSP, detected by a nonpara-
metric cluster-based permutation test (a=0.05 corrected for multiple
comparisons, two-sided, see Methods). An IC that showed deviant
responses in Xy|xx — xx|xx or xy|xy - xx|xy was identified as a significant IC.
For example, IC 58 in Ji was a significant IC with deviant responses in both
contrasts (Fig. 2b), while IC 65 in Ji was not (Fig. 2c). The numbers of
significant ICs identified in Ji, Rc, Yo, Ca, and Rm were 5, 3, 4, 4, and 5,
respectively. All the significant ICs are shown in Fig. 3. Also, see the deviant
responses for all ICs in Fig. S1.

Univariate analysis on deviant responses

To examine significant ICs, we first performed an univariate analysis to
quantify their spatial, temporal, and spectral characteristics. To visualize the
spatial distribution of each significant IC, its spatial coefficients were nor-
malized to values between 0 and 1 by calculating their absolute values and
then dividing them by the maximum. For each subject, the normalized
spatial coefficients were then averaged across all significant ICs to obtain a
joint topographic map (Fig. 4a). From the joint maps, we evaluated the
relative contributions of three cortical areas: the posterior temporal cortex
(pTC), the anterior temporal cortex (aTC), and the anterior prefrontal
cortex (aPFC) (Fig. 4b). The brain areas were identified based on the
Marmoset 3D brain atlas Brain/MINDS NA216" (see Methods). For each
area, the relative contribution was quantified by the sum of the spatial
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Fig. 3 | Significant ICs from all subjects. For each subject, all the significant ICs are labeled and shown with their absolute spatial contributions and the corresponding

deviant responses in contrasts xy|xx - xx|xx and xy|xy - xx|xy (black contours).

distribution in the area divided by the total spatial distribution across all
channels. For all subjects except Rm, the relative contributions from strong
to weak were pTC >aTC > aPFC. For Rm, the contribution in aPFC was
22.0%, which was 2.6 times stronger the other subjects (8.6 +2.0%, n=4
subjects).

To visualize the temporal and spectral distributions of significant ICs in
each subject, absolute values of the deviant responses were averaged across
all significant ICs to obtain a joint time-frequency representation (Fig. 4c).
By averaging the joint deviant response across frequency bins, the peak
responses after the last tone were found with comparable latencies of 67, 57,
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Fig. 4 | Univariate analysis of the significant ICs. a The joint topographic map of
deviant responses for each subject. The electrodes on pTC, aTC, and aPFC are
labeled with black star, plus, and cross signs, respectively. b The relative contribu-
tions of pTC, aTC, and aPFC for each subject. ¢ The joint time-frequency repre-
sentation of deviant responses for each subject. d The temporal profile of deviant
responses. The peak response is indicated by a vertical dashed line and the latency is
indicated. e The spectral profile of deviant responses. The average frequency is

indicated by a vertical dashed line and the value is indicated. f The maximal and
minimal sizes of the deviant responses for each subject. The contrasts xy|xx - xx|xx
and xy|xy - xx|xy are indicated by circles and squares, respectively. The color scheme
is shared in panels b, d, e, and f. g The negative deviant responses in xy|xy - xx|xy in
Rm for three significant ICs (21, 52, and 53, as in Fig. 3). The ERSP in xy|xy and xx|xy
are also shown.
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80, 70, and 80 ms for Ji, Rc, Yo, Ca, and Rm, respectively (Fig. 4d). By
averaging the joint deviant response across time points, the average fre-
quencies were found in the high gamma band at 92, 122, 77,and 75 Hz for Ji,
Rc, Yo, and Ca, respectively, and in the low gamma band at 37 Hz for
Rm (Fig. 4e).

We further evaluated the size of the deviant responses by measuring the
maximal and minimal contrast values in the deviant responses across sig-
nificant ICs (Fig. 4f). For all subjects, the maximal contrast values for
contrast xy|xx — xx|xx were positive and greater than the maximal contrast
values for xy|xy - xx|xy. This was consistent with the view that a greater
surprise was evoked when both local and global regularities were violated
(captured by xy|xx - xx|xx), while a smaller surprise was evoked when the
local deviant was predicted by the global rule (captured by xy|xy - xx|xy).
Furthermore, VPA-treated Ca and Rm showed stronger deviant responses
than the unexposed Ji, Rc,and Yo. On the other hand, the minimal contrasts
values were found to be positive, except in Rm where negative deviant
responses were found in xy|xy - xx|xy. This is also shown in Fig. 3, where a
power decrease in the beta/gamma bands (20 ~ 60 Hz) was observed in Rm
for ICs 21, 52, and 53, particularly in xy|xy — xx|xy. To further examine the
ERSP for those ICs in Rm, stronger responses to the last x tone in xx|xy were
observed (Fig. 4g). This indicated a strong surprise toward the global deviant
(last tone x in the xy sequence), and suggested that Rm was more sensitive to
the violation of the global rule.

The univariate analysis revealed some abnormal characteristics in
the deviant responses in Ca and Rm. In summary: (1) VPA-treated Ca
and Rm showed stronger deviant responses than the unexposed, sug-
gesting their hypersensitivity to deviant stimuli; (2) hyperactivity in the
prefrontal cortex was found in Rm, not Ca, which could link to its
hypersensitivity to the global regularity; (3) high-gamma deviant
responses, which were thought to represent bottom-up prediction errors,
were absent in Rm.

A hierarchical predictive coding model for the local-global
paradigm

To further investigate how sensory sensitivity and erroneous predictions
could lead to the observed abnormal deviant responses, we used a model-
fitting analysis based on a quantitative model of hierarchical predictive
coding™*. The quantitative model we used has previously been shown to
effectively explain the brain responses during the local-global paradigm with
a goodness-of-fit closed to the optimal data-driven decomposition, allowing
for mechanistic evaluations of sensory sensitivity and prediction strengths at
both local and global levels*.

The model describes the interactions between prediction and
prediction-error signals during the last tone of a sequence after both local
and global regularities are learned (see Fig. 5a). It consists of three hier-
archical levels (Level S, Level 1, and Level 2) and two streams (x stream and y
stream). Level S is the sensory level that receives thalamic input, which was a
value between 0 and 1, Level 1 learns and encodes the local regularity, which
is the tone-to-tone transition probability (TP), and Level 2 learns and
encodes the global regularity, which is the sequence probability (SP). The x
and y streams process the tone x and y, respectively.

The predictive coding operations across hierarchies in two streams are
illustrated in Fig. 5a. In the x stream, Level S receives a sensory input
(assumed to have a strength of 1) and a prediction signal (P1,) from Level 1,
and sends a prediction-error signal (PE1,) to back Level 1. Moving up, Level
1 receives the prediction-error signal from Level S and a prediction signal
from Level 2 (P2,), and sends a prediction signal to Level S and a prediction-
error signal (PE2,) to Level 2. Lastly, Level 2 receives the prediction-error
signal from Level 1, and sends a prediction signal to Level 1. In a manner
comparable to the x stream, the y stream also features prediction signals P1
and P2, along with prediction-error signals PE1, and PE2,.

Based on the model, the strengths of the prediction signals (P1,, P2,,
P1, and PZy) are to minimize the mean-squared error received at that level,
and can be determined once the transition and sequence probabilities are
known. Once the strengths of the prediction signals are determined, the

y

local prediction error (PE1 = PEI, + PE1,) and the global prediction error
(PE2 = PE2, 4 PE2)) in the deviant responses evoked by the last tone can be
calculated by subtracting the model values for xy|xx - xx|xx and xy|xy - xx|
xy. For an in-depth understanding of the model and its calculation, see the
Supplementary Information and the corresponding Figure S2.

Models with erroneous sensory sensitivity and hierarchical
predictions

In the model, the local and global prediction errors are obtained under the
optimal predictions, where the mean-squared prediction errors are mini-
mized at each level. To further evaluate the potential erroneous sensory
sensitivity and hierarchical predictions for the VPA-exposed, we further
added some tunings to the model across different levels (Fig. 5b).

At Level S, a scaling factor s, was added to the sensory input in the x
stream to account for the sensory sensitivity or adaptation for the repetitive
tone x (left panel). The value of s, was between 0 and 1, where sp=1
represents no sensory adaptation or no diminished responses to repeated
exposure of tones. For the xy sequence, since tone y does not repeat, adaption
does not occur in the y stream (right panel). At Levels 1 and 2, we added
scaling factors s; and s; to the first-level predictions (PI, and P1,) and the
second-level predictions (P2, and P2,), respectively, to account for imperfect
predictions. When s; = 1 and s, = 1, the predictions are optimal. Whens; < 1
or s, < 1, the prediction underreacts to the input (sensory input or first-level
prediction error, respectively), i.e. “hypo-prediction”, and is insufficient to
cancel it out. For example, if s; = 0, there will be no first level prediction, and
the prediction errors continue to propagate to Level 2 without reducing.
When s;>1 or s,> 1, the prediction overreacts to the input, i.e. “hyper-
prediction”, where the corresponding transition or sequence probabilities
are overestimated and additional errors are created. Note that s; and s, were
applied to both the x and y streams, since erroneous estimation of transition
or sequence probabilities could occur at both streams.

Model-fitting for optimal decomposition of deviant responses
Now we have a predictive coding model tailored to the local-global para-
digm, characterized by only three parameters: sy, s;, and s,. This model was
then utilized to determine which parameter combination most accurately
accounts for the deviant responses observed in ECoG data. To achieve this,
we first pooled all deviant responses (as shown in Fig. 3) to create a tensor
with three dimensions: Contrast, IC, and Time-Frequency for the functional,
anatomical, dynamical aspects of the data, respectively. For each subject, the
dimensionality of the tensor was 2 (xy|xx - xx|xx and xy|xy - xx|xy) by 3 ~ 5
(the number of significant ICs) by 90,000 (600 time points and 150 fre-
quency bins).

We then factorized the 3D tensor into PE1 and PE2 components by
performing parallel factor analysis (PARAFAC)®, setting the first
dimension according to the model-derived values (see Methods). This
model-fitting analysis was performed for 9261 (=21 x 21 x 21) models,
each with a unique combination of the scaling factors s, (21 values
between 0 and 1), s; (21 values between 0 and 2), and s, (21 values
between 0 and 2). For each model, the goodness-of-fit was evaluated by
the residual sum of squares (RSS) and core consistency’'. The best-fitting
model was determined as the one with the smallest RSS and a core
consistency above 80%.

The parameters of the best-fitting models for all subjects are shown in
Fig. 5¢. The best-fitting models for the unexposed animals (Ji, Rc, and Yo)
were found with similar scaling factors: s, =0.35 ~ 0.45, s; =0.8 ~ 0.9, and
52=0.7~0.8. For Ca, the best-fitting model was found when s,=0.75,
s;=0.3,and s, = 0.2. This suggested a hyper sensory sensitivity (s, was twice
the size as for the unexposed) and hypo-predictions at both the local and
global levels. On the other hand, the best-fitting model for Rm was found
when s,=0.95, s;=1.0, and s,=1.72. This indicated that Rm shared a
similar hyper sensory sensitivity as in Ca, but with a normal local prediction
and a hyper global prediction.

In summary, the model-fitting analysis revealed potential mechanisms
that cannot be observed by univariate analysis, and indicated that (1)
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Fig. 5 | A quantitative predictive coding model and the optimal parameters for
model-fitting. a The proposed neural operations for predictive coding across

streams and hierarchies. b Model tunings with sy, s;, and s,. A decreased response
(scaled by sy) to repeated tone x during the xx sequence (left), and a fresh response to
tone y during the xy sequence (right) (the last tones are shown in red). The corre-
sponding models are also shown, where the sensory input to the x stream is scaled by

s, and P1 and P2 are scaled by s;, and s,, respectively. ¢ The model-fitting results for
each subject are shown in each column, where the optimal parameters are indicated.
For each sy, the minimal RSS across different combinations s; and s, is shown in the
top panel. The minimal RSS is indicated by a red circle. The combination of s; and s,
under this minimum is indicated by a red circle in the bottom panel. Models with a
fitting consistency >80% are indicated by red dots. The color bar represents RSS.

predictions in the unexposed animals were close to optimal at both hier-
archical levels, (2) hyper sensory sensitivity was found in both VPA-treated
animals, and (3) different types of erroneous hierarchical predictions were
observed between VPA-treated animals.

Prediction-error signals extracted from best-fitting models
Next we visualized the spatial, spectral, and temporal signal patterns of the
PE1 and PE2 components extracted from the best-fitting models. These
components were visualized by their composition in the three tensor
dimensions. The first dimension showed how much PE1 and PE2 con-
tributed to the deviant responses in the two contrasts (Fig. 6a), which was
determined by the model and used for the model-fitting. The model values
were different across subjects, since different optimal parameters were
obtained.

The second dimension showed the contribution of each significant IC
to PE1 and PE2 (Fig. 6b). For example, in Ji, only ICs 58, 69, and 94
contributed to PE1, and IC 69 contributed the most. To further visualize
these contributions on a brain map, the normalized spatial coefficients of
significant ICs (as in Fig. 3) were combined based on their contributions (see
more details in Methods). The resulting brain maps are shown in Fig. 6b.
Overlaps between PE1 and PE2 were observed for most subjects, but pri-
marily PE1 appeared in the posterior temporal cortex and PE2 appeared in

the anterior temporal cortex and the anterior prefrontal cortex. This pro-
pagation of prediction errors from the temporal cortex to the prefrontal
cortex is consistent with previous evidence from both monkey and human
studies using the local-global paradigm or its variations™*'™*.

The third dimension showed the in-trial spectro-temporal dynamics
for PE1 and PE2 (Fig. 6¢). To examine the temporal dynamics of PE1 and
PE2, we averaged the time-frequency representation in Fig. 6¢ across all
frequency bins (Fig. 6d). PE1 peaked at 47, 53, 80, 67, and 37ms after the last
tone, while PE2 peaked later at 93, 93, 133, 100, and 103m:s for Ji, Re, Yo, Ca,
and Rm, respectively. To examine the spectral profiles of the PE1 and PE2
components, we measured their maximal activation at each frequency bin
across all time bins (Fig. 6e). The average frequencies were 97, 112, 81, 95,
and 30 Hz for PE1, and 100, 121, 90, 64, and 41 Hz for PE2 in Ji, R¢, Yo, Ca,
and Rm, respectively. The high-gamma components were absent in Rm, as
described in the univariate analysis (Fig. 4e).

Response variability underlying deviant responses

For Rm, the absence of high-gamma components in the deviant responses
(as in Fig. 6e) could result from two possibilities: (1) the sizes of prediction-
error signals carried in the high-gamma band were comparable between the
xx and xy sequences, or (2) the sizes of prediction-error signals were dif-
ferent between the xx and xy sequences but the trial-to-trial variability was
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too high to obtain statistical significance. The former suggests that no
prediction was established, and the latter suggests that the prediction was
highly variable over trials.

To test these two possibilities, we quantified the sizes of PE1 and PE2 on
a trial-by-trial basis by projecting the single-trial EEG responses onto the
spatio-spectro-temporal structures of PE1 and PE2. First, we obtained the

spectro-temporal structures averaged across subjects, with a focus on the
high-gamma band (indicated by red contours in Fig. 7a). Then, we mapped
the ERSP of each significant IC to these averaged structures, assigning
weights based on their contributions in the model-fitting process (as in
Fig. 6b) (see Methods for comprehensive details). As results, two projection
values were obtained for each trial, quantifying the presence of PE1 and PE2
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Fig. 7 | High signal variability in VPA-treated animals. a The spectro-temporal

structures of PE1 and PE2. The masks of the top 75% values in the high-gamma band
(>40 Hz) are indicated by red contours. b An example of the projection values during
100 trials of xy|xx in Ji. ¢ The probability distributions of the projection values for
PE1 (top row) and PE2 (bottom row) in each subject. The probability distribution for
each trial types are shown in different colors. Projection values across all trials are

indicated as gray crosses on the top. d The mean, standard deviation, and CV of the
projection values. The mean and standard deviation measured for each trial type are
labeled with different colors. The average values across all trial types are indicated by
black circles and squares for PE1 and PE2, respectively. CV calculated from the
average values are shown. The horizontal dashed line indicates the mean CV from
the unexposed animals (across PE1 and PE2).
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in the high-gamma responses. An example of the projection values over
trials is shown in Fig. 7b.

We quantified the probability distributions of the projection values for
PE1 and PE2 for each trial type and subject (Fig. 7c). Wider distributions
were found in the VPA-treated animals, suggesting that the predictions and
their subsequent prediction errors were highly-variable at both the local and
global levels. We further quantified the mean, standard deviation, and
coefficient of variance (CV, the standard deviation divided by the mean) of
the projection values (Fig. 7d). The mean values for both PE1 and PE2 were
higher in Ca and Rm when compared to the unexposed animals, with Ca
exhibiting higher mean values than Rm (Wilcoxon rank sum test, two-sided,
a = 0.05). The high mean values in Ca were consistent with the findings that
Ca had high sensory sensitivity and the subsequent high prediction errors
were not adequately explained away due to hypo-predictions.

The standard deviations for both PE1 and PE2 were higher in Ca and
Rm when compared to the unexposed animals (Wilcoxon rank sum test,
two-sided, a=0.05). In Rm, the high standard deviation with the com-
parable mean value led to high CV, which supported the second possibility
that the absence of the high-gamma components was resulted from highly-
variable predictions. In Ca, the high standard deviation was compensated by
the high mean value, which led to low CV and the significant high-gamma
components.

Sensitivity analysis on model parameters
The results shown in Figs. 5, 6, and 7 were obtained from the optimal models
selected based on the criterion of achieving a fitting consistency higher than
80%. Employing different criteria may result in a varied set of candidate
models, which in turn could identify alternative optimal models. Con-
sidering that a consistency between 80 to 90% is indicative of a robust
decomposition, and a consistency above 40% is viewed as somewhat
satisfactory’>”, we conducted a sensitivity analysis on the consistency
threshold. In this analysis, we varied the consistency threshold from 40% to
100% in 1% increments to determine the optimal parameters (s, s;, and s,),
resulting in a total of 61 optimal models. For each optimal model, we also
measured the signal variability (SV), which was the mean standard deviation
in the projection values (as in Fig. 7d).

For all optimal models, we plot SV against s, (Fig. 8a) and s; against s,
(Fig. 8b). For both SV and s, the unexposed group (Ji, Rc, and Yo) showed
significantly lower values compared to the VPA-treated group (Ca and Rm)
(Wilcoxon rank sum test, two-sided, a = 0.05) (see Fig. 8c). For s; and s, no
significant difference was found between the unexposed and the VPA-
treated groups (p-value =0.0743 and 1 for s; and s,, respectively). This
suggested that the VPA-treated group exhibited unstable predictions and
heightened sensory sensitivity, without consistent patterns of erroneous
local and global predictions relative to the unexposed group.

We conducted further comparisons between individual subjects (see
Fig. 8d). No significant differences were found among the unexposed ani-
mals for SV, s, s; and s, (Wilcoxon signed rank test, paired and two-sided,
a=0.05, Bonferroni multiple-comparison correction). Compared to the
unexposed animals, Ca showed significantly lower s; and s, values, whereas
Rm showed significantly higher s, values. This indicated that the VPA-
treated animals exhibited individual differences in their erroneous local and
global predictions.

Discussion

We combine a passive auditory paradigm with a quantitative model to extract
the neural signatures of hierarchical prediction-error signals, and evaluate
the integrity of predictive coding in VPA-treated animals. Through this
approach, we unveil both sensory hypersensitivity and unstable predictions in
VPA-treated animals. Notably, these fluctuating predictions present distinct
patterns of underestimation and/or overestimation of hierarchical sensory
regularities, potentially contributing to the diverse characteristics of ASD.
By linking computational theories with their neural underpinnings, our study
contributes to the foundation for potentially identifying a comprehensive,
multi-tiered, and mechanistic neural marker for ASD.

The hierarchical organization of prediction-error signals in
the auditory local-global paradigm has been examined in humans and
non-human primates™****. Utilizing both data-driven and model-
driven analyses to decompose predictive-coding signals that are not only
interdependent but also spatially and temporally overlapping, we have
identified the neural signatures of local and global prediction-error signals
in macaque ECoG" and human EEG®. The spatio-spectro-temporal
markers observed in both macaques and humans bear similarity to those
depicted in Fig. 6, showing prediction-error signals in high frequency
band ( >30 Hz) propagating from the auditory cortex to the frontal cortex
with a delay of ~50 m. This suggests a shared neural organization that
facilitates hierarchical predictive coding in both human and non-human
primates. Moreover, it indicates the potential applicability of our animal
model findings to human patients.

The local-global paradigm has been utilized to study atypical percep-
tion and emotion processing in ASD. In a study of adults with ASD, a
smaller MMN was found in the ASD group than in the typically developing
(TD) group™. Moreover, both groups demonstrated a reduced MMN when
the global rule could be anticipated, such as in the xy block, but this
reduction was more pronounced in the TD group than in the ASD group.
This implies weaker local and global predictions among individuals with
ASD. In a study with children (8 ~ 15 year old) with ASD, no significant
differences in MMN were found between ASD and TD groups, suggesting
that local prediction error was processed normally””. When manipulating
the global rule to establish various levels of expectation for local deviants,
children with ASD responded differently. There was a decrease in fronto-
cortical responses to sequences that were unexpected, whereas there was an
increase in late frontal activation in response to anticipated sequences. These
findings suggest that there may be abnormalities in global prediction within
the ASD population. In addition, individuals with ASD demonstrated
MMN in response to violations of local emotion regularity for both faces and
music, but their responses to global emotion regularity violations were
absent™. These results, derived from a group level analysis, suggest a
potential deficiency in global prediction within ASD. They are in alignment
with other discoveries of unusual contextual modulations in sensory pro-
cessing in ASD, observed in both non-social settings™” and social
contexts™ . However, our results demonstrate the importance of con-
ducting an individual-level analysis, which would help in identifying the
potential diversity in abnormalities in multi-level regularity processing.

Our findings indicate that the VPA-treated animals exhibited elevated
sp values, suggesting that their responses to repetitive stimuli were not as
significantly reduced compared to the healthy controls. We interpretate this
lack of sensory adaption as heightened sensory sensitivity, and use this
evidence to support the overly-precise sensory observations account of
ASD'"". However, sensory hypersensitivity can also be attributed to
imbalanced precision controls, where the brain faces challenges in prior-
itizing sensory information based on its perceived reliability or
precision'*'>'*. In this case, there is a tendency to assign higher weight to
low-level sensory details, potentially intensifying the sensitivity to sensory
stimuli. Importantly, these theories are not mutually exclusive and can
provide complementary insights into the understanding of sensory pro-
cessing in ASD. To gain a deeper understanding of their respective con-
tributions, employing a trial-by-trial analysis with Bayesian modeling that
incorporates precision parameters could be beneficial®"*’. Additionally,
conducting experiments that effectively control the precision of stimuli can
provide valuable insights into the interplay between sensory processing and
precision weighting™.

It is worth noting that our model does not differentiate the origins of
this presumed sensory adaption to repetitive stimuli, only its outcome. One
possible cause is stimulus-specific adaptation, an inhibitory neuronal
mechanism observed in both cortical and subcortical structures® .
Another possible cause is predictive coding itself, where the prediction of
transitions between identical tones is learned during repetitions, and the
repetitive tones generate less surprise over time. To fully explain the data will
require a model that includes the interplay between and stimulus-specific
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differences are denoted by red asterisks. d Comparisons between individual subjects.
For each variable, we illustrate the differences by subtracting the values of the subject
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adaptation and predictive coding to describe the neural dynamics during
each tone in both cortical and subcortical areas.

Our findings demonstrate erroneous predictions across different cor-
tical hierarchies in VPA-treated animals. This implies a deficiency in per-
ceptual learning, which is a key characteristics of the ASD phenotype®”. This
deficiency could stem from abnormalities in synaptic plasticity” or
learning-related changes in neural connections”, and lead to slow belief
updates'’. Beyond irregular predictions, another consideration is the
potential misestimation of the volatility or uncertainty associated with these
predictions. This “belief in volatility” is thought to play a crucial role in
driving learning”’, and in modulating the balance between exploiting
existing knowledge and exploring new possibilities”". Studies have shown
that adults with ASD tend to overestimate the volatility of sensory envir-
onments, leading to a greater tendency to ignore unexpected stimuli and
experience less surprise’’. However, it is still uncertain whether under-
estimations of volatility can occur in ASD, possibly leading to contrasting

patterns of prediction errors. To explore this, further manipulation of
environmental uncertainty and a detailed examination of the learning
processes are required.

Regrettably, our current model has limitations in assessing the learning
process as it only represents the signals once the temporal regularities have
already been learned and the errors have been minimized. To understand
the dynamic process of prediction updating and error minimization, it is
crucial to investigate the trial-by-trial signaling that occurs during the
learning process. A Bayesian model known as the hierarchical Gaussian
filtering (HGF) has emerged as a promising candidate for understanding
prediction updating and error minimization””. This model employs
precision-weighted prediction errors™**”* and has been utilized to investi-
gate prediction-error signals in the brain during learning”*’. HGF models
the stimulus probability (first level), the tendency of the change of the
probability over a longer timescale (second level), the volatility of the ten-
dency (third level), where higher levels determine the rate of change at lower

Communications Biology | (2024)7:851

11



https://doi.org/10.1038/s42003-024-06545-3

Article

levels. It’s important to note that this hierarchical representation differs from
predictive coding, where higher levels influence the state of lower levels.
Therefore, the sequence structure in the local-global paradigm is not simply
a tendency of stimulus probability or its volatility. Nevertheless, exploring
whether the higher levels of HGF can capture sequence probability will be a
worthwhile endeavor. Another candidate is dynamic causal modeling
(DCM), which is also a Bayesian model that can be used to estimate the
coupling among brain regions and the changes in coupling over time and
across experimental conditions®'. This method has been utilized in studying
MMN®"¥>¥_ albeit with the constraint that the brain regions of interest had
to be predetermined.

The phylogenetic closeness between nonhuman primates and humans,
particularly in molecular, circuitry, and morphological features of the brain,
has made these species increasingly attractive as novel models of psychiatric
disorders. Boasting a well-differentiated frontal lobe and intricately stratified
hierarchical cortical connectivity, their cerebral cortex closely resembles that
found in humans®. Marmosets, in particular, offer many advantages as
model organisms for the developmental disorder autism. For example, early
sexual maturation, high reproductive rates, efficient space utilization due to
their compact size, the potential for genetic manipulation, and a complex
repertoire of social skills®.

The VPA-treated model marmosets utilized in this study show
deficits in social tasks that require sophisticated and hierarchical internal
models*". This includes the ability to adjust one’s motivation based on
observations of others’ behavior and to evaluate the reciprocity of others.
It is important to note that gene expression within the marmoset cortex
closely matches the postmortem brains of human ASD, suggesting that it
more closely resembles humans than any prior rodent model™. Notably,
gene expression associated with myelin and inhibitory neurons, which
are thought to be important for brain computation, is commonly reduced
in both individuals with ASD and the VPA-treated marmosets. Con-
tinued studies of hierarchical predictive coding using the VPA-treated
marmosets may provide important insights into the nature of human
ASD. This is especially important given the profound social deficits
exhibited in ASD.

A major limitation of our study is the small number of VPA-treated
marmosets, which was primarily due to the complexities involved in
administering VPA and implanting hemisphere-wide ECoG. This restricts
our ability to assess the diversity and spectrum of erroneous predictive
coding and to identify potential ASD subtypes. Additionally, as the diag-
nosis of ASD can be influenced by sex*, and sex differences are anticipated
in both neurotypical and atypical brain development®, the fact that our
study groups comprised only male animals precludes an investigation into
whether sex contributes to the observed variability in erroneous predictive
coding. Moreover, in our study, the unexposed group underwent both right
and left implantations, while the VPA-treated group only had left implan-
tations. Including more subjects with implantations on each side will allow
us to investigate potential atypical lateralization in ASD™ and reduce biases
associated with functional lateralization™.

Another limitation of our study is the absence of behavioral mea-
surements, which restricts our understanding of VPA’s effects. To address
this, our future plans include integrating our current experimental and
analytical approaches with multidimensional behavioral indices, endocrine
and autonomic nervous system data, and brain transcriptome data. This
integration aims to enhance our capacity to draw parallels between model
findings and the complex pathology of ASD in humans. Another future plan
is to examine the single-trial learning using a more generalized HGF that can
bridge more directly to predictive coding’™.

In summary, we record large-scale high-resolution neural data in a
non-human primate model of ASD and identify different neural sig-
natures underlying different predictive coding accounts of ASD. This
research has the potential to contribute to the identification of neural
markers specific to different subtypes of ASD and shed light on the
impact of prenatal VPA exposure on neurodevelopmental pathways
leading to ASD.

Methods

Animals

We used five adult common marmosets (Callithrix jacchus; all males,
320-450 g, 22-42 months). Before the ECoG arrays were implanted into the
monkeys, they were familiarized with the experimenter and experimental
settings. The animals had ad libitum access to food and water throughout
the experimental period. Two animals (Ji and Rc) were raised and recorded
at RIKEN Center for Brain Science, and the other three animals (Yo, Ca, and
Rm) were raised and recorded at the National Center of Neurology and
Psychiatry (NCNP). Marmosets were housed in an environment main-
tained on a 12/12 h light/dark cycle, and given food (CMS-1, CLEA Japan)
and water ad libitum. Temperature was maintained at 27-30°C and
humidity at 40-50%.

All procedures of the ECoG study at RIKEN were conducted in
accordance with a protocol approved by the RIKEN Ethical Committee. All
procedures of the VPA preparation and ECoG study at NCNP were con-
ducted in accordance with NTH guidelines and the “Guide for the Care and
Use of Primate Laboratory Animals” published by the National Institute of
Neurological Research, National Center of Neurology and Psychiatry, and
approved by the Animal Research Committee of NCNP.

VPA treatment. The method used to produce VPA-treated marmosets
followed the same procedure outlined in previously published work™. In
short, serum progesterone levels in the female marmosets were mon-
itored once a week to determine the timing of pregnancy. In addition to
the blood progesterone level, pregnancy was further confirmed by pal-
pitations and ultrasound monitoring (Ultrasound Scanning; Xario,
Toshiba Medical Systems Corp., Tochigi, Japan). We orally administered
200 mg/kg of sodium valproate (VPA, Sigma-Aldrich, St. Louis, MO,
USA) seven times from day 60 to 66 after conception to the mother
marmosets. We did not observe obvious malformations or deformities in
VPA-treated marmosets.

Electrode implants

The whole-hemisphere 96-channel ECoG arrays (Cir-Tech Co. Ltd., Japan)
were chronically implanted. We epidurally implanted the array into the
right hemisphere for Rc and Yo, and the left hemisphere for Ji, Rm and Ca.
Eight electrodes (channels 92 ~ 94) from Rm were cut during the implan-
tation due to tissue adhesions. The surgical procedures for electrode
implantation have been previously described in detail”. The coordinates of
recording electrodes were identified on the basis of the combination of pre-
acquired MR images and postoperative computer tomography images using
AFNI software” (http://afni.nimh.nih.gov). Then, we estimated the location
of each electrode on cortical areas by registering to the Marmoset 3D brain
atlas Brain/MINDS NA216* with AFNI and ANTS™.

Experimental setup

ECoG signals from monkeys Ji and Rc were acquired at RIKEN using a
Grapevine NIP system (Ripple Neuro, Salt Lake City, UT) at a sampling rate
of 1kHz. Experiments of monkeys Yo, Rm, and Ca were conducted at
NCNP. The neural signals were stored at a 1017.25 Hz sampling resolution
into a TDT signal processing system RZ2 (Tucker-Davis Technologies,
Alachua, FL). During the ECoG recordings, the marmoset was seated in a
primate chair in an electrically shielded and sound-attenuated chamber with
their head fixed. The auditory stimuli were delivered bilaterally by two audio
speakers (Fostex, Japan) at a distance of ~ 20 cm from the head at an average
intensity of 65 dB SPL.

Stimuli and experimental procedure

Two tones with different pitches (Tone A =800 Hz; Tone B =1600 Hz)
were synthesized. Each tone was 50 ms in duration. Series of five tones were
presented with a 150 ms inter-tone interval, with 950-1150 ms was set
between the offset of the last tone of a sequence and the onset of the first tone
of the following sequence (see Fig. 1a). Four different stimulus blocks were
used: AAAAA, BBBBB, AAAAB, and BBBBA blocks. In AAAAA blocks, 20
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AAAAA sequences were delivered, followed by a random mixture of 64
AAAAA and 16 AAAAB. In BBBBB blocks, 20 BBBBB sequences were
delivered, followed by a random mixture of 64 BBBBB and 16 BBBBA. In
AAAAB blocks, 20 AAAAB sequences were delivered, followed by a ran-
dom mixture of 64 AAAAB and 16 AAAAA. In BBBBA blocks, 20 BBBBA
sequences were delivered, followed by a random mixture of 64 BBBBA and
16 BBBBB. In each experimental day, we conducted ECoG recordings on
1 ~ 8 blocks, depending on the animal’s condition. For each animal, we
performed 7-9 recordings for each block.

Data analysis

Preprocessing and independent component analysis (ICA). The
ECoG signals were downsampled to 300 Hz by EEGLAB on MATLAB”
(function: pop_resample.m). Bad channels were then removed by visual
inspections: channels 6, 7, 8, and 80 were removed in Rc; channels 8, 68,
71,81, 83, 85, 87, and 88 were removed from Yo; channels 2, 44, 48, 61, 63,
64 were removed in Ca, channels 1, 6,7, 8, 9, 10, 43, 43, 49, and 81 were
removed in Rm. For each subject, all data were concatenated together,
and ICA was performed by the FieldTrip Toolbox™ (function: ft_com-
ponentanalysis.m with the runica algorithm). For each trial, the ICA
signals were aligned at the onset of the first tone, and signals from 0.3 s
before to 1.7 s after the onset of the first tone were segmented and used for
the further analyses.

Event-related spectral perturbation (ERSP). For each subject, inde-
pendent component (IC), and trial, the time-frequency representation of
the ICA signal was generated by Morlet wavelet transformation at 150
different center frequencies (1~ 150 Hz) with the half-length of the
Morlet analyzing wavelet set at the coarsest scale of 7 samples, which is
implemented in the FieldTrip Toolbox (ft_freqanalysis.m). Baseline
normalization was then performed to calculate the decibel values by using
the baseline period from -0.3 to 0's (time zero as the onset of the first
tone) (ft_fregbaseline.m).

Deviant response. For each subject, the deviant responses (xy|xx - xx|xx
and xy|xy - xx|xy) were calculated for each IC across all trials. To measure
the significance of the difference in ERSP (as the black contours shown in
Fig. 2b), we performed permutations by shuffling trial indices, and used a
nonparametric cluster-based method for multiple comparisons
correction”, which is implemented in FieldTrip Toolbox (ft_freq-
statistics.m with 500 permutations). Non-significant values in the deviant
responses were set to 0, and ICs with no significant deviant responses in
both xy|xx - xx|xx and xy|xy - xx|xy were considered as non-
significant ICs.

Model-fitting with parallel factor analysis (PARAFAC). We used
PARAFAG, a generalization of principal component analysis (PCA) to
higher-order arrays™, which was previous used for the computational
extraction of latent structures in functional network dynamics**. To
decompose deviant responses into components with theorized contrast
values, PARAFAC was performed with the first dimension Contrast fixed
with the values proposed by the model. This was done by the N-way
toolbox”, with no constraint on all three dimensions (using FixMode and
OldLoad inputs in parafac.m). The convergence criterion (i.e., the relative
change in fit for which the algorithm stops) was set to le — 6. The
initialization method was set to be direct trilinear decomposition
(DTLD), which was considered the most accurate method'”. For each
fitting, the residual sum of squares (RSS) and the core consistency
diagnostic’ were measured.

Brain spatial contribution. For each significant IC, the absolute values of
the spatial filter (1 x number of channels) were first calculated and nor-
malized by their maximal value (as in Fig. 3). The brain map shown in
Fig. 6b was the linear combination of the normalized spatial filters of all
significant ICs and their contributions in the model-fitting (Fig. 6b).

Single-trial projection. The spectro-temporal structures of PE1 and PE2
were determined by normalizing the corresponding time-frequency
representations (as in Fig. 6¢) to values between 0 and 1 and then aver-
aged across subjects. A mask in the high-gamma band was determined as
the top 75% values in frequencies above 40 Hz (red contour in Fig. 7a).
The single-trial contributions of PE1 and PE2 were then obtained by
projecting single-trial EEG responses of each significant IC onto
these masks.

For each subject, a single-trial ERSP response (ERSP= number sig-
nificant ICs x 150 frequency bins x 600 time points) was projected on a PE1
or PE2 spectro-temporal mask (FT = 600 time points x 150 frequency bins)
and the contributions of all significant ICs (S = 1 x number significant ICs)
(as in Fig. 6b). This was calculated as S*ERSP*FT, which yields a single
scalar value. Note that the spectro-temporal masks for PE1 and PE2 were
calculated from all subjects and thus shared across subjects, while the
contributions of all significant ICs were different across subjects.

Model calculation
The detailed model calculation is described in Supplemental Information,
and the MATLAB code for these calculations is provided.

Statistics and reproducibility

The number of trials used is comparable to previous similar studies
and the raw ECoG data is provided. The model is fully described through
equations, and the MATLAB code required for its calculations is included. In
terms of data analysis, we detail the variable dimensionality, MATLAB
toolboxes, functions, and key parameters used. For statistical comparisons,
we include details on the number of resamplings and the methods used for
multiple comparisons. The only subjective aspect of our methodology is the
ECoG preprocessing, where bad channels were manually excluded based on
visual inspection. We adhered to a general guideline, resulting in an exclu-
sion of 6 +4% (mean + standard deviation) of electrodes across different
sessions (0%, 4%, 8%, 5%, and 11% for Ji, Rc, Yo, Ca, and Rm, respectively).

34,42,44,54
>

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

Source data underlying main figures are presented in Supplementary Data 1.
The raw ECoG data can be freely downloaded (https://dataportal.
brainminds.jp/ecog-auditory-02).

Code availability
The code to calculate values of predictions and prediction errors in the

proposed model has been deposited in Zenodo'”".
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