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In autism spectrum disorder (ASD), atypical sensory experiences are often associated with
irregularities in predictive coding, which proposes that the brain creates hierarchical sensory models
via a bidirectional process of predictions and prediction errors. However, it remains unclear how these
irregularities manifest across different functional hierarchies in the brain. To address this, we study a
marmoset model of ASD induced by valproic acid (VPA) treatment. We record high-density
electrocorticography (ECoG) during an auditory taskwith two layers of temporal control, and applied a
quantitative model to quantify the integrity of predictive coding across two distinct hierarchies. Our
results demonstrate a persistent pattern of sensory hypersensitivity and unstable predictions across
two brain hierarchies in VPA-treated animals, and reveal the associated spatio-spectro-temporal
neural signatures. Despite the regular occurrence of imprecise predictions in VPA-treated animals, we
observe diverse configurations of underestimation or overestimation of sensory regularities within the
hierarchies. Our results demonstrate the coexistence of the two primary Bayesian accounts of ASD:
overly-precise sensory observations and weak prior beliefs, and offer a potential multi-layered
biomarker for ASD, which could enhance our understanding of its diverse symptoms.

Autism spectrum disorder (ASD) is a neurodevelopmental condition
that includes challenges in social interaction and communication,
repetitive behaviors, sensory hypo/hypersensitivity, and difficulties
adapting to change. A leading mechanistic investigation of ASD focuses
on its atypical sensory perception, such as hypersensitivities to light or
sound, which is reported in around 90% of autistic adults1. Several the-
oreticalmodels have been proposed to explain these sensory atypicalities.
The enhanced perceptual functioning theory2 and the weak central
coherence theory3 suggest that individuals with ASD have a bias toward
locally-oriented processing, attending to details rather than global pat-
terns. The temporal binding theory4 suggests that individuals with ASD
integrate sensory information over a prolonged timewindow, leading to a
blurred or smeared perception of stimuli. The intense world theory5

posits that excessive functioning of neural circuits causes heightened low-
level sensory perception in ASD, leading to an overwhelming and frag-
mented sensory experience of the world. While these frameworks

significantly shape our understanding of ASD, they do not directly cor-
respond to the underlying neural mechanisms.

In this study, we investigate ASD using the mechanistic framework of
Bayesian inference6,7, as its neural correlates are defined and accessible8,9.
Through the Bayesian lens, sensory atypicalities in ASD could arise from
various factors: overly precise sensory observations10–12, weak prior
beliefs7,13, slow updates of these beliefs14, and imbalanced control of
precision13,15,16, and overestimation of environmental volatility17. However,
the corresponding behavioral evidence are inconsistent and conflicting. For
example,prior beliefs inASDhave been shown tobeboth attenuated18,19 and
intact11,20,21, and their variability has been reported to beboth increased22 and
unaffected11. To directly test these Bayesian accounts, it is critical to identify
their underlying neural implementations inASD, which remains unknown.

The most promising implementation of Bayesian inference is pre-
dictive coding, which proposes that the brain creates internal models of the
sensory world by a hierarchical and bidirectional cascade of large-scale
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cortical signaling in order to minimize overall prediction errors23–26. Speci-
fically, higher-level cortical areas predict inputs from lower-level areas
through top-down connections, and prediction-error signals are generated
to update the predictions through bottom-up connections when the pre-
dicted and actual sensory inputs differ. The theory has been applied to
explain how atypical internal models are created in ASD27,28. Experimen-
tally, prediction-error signals have been probed by surprise responses when
expected stimuli are replaced or omitted. A key neural indicator of pre-
diction error is the mismatch negativity (MMN), an event-related potential
triggered by unexpected oddball stimuli, has been shown to vary in
amplitude between individuals with ASD and typically developing
individuals29–31. However, meta-analyses on these reports revealed no con-
sistent trend in these differences32,33. Furthermore, theMMNamplitude can
be influenced by statistical regularities over longer timescales34,35, with this
modulation found to be reduced inASD30. This suggests that the interaction
of prediction errors across hierarchical levels may be disrupted in ASD.

Wehypothesize that theheterogeneous behavioral andneural evidence
is caused by a diverse combination of erroneous predictive-coding com-
putations occurring across cortical hierarchies, thus cannot be identified by
a single neural representation where prediction-error signals across all
hierarchies are mixed together. To test this hypothesis, we extract
prediction-error signals across hierarchies and examine their atypical
characteristics using amarmosetmodelofASD36.Thismodelwas createdby
administering valproic acid (VPA) during pregnancy, a well-known risk
factor for ASD. Maternal exposure to VPA induces ASD-like behavioral
abnormalities and stress responses in marmoset offspring37,38. Importantly,
the transcriptomic profile of the cerebral cortex in VPA-treated marmosets
—reflecting the interactions between genetic and environmental factors—
shows strong correlations with post-mortem brain transcriptomes from
human ASD populations36. This correlation has not been observed in any
rodent models previously used. Furthermore, the observed similarity in
dysregulatedneuronal gene networks betweenVPA-treatedmarmosets and
humans with ASD suggests that this animal model could accurately
represent major ASD subtypes, whose existence has been proposed due to
weak interactions within individual gene networks39,40.

To assess multi-level predictive coding, we use a local-global auditory
oddball paradigm,where the subject passively listens to tone sequenceswith
the temporal regularities established at two hierarchical levels41. This
paradigmallowed a separation of hierarchical prediction-error signals34,42–46.
To acquire large-scale neuronal dynamics with millisecond resolution, we
use high-density hemisphere-wide electrocorticography (ECoG)47. To
provide amechanistic quantification of erroneous predictive coding, we use
a hierarchical predictive-coding model that was previously used to disen-
tangle prediction and prediction-error signals across hierarchies and
quantify the integrity of prediction at each hierarchy48.

Our results reveal sensory hypersensitivity and highly-variable pre-
dictions in the VPA-treated animals, which confirms the simultaneous

presence of the two primary Bayesian accounts of ASD: overly-precise
sensory observations and weak prior beliefs. Furthermore, we find distinct
patterns of underestimation and/or overestimation of the sensory regula-
rities at different hierarchies in the VPA-treated animals, supporting our
hypothesis of erroneous hierarchical predictions as a source of ASD het-
erogeneity. Our findings map computational theories to their neural
implementations and provide a potential neural marker for ASD that is
multi-level, high-resolution, and mechanistic.

Results
Local-global auditory oddball paradigm to establish hierarchical
regularities
Fivemarmosets, identified as Ji, Rc, Yo, Ca, andRm,were used in this study.
Among those, Ca and Rm were prenatally exposed to VPA (see Methods).
During the task, subjects were seated with the head fixed and passively
listened to a series of short tone sequences based on the local-global auditory
oddball paradigm (Fig. 1a). Cortical activitywas recordedwith a 96-channel
ECoG array covering nearly an entire cortical hemisphere (left hemisphere
for Ji, Ca, and Rm, and right hemisphere for Rc andYo) (Fig. 1b). For Rm, 5
channels in the orbital frontal area and 3 channels in the temporal area were
surgical removed during the implantation due to tissue adhesions (88
channels remained).

During each trial, a series of 5 tones were delivered (Fig. 1a). The
first 4 tones were identical, either low-pitched (tone A) or high-
pitched (tone B) (jointly denoted as the standard tone x), and the fifth
tone could be either the same (tone x) or different (jointly denoted as
the deviant tone y). This resulted in two types of sequences: xx
sequence (AAAAA or BBBBB) and xy sequence (AAAAB or BBBBA).
Tone sequences were delivered in blocks of 100 trials, where two
types of blocks were used: xx or xy blocks. In the xx block, 20 xx
sequences were initially delivered as a standard sequence to habituate
the subject; then there was a random mixture of 64 xx sequences (the
trial type is denoted by xx|xx: xx sequence in xx block) randomly
mixed with 16 xy sequences (xy|xx: xy sequence in xx block). Con-
versely, in the xy block, 20 xy sequences were initially delivered as a
standard sequence, followed by a random mixture of 64 xy sequences
(xy|xy: xy sequence in xy block) and 16 xx sequences (xx|xy: xx
sequence in xy block).

This paradigm was designed to establish two levels of temporal
regularity. A local regularity is established within a trial by the repe-
tition of the first 4 tones, which is either followed or violated by the
fifth tone. A global regularity is established by habituating the subject
to a 5-tone sequence, which is either followed or violated by sub-
sequent sequences. Local and global regularities are orthogonally
varied, yielding four trials types: local and global standards (xx|xx),
local and global deviants (xy|xx), local deviant but global standard (xy|
xy), and local standard but global deviant (xx|xy).

Fig. 1 | Local-global paradigm and ECoG layouts.
a The local-global paradigm and the tone and
sequence designs. b The layout of the 96-channel
ECoG arrays in the five subjects. For Rm, 8 channels
were surgical removed after implantation due to
tissue adhesion, and 88 channels remained.
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Deviant responses to local and global regularity violations
To examine the effect of VPA on how the local and global regularities were
learned and represented in the brain, we evaluated the deviant responses in
the brain when the regularities were violated. We compared ECoG signals
from the xy and xx sequences in both the xx and xy blocks, i.e. xy|xx – xx|xx
and xy|xy – xx|xy. By contrasting xy|xx and xx|xx trials, we can isolate
deviant responses that arise when both local and global regularities are
violated, i.e. a local deviant response that is also unpredicted by the global
rule. Similarly, by contrasting xy|xy and xx|xy trials, we can capture the local
deviant response that is predicted by the global rule.

To analyze the large-scale ECoG data, we first identified signal sources
over the 96 electrodes (or 88 in Rm) by independent component analysis
(ICA) (see Methods). Each independent component (IC) represented a
cortical area with statistically-independent source signals (see examples of
ICs in Fig. 2a). ICA could extract the reference signal (e.g. IC 4 in Rc, see
Fig. 2a), artifacts introduced in different recording sessions (e.g. IC 3 inRm),
and artifacts introduced by the recording system (e.g. IC 33 in Yo). More-
over, ICA could help identify spatially-overlapped signal sources (e.g. ICs 13
and 33 in Ca). Therefore, our further analysis was performed based on
individual ICs, instead of individual electrodes. See all ICs for each subject
(96 for Ji, 92 for Rc, 88 for Yo, 90 for Ca, and 84 for Rm) in Fig. S1. Note that
the numbers of ICs were different across subjects due to different numbers
of bad channels were removed (see Methods).

The spatio-spectro-temporal dynamics of ECoG signals were
quantified by the event-related spectral perturbation (ERSP) measured
in decibel (dB) (with the baseline from 300 to 0 ms before the onset of the
first tone, see more details in Methods). Each ERSP represents the in-
trial cortical dynamics from an IC, during the time from 300 ms before

the first tone to 900ms after the fifth tone (a total of 600 time bins), across
the frequencies between 0 and 150 Hz (a total of 150 frequency bins).
Examples of ERSP for all four trial types and their contrasts are shown in
Fig. 2b for IC 58 in Ji (located in the anterior temporal lobe) and in Fig. 2c
for IC 65 in Ji (located in the dorsal prefrontal cortex). A deviant response
was defined as a significant difference in ERSP, detected by a nonpara-
metric cluster-based permutation test (α = 0.05 corrected for multiple
comparisons, two-sided, see Methods). An IC that showed deviant
responses in xy|xx– xx|xx or xy|xy– xx|xywas identified as a significant IC.
For example, IC 58 in Ji was a significant ICwith deviant responses in both
contrasts (Fig. 2b), while IC 65 in Ji was not (Fig. 2c). The numbers of
significant ICs identified in Ji, Rc, Yo, Ca, and Rm were 5, 3, 4, 4, and 5,
respectively.All the significant ICs are shown inFig. 3. Also, see the deviant
responses for all ICs in Fig. S1.

Univariate analysis on deviant responses
To examine significant ICs, we first performed an univariate analysis to
quantify their spatial, temporal, and spectral characteristics. To visualize the
spatial distribution of each significant IC, its spatial coefficients were nor-
malized to values between 0 and 1 by calculating their absolute values and
then dividing them by the maximum. For each subject, the normalized
spatial coefficients were then averaged across all significant ICs to obtain a
joint topographic map (Fig. 4a). From the joint maps, we evaluated the
relative contributions of three cortical areas: the posterior temporal cortex
(pTC), the anterior temporal cortex (aTC), and the anterior prefrontal
cortex (aPFC) (Fig. 4b). The brain areas were identified based on the
Marmoset 3D brain atlas Brain/MINDS NA21649 (see Methods). For each
area, the relative contribution was quantified by the sum of the spatial

IC 58

xY|xx

20
60

100
140

F
re

q 
(H

z)

xx|xx

-6

0

6
xY|xx – xx|xx

-3

0

3

– =

a

-5

0

5

-2

0

2

0 0.5 1 1.5

20
60

100
140

F
re

q 
(H

z)

0 0.5 1 1.5 0 0.5 1 1.5

– =

Time (s) Time (s) Time (s)

IC 65

IC 4 IC 3 IC 33 IC 13

Time (s)

b

20
60

100
140

-6

0

6

-3

0

3

F
re

q 
(H

z)

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5

Time (s) Time (s) Time (s)

=

xY|xY xx|xY xY|xY – xx|xY

xY|xx xx|xx xY|xx – xx|xx

–
-5

0

5

-2

0

2

20
60

100
140

F
re

q 
(H

z)

– =

xY|xx xx|xx xY|xx – xx|xx

IC 33

0.2
0.4
0.6
0.8

0

1

T
ria

l
A

m
pl

itu
de

 (
a.

u.
)

Rc Rm Ca Ca

0 0.51 1.5

1000

2000

3000

0 0.5 1 1.5

-20
-10

0
10
20

0 0.5 1 1.5

1000

2000

3000

0 0.5 1 1.5

-20
-10

0
10
20

0 0.5 1 1.5

1000

2000

3000

0 0.5 1 1.5

-20
-10

0
10
20

0 0.5 1 1.5

1000

2000

3000

0 0.5 1 1.5

-20
-10

0
10
20

0 0.5 1 1.5

1000

2000

3000 -100

-50

0

50

100

0 0.5 1 1.5

-20
-10

0
10
20

Time (s) Time (s) Time (s) Time (s)

Time (s) Time (s) Time (s) Time (s) Time (s)

c

Ji Ji

Yo

Fig. 2 | Source signals and deviant responses. a Examples of ICs. For each IC, the
absolute spatial coefficients were normalized by themaximal value across electrodes,
and shown on the top panel. The time courses of all the trials are shown in the second
panel. Time zero represents the onset of the first tone, and the vertical black lines
indicate the onsets of the 5 tones. The correspondingmean (blue) and standard error
of the mean (red) across all trials are shown in the bottom panel. b The deviant

responses from IC58 in Ji. The spatial contribution of the IC is shown on the left. The
ERSP for each trial type and the corresponding contrasts are shown. The black
contours indicate the deviant response with a significant difference in ERSP in
contrasts xy|xx – xx|xx and xy|xy – xx|xy. c Example of a non-significant IC. The
same representation is used as in b.

https://doi.org/10.1038/s42003-024-06545-3 Article

Communications Biology |           (2024) 7:851 3



distribution in the area divided by the total spatial distribution across all
channels. For all subjects except Rm, the relative contributions from strong
to weak were pTC > aTC > aPFC. For Rm, the contribution in aPFC was
22.0%, which was 2.6 times stronger the other subjects (8.6 ± 2.0%, n = 4
subjects).

To visualize the temporal and spectral distributions of significant ICs in
each subject, absolute values of the deviant responses were averaged across
all significant ICs to obtain a joint time-frequency representation (Fig. 4c).
By averaging the joint deviant response across frequency bins, the peak
responses after the last tone were foundwith comparable latencies of 67, 57,
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80, 70, and 80ms for Ji, Rc, Yo, Ca, and Rm, respectively (Fig. 4d). By
averaging the joint deviant response across time points, the average fre-
quencieswere found in the high gammaband at 92, 122, 77, and75Hz for Ji,
Rc, Yo, and Ca, respectively, and in the low gamma band at 37 Hz for
Rm (Fig. 4e).

We further evaluated the sizeof the deviant responses bymeasuring the
maximal and minimal contrast values in the deviant responses across sig-
nificant ICs (Fig. 4f). For all subjects, the maximal contrast values for
contrast xy|xx – xx|xx were positive and greater than the maximal contrast
values for xy|xy – xx|xy. This was consistent with the view that a greater
surprise was evoked when both local and global regularities were violated
(captured by xy|xx – xx|xx), while a smaller surprise was evoked when the
local deviant was predicted by the global rule (captured by xy|xy – xx|xy).
Furthermore, VPA-treated Ca and Rm showed stronger deviant responses
than the unexposed Ji, Rc, andYo.On the other hand, theminimal contrasts
values were found to be positive, except in Rm where negative deviant
responses were found in xy|xy – xx|xy. This is also shown in Fig. 3, where a
power decrease in the beta/gamma bands (20 ~ 60Hz) was observed in Rm
for ICs 21, 52, and 53, particularly in xy|xy – xx|xy. To further examine the
ERSP for those ICs inRm, stronger responses to the last x tone in xx|xywere
observed (Fig. 4g). This indicated a strong surprise toward the global deviant
(last tone x in the xy sequence), and suggested that Rmwasmore sensitive to
the violation of the global rule.

The univariate analysis revealed some abnormal characteristics in
the deviant responses in Ca and Rm. In summary: (1) VPA-treated Ca
and Rm showed stronger deviant responses than the unexposed, sug-
gesting their hypersensitivity to deviant stimuli; (2) hyperactivity in the
prefrontal cortex was found in Rm, not Ca, which could link to its
hypersensitivity to the global regularity; (3) high-gamma deviant
responses, whichwere thought to represent bottom-up prediction errors,
were absent in Rm.

A hierarchical predictive coding model for the local-global
paradigm
To further investigate how sensory sensitivity and erroneous predictions
could lead to the observed abnormal deviant responses, we used a model-
fitting analysis based on a quantitative model of hierarchical predictive
coding42,48. The quantitative model we used has previously been shown to
effectively explain the brain responses during the local-global paradigmwith
a goodness-of-fit closed to the optimal data-driven decomposition, allowing
formechanistic evaluations of sensory sensitivity andprediction strengths at
both local and global levels48.

The model describes the interactions between prediction and
prediction-error signals during the last tone of a sequence after both local
and global regularities are learned (see Fig. 5a). It consists of three hier-
archical levels (Level S, Level 1, andLevel 2) and two streams (x streamandy
stream). Level S is the sensory level that receives thalamic input, whichwas a
value between 0 and 1, Level 1 learns and encodes the local regularity, which
is the tone-to-tone transition probability (TP), and Level 2 learns and
encodes the global regularity, which is the sequence probability (SP). The x
and y streams process the tone x and y, respectively.

The predictive coding operations across hierarchies in two streams are
illustrated in Fig. 5a. In the x stream, Level S receives a sensory input
(assumed to have a strength of 1) and a prediction signal (P1x) fromLevel 1,
and sends a prediction-error signal (PE1x) to back Level 1.Moving up, Level
1 receives the prediction-error signal from Level S and a prediction signal
fromLevel 2 (P2x), and sends a prediction signal to Level S and a prediction-
error signal (PE2x) to Level 2. Lastly, Level 2 receives the prediction-error
signal from Level 1, and sends a prediction signal to Level 1. In a manner
comparable to the x stream, the y stream also features prediction signals P1y
and P2y, along with prediction-error signals PE1y and PE2y.

Based on the model, the strengths of the prediction signals (P1x, P2x,
P1y, and P2y) are tominimize themean-squared error received at that level,
and can be determined once the transition and sequence probabilities are
known. Once the strengths of the prediction signals are determined, the

local prediction error (PE1 = PE1x+ PE1y) and the global prediction error
(PE2 = PE2x+ PE2y) in the deviant responses evokedby the last tone can be
calculated by subtracting themodel values for xy|xx – xx|xx and xy|xy – xx|
xy. For an in-depth understanding of the model and its calculation, see the
Supplementary Information and the corresponding Figure S2.

Models with erroneous sensory sensitivity and hierarchical
predictions
In the model, the local and global prediction errors are obtained under the
optimal predictions, where the mean-squared prediction errors are mini-
mized at each level. To further evaluate the potential erroneous sensory
sensitivity and hierarchical predictions for the VPA-exposed, we further
added some tunings to the model across different levels (Fig. 5b).

At Level S, a scaling factor s0 was added to the sensory input in the x
stream to account for the sensory sensitivity or adaptation for the repetitive
tone x (left panel). The value of s0 was between 0 and 1, where s0 = 1
represents no sensory adaptation or no diminished responses to repeated
exposure of tones. For the xy sequence, since tone ydoesnot repeat, adaption
does not occur in the y stream (right panel). At Levels 1 and 2, we added
scaling factors s1 and s2 to the first-level predictions (P1x and P1y) and the
second-level predictions (P2x andP2y), respectively, to account for imperfect
predictions.When s1 = 1 and s2 = 1, the predictions are optimal.When s1 < 1
or s2 < 1, the prediction underreacts to the input (sensory input or first-level
prediction error, respectively), i.e. “hypo-prediction”, and is insufficient to
cancel it out. For example, if s1 = 0, there will be no first level prediction, and
the prediction errors continue to propagate to Level 2 without reducing.
When s1 > 1 or s2 > 1, the prediction overreacts to the input, i.e. “hyper-
prediction”, where the corresponding transition or sequence probabilities
are overestimated and additional errors are created. Note that s1 and s2were
applied to both the x and y streams, since erroneous estimation of transition
or sequence probabilities could occur at both streams.

Model-fitting for optimal decomposition of deviant responses
Now we have a predictive coding model tailored to the local-global para-
digm, characterized by only three parameters: s0, s1, and s2. This model was
then utilized to determine which parameter combination most accurately
accounts for the deviant responses observed in ECoG data. To achieve this,
we first pooled all deviant responses (as shown in Fig. 3) to create a tensor
with three dimensions:Contrast, IC, andTime-Frequency for the functional,
anatomical, dynamical aspects of the data, respectively. For each subject, the
dimensionality of the tensorwas 2 (xy|xx – xx|xx and xy|xy – xx|xy) by 3 ~ 5
(the number of significant ICs) by 90,000 (600 time points and 150 fre-
quency bins).

We then factorized the 3D tensor into PE1 and PE2 components by
performing parallel factor analysis (PARAFAC)50, setting the first
dimension according to the model-derived values (see Methods). This
model-fitting analysis was performed for 9261 ( = 21 × 21 × 21) models,
each with a unique combination of the scaling factors s0 (21 values
between 0 and 1), s1 (21 values between 0 and 2), and s2 (21 values
between 0 and 2). For each model, the goodness-of-fit was evaluated by
the residual sum of squares (RSS) and core consistency51. The best-fitting
model was determined as the one with the smallest RSS and a core
consistency above 80%.

The parameters of the best-fitting models for all subjects are shown in
Fig. 5c. The best-fitting models for the unexposed animals (Ji, Rc, and Yo)
were found with similar scaling factors: s0 = 0.35 ~ 0.45, s1 = 0.8 ~ 0.9, and
s2 = 0.7 ~ 0.8. For Ca, the best-fitting model was found when s0 = 0.75,
s1 = 0.3, and s2 = 0.2. This suggested a hyper sensory sensitivity (s0was twice
the size as for the unexposed) and hypo-predictions at both the local and
global levels. On the other hand, the best-fitting model for Rm was found
when s0 = 0.95, s1 = 1.0, and s2 = 1.72. This indicated that Rm shared a
similar hyper sensory sensitivity as in Ca, but with a normal local prediction
and a hyper global prediction.

In summary, themodel-fitting analysis revealed potentialmechanisms
that cannot be observed by univariate analysis, and indicated that (1)
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predictions in the unexposed animals were close to optimal at both hier-
archical levels, (2) hyper sensory sensitivity was found in both VPA-treated
animals, and (3) different types of erroneous hierarchical predictions were
observed between VPA-treated animals.

Prediction-error signals extracted from best-fitting models
Next we visualized the spatial, spectral, and temporal signal patterns of the
PE1 and PE2 components extracted from the best-fitting models. These
components were visualized by their composition in the three tensor
dimensions. The first dimension showed how much PE1 and PE2 con-
tributed to the deviant responses in the two contrasts (Fig. 6a), which was
determined by the model and used for the model-fitting. The model values
were different across subjects, since different optimal parameters were
obtained.

The second dimension showed the contribution of each significant IC
to PE1 and PE2 (Fig. 6b). For example, in Ji, only ICs 58, 69, and 94
contributed to PE1, and IC 69 contributed the most. To further visualize
these contributions on a brain map, the normalized spatial coefficients of
significant ICs (as inFig. 3)were combinedbasedon their contributions (see
more details in Methods). The resulting brain maps are shown in Fig. 6b.
Overlaps between PE1 and PE2 were observed for most subjects, but pri-
marily PE1 appeared in the posterior temporal cortex and PE2 appeared in

the anterior temporal cortex and the anterior prefrontal cortex. This pro-
pagation of prediction errors from the temporal cortex to the prefrontal
cortex is consistent with previous evidence from both monkey and human
studies using the local-global paradigm or its variations34,41–44.

The third dimension showed the in-trial spectro-temporal dynamics
for PE1 and PE2 (Fig. 6c). To examine the temporal dynamics of PE1 and
PE2, we averaged the time-frequency representation in Fig. 6c across all
frequency bins (Fig. 6d). PE1 peaked at 47, 53, 80, 67, and 37ms after the last
tone,while PE2 peaked later at 93, 93, 133, 100, and 103ms for Ji, Rc, Yo, Ca,
and Rm, respectively. To examine the spectral profiles of the PE1 and PE2
components, we measured their maximal activation at each frequency bin
across all time bins (Fig. 6e). The average frequencies were 97, 112, 81, 95,
and 30Hz for PE1, and 100, 121, 90, 64, and 41Hz for PE2 in Ji, Rc, Yo, Ca,
and Rm, respectively. The high-gamma components were absent in Rm, as
described in the univariate analysis (Fig. 4e).

Response variability underlying deviant responses
For Rm, the absence of high-gamma components in the deviant responses
(as in Fig. 6e) could result from two possibilities: (1) the sizes of prediction-
error signals carried in the high-gamma bandwere comparable between the
xx and xy sequences, or (2) the sizes of prediction-error signals were dif-
ferent between the xx and xy sequences but the trial-to-trial variability was

Fig. 5 | A quantitative predictive coding model and the optimal parameters for
model-fitting. a The proposed neural operations for predictive coding across
streams and hierarchies. bModel tunings with s0, s1, and s2. A decreased response
(scaled by s0) to repeated tone x during the xx sequence (left), and a fresh response to
tone y during the xy sequence (right) (the last tones are shown in red). The corre-
spondingmodels are also shown, where the sensory input to the x stream is scaled by

s0, and P1 and P2 are scaled by s1, and s2, respectively. c The model-fitting results for
each subject are shown in each column, where the optimal parameters are indicated.
For each s0, the minimal RSS across different combinations s1 and s2 is shown in the
top panel. Theminimal RSS is indicated by a red circle. The combination of s1 and s2
under this minimum is indicated by a red circle in the bottom panel. Models with a
fitting consistency >80% are indicated by red dots. The color bar represents RSS.
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too high to obtain statistical significance. The former suggests that no
prediction was established, and the latter suggests that the prediction was
highly variable over trials.

To test these twopossibilities,wequantified the sizesofPE1andPE2on
a trial-by-trial basis by projecting the single-trial EEG responses onto the
spatio-spectro-temporal structures of PE1 and PE2. First, we obtained the

spectro-temporal structures averaged across subjects, with a focus on the
high-gamma band (indicated by red contours in Fig. 7a). Then, wemapped
the ERSP of each significant IC to these averaged structures, assigning
weights based on their contributions in the model-fitting process (as in
Fig. 6b) (seeMethods for comprehensive details). As results, two projection
values were obtained for each trial, quantifying the presence of PE1 and PE2
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Fig. 6 | Prediction-error signals extracted from the best-fitting model. a The
contributions of PE1 and PE2 to the deviant responses in the two contrasts, which
are based on themodel values from the best-fittingmodel.bThe spatial dimension of
the PE1 and PE2 components extracted from the best-fitting model. The con-
tribution of each significant IC to PE1 and PE2 and the corresponding average brain
maps are shown. cThe spectro-temporal dimension of the PE1 andPE2 components

extracted from the best-fitting model. dThe temporal profiles of PE1 (blue) and PE2
(orange). The maximal activations are indicated as vertical dashed lines and the
corresponding peak latencies are shown. e The spectral profiles of PE1 and PE2. The
average frequencies activations are indicated as vertical dashed lines and the cor-
responding values are shown.
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Fig. 7 | High signal variability in VPA-treated animals. a The spectro-temporal
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in the high-gamma responses. An example of the projection values over
trials is shown in Fig. 7b.

We quantified the probability distributions of the projection values for
PE1 and PE2 for each trial type and subject (Fig. 7c). Wider distributions
were found in the VPA-treated animals, suggesting that the predictions and
their subsequent prediction errorswere highly-variable at both the local and
global levels. We further quantified the mean, standard deviation, and
coefficient of variance (CV, the standard deviation divided by the mean) of
the projection values (Fig. 7d). Themean values for both PE1 and PE2 were
higher in Ca and Rm when compared to the unexposed animals, with Ca
exhibitinghighermeanvalues thanRm(Wilcoxon rank sumtest, two-sided,
α = 0.05). The highmean values in Cawere consistent with the findings that
Ca had high sensory sensitivity and the subsequent high prediction errors
were not adequately explained away due to hypo-predictions.

The standard deviations for both PE1 and PE2 were higher in Ca and
Rm when compared to the unexposed animals (Wilcoxon rank sum test,
two-sided, α = 0.05). In Rm, the high standard deviation with the com-
parable mean value led to high CV, which supported the second possibility
that the absence of the high-gamma components was resulted from highly-
variable predictions. InCa, the high standarddeviationwas compensatedby
the high mean value, which led to low CV and the significant high-gamma
components.

Sensitivity analysis on model parameters
The results shown inFigs. 5, 6, and7were obtained from theoptimalmodels
selected based on the criterion of achieving a fitting consistency higher than
80%. Employing different criteria may result in a varied set of candidate
models, which in turn could identify alternative optimal models. Con-
sidering that a consistency between 80 to 90% is indicative of a robust
decomposition, and a consistency above 40% is viewed as somewhat
satisfactory52,53, we conducted a sensitivity analysis on the consistency
threshold. In this analysis, we varied the consistency threshold from 40% to
100% in 1% increments to determine the optimal parameters (s0, s1, and s2),
resulting in a total of 61 optimal models. For each optimal model, we also
measured the signal variability (SV),whichwas themean standarddeviation
in the projection values (as in Fig. 7d).

For all optimal models, we plot SV against s0 (Fig. 8a) and s1 against s2
(Fig. 8b). For both SV and s0, the unexposed group (Ji, Rc, and Yo) showed
significantly lower values compared to theVPA-treated group (Ca andRm)
(Wilcoxon rank sum test, two-sided, α = 0.05) (see Fig. 8c). For s1 and s2, no
significant difference was found between the unexposed and the VPA-
treated groups (p-value = 0.0743 and 1 for s1 and s2, respectively). This
suggested that the VPA-treated group exhibited unstable predictions and
heightened sensory sensitivity, without consistent patterns of erroneous
local and global predictions relative to the unexposed group.

We conducted further comparisons between individual subjects (see
Fig. 8d). No significant differences were found among the unexposed ani-
mals for SV, s0, s1 and s2 (Wilcoxon signed rank test, paired and two-sided,
α = 0.05, Bonferroni multiple-comparison correction). Compared to the
unexposed animals, Ca showed significantly lower s1 and s2 values, whereas
Rm showed significantly higher s2 values. This indicated that the VPA-
treated animals exhibited individual differences in their erroneous local and
global predictions.

Discussion
Wecombine apassive auditoryparadigmwith aquantitativemodel to extract
the neural signatures of hierarchical prediction-error signals, and evaluate
the integrity of predictive coding in VPA-treated animals. Through this
approach,weunveil both sensoryhypersensitivity andunstablepredictions in
VPA-treated animals. Notably, these fluctuating predictions present distinct
patterns of underestimation and/or overestimation of hierarchical sensory
regularities, potentially contributing to the diverse characteristics of ASD.
By linking computational theorieswith their neural underpinnings, our study
contributes to the foundation for potentially identifying a comprehensive,
multi-tiered, and mechanistic neural marker for ASD.

The hierarchical organization of prediction-error signals in
the auditory local-global paradigm has been examined in humans and
non-human primates34,43–46,54. Utilizing both data-driven and model-
driven analyses to decompose predictive-coding signals that are not only
interdependent but also spatially and temporally overlapping, we have
identified the neural signatures of local and global prediction-error signals
in macaque ECoG42 and human EEG48. The spatio-spectro-temporal
markers observed in both macaques and humans bear similarity to those
depicted in Fig. 6, showing prediction-error signals in high frequency
band ( >30 Hz) propagating from the auditory cortex to the frontal cortex
with a delay of ~50m. This suggests a shared neural organization that
facilitates hierarchical predictive coding in both human and non-human
primates. Moreover, it indicates the potential applicability of our animal
model findings to human patients.

The local-global paradigm has been utilized to study atypical percep-
tion and emotion processing in ASD. In a study of adults with ASD, a
smallerMMNwas found in the ASD group than in the typically developing
(TD) group30. Moreover, both groups demonstrated a reducedMMNwhen
the global rule could be anticipated, such as in the xy block, but this
reduction was more pronounced in the TD group than in the ASD group.
This implies weaker local and global predictions among individuals with
ASD. In a study with children (8 ~ 15 year old) with ASD, no significant
differences in MMN were found between ASD and TD groups, suggesting
that local prediction error was processed normally29. When manipulating
the global rule to establish various levels of expectation for local deviants,
children with ASD responded differently. There was a decrease in fronto-
cortical responses to sequences that were unexpected, whereas there was an
increase in late frontal activation in response toanticipated sequences.These
findings suggest that theremay be abnormalities in global prediction within
the ASD population. In addition, individuals with ASD demonstrated
MMNin response toviolationsof local emotion regularity for both faces and
music, but their responses to global emotion regularity violations were
absent55. These results, derived from a group level analysis, suggest a
potential deficiency in global prediction within ASD. They are in alignment
with other discoveries of unusual contextual modulations in sensory pro-
cessing in ASD, observed in both non-social settings56,57 and social
contexts58–60. However, our results demonstrate the importance of con-
ducting an individual-level analysis, which would help in identifying the
potential diversity in abnormalities in multi-level regularity processing.

Our findings indicate that the VPA-treated animals exhibited elevated
s0 values, suggesting that their responses to repetitive stimuli were not as
significantly reduced compared to the healthy controls.We interpretate this
lack of sensory adaption as heightened sensory sensitivity, and use this
evidence to support the overly-precise sensory observations account of
ASD10–12. However, sensory hypersensitivity can also be attributed to
imbalanced precision controls, where the brain faces challenges in prior-
itizing sensory information based on its perceived reliability or
precision13,15,16. In this case, there is a tendency to assign higher weight to
low-level sensory details, potentially intensifying the sensitivity to sensory
stimuli. Importantly, these theories are not mutually exclusive and can
provide complementary insights into the understanding of sensory pro-
cessing in ASD. To gain a deeper understanding of their respective con-
tributions, employing a trial-by-trial analysis with Bayesian modeling that
incorporates precision parameters could be beneficial61,62. Additionally,
conducting experiments that effectively control the precision of stimuli can
provide valuable insights into the interplay between sensory processing and
precision weighting63.

It is worth noting that our model does not differentiate the origins of
this presumed sensory adaption to repetitive stimuli, only its outcome. One
possible cause is stimulus-specific adaptation, an inhibitory neuronal
mechanism observed in both cortical and subcortical structures64–66.
Another possible cause is predictive coding itself, where the prediction of
transitions between identical tones is learned during repetitions, and the
repetitive tones generate less surprise over time.To fully explain the datawill
require a model that includes the interplay between and stimulus-specific
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adaptation and predictive coding to describe the neural dynamics during
each tone in both cortical and subcortical areas.

Our findings demonstrate erroneous predictions across different cor-
tical hierarchies in VPA-treated animals. This implies a deficiency in per-
ceptual learning, which is a key characteristics of theASDphenotype67. This
deficiency could stem from abnormalities in synaptic plasticity68 or
learning-related changes in neural connections69, and lead to slow belief
updates14. Beyond irregular predictions, another consideration is the
potential misestimation of the volatility or uncertainty associatedwith these
predictions. This “belief in volatility” is thought to play a crucial role in
driving learning70, and in modulating the balance between exploiting
existing knowledge and exploring new possibilities71. Studies have shown
that adults with ASD tend to overestimate the volatility of sensory envir-
onments, leading to a greater tendency to ignore unexpected stimuli and
experience less surprise17. However, it is still uncertain whether under-
estimations of volatility can occur in ASD, possibly leading to contrasting

patterns of prediction errors. To explore this, further manipulation of
environmental uncertainty and a detailed examination of the learning
processes are required.

Regrettably, our currentmodel has limitations in assessing the learning
process as it only represents the signals once the temporal regularities have
already been learned and the errors have been minimized. To understand
the dynamic process of prediction updating and error minimization, it is
crucial to investigate the trial-by-trial signaling that occurs during the
learning process. A Bayesian model known as the hierarchical Gaussian
filtering (HGF) has emerged as a promising candidate for understanding
prediction updating and error minimization72. This model employs
precision-weighted prediction errors23,25,73 and has been utilized to investi-
gate prediction-error signals in the brain during learning74–80. HGF models
the stimulus probability (first level), the tendency of the change of the
probability over a longer timescale (second level), the volatility of the ten-
dency (third level), where higher levels determine the rate of change at lower
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levels. It’s important tonote that this hierarchical representationdiffers from
predictive coding, where higher levels influence the state of lower levels.
Therefore, the sequence structure in the local-global paradigm is not simply
a tendency of stimulus probability or its volatility. Nevertheless, exploring
whether the higher levels of HGF can capture sequence probability will be a
worthwhile endeavor. Another candidate is dynamic causal modeling
(DCM), which is also a Bayesian model that can be used to estimate the
coupling among brain regions and the changes in coupling over time and
across experimental conditions81. Thismethod has been utilized in studying
MMN61,82,83, albeit with the constraint that the brain regions of interest had
to be predetermined.

Thephylogenetic closeness betweennonhumanprimates andhumans,
particularly inmolecular, circuitry, andmorphological features of the brain,
hasmade these species increasingly attractive as novelmodels of psychiatric
disorders. Boasting awell-differentiated frontal lobe and intricately stratified
hierarchical cortical connectivity, their cerebral cortex closely resembles that
found in humans84. Marmosets, in particular, offer many advantages as
model organisms for the developmental disorder autism. For example, early
sexual maturation, high reproductive rates, efficient space utilization due to
their compact size, the potential for genetic manipulation, and a complex
repertoire of social skills85.

The VPA-treated model marmosets utilized in this study show
deficits in social tasks that require sophisticated and hierarchical internal
models86,87. This includes the ability to adjust one’s motivation based on
observations of others’ behavior and to evaluate the reciprocity of others.
It is important to note that gene expression within the marmoset cortex
closely matches the postmortem brains of human ASD, suggesting that it
more closely resembles humans than any prior rodent model36. Notably,
gene expression associated with myelin and inhibitory neurons, which
are thought to be important for brain computation, is commonly reduced
in both individuals with ASD and the VPA-treated marmosets. Con-
tinued studies of hierarchical predictive coding using the VPA-treated
marmosets may provide important insights into the nature of human
ASD. This is especially important given the profound social deficits
exhibited in ASD.

A major limitation of our study is the small number of VPA-treated
marmosets, which was primarily due to the complexities involved in
administering VPA and implanting hemisphere-wide ECoG. This restricts
our ability to assess the diversity and spectrum of erroneous predictive
coding and to identify potential ASD subtypes. Additionally, as the diag-
nosis of ASD can be influenced by sex88, and sex differences are anticipated
in both neurotypical and atypical brain development89, the fact that our
study groups comprised only male animals precludes an investigation into
whether sex contributes to the observed variability in erroneous predictive
coding.Moreover, in our study, the unexposed group underwent both right
and left implantations, while the VPA-treated group only had left implan-
tations. Including more subjects with implantations on each side will allow
us to investigate potential atypical lateralization in ASD90 and reduce biases
associated with functional lateralization91.

Another limitation of our study is the absence of behavioral mea-
surements, which restricts our understanding of VPA’s effects. To address
this, our future plans include integrating our current experimental and
analytical approaches with multidimensional behavioral indices, endocrine
and autonomic nervous system data, and brain transcriptome data. This
integration aims to enhance our capacity to draw parallels between model
findings and the complexpathologyofASD inhumans.Another future plan
is to examine the single-trial learningusing amore generalizedHGF that can
bridge more directly to predictive coding92.

In summary, we record large-scale high-resolution neural data in a
non-human primate model of ASD and identify different neural sig-
natures underlying different predictive coding accounts of ASD. This
research has the potential to contribute to the identification of neural
markers specific to different subtypes of ASD and shed light on the
impact of prenatal VPA exposure on neurodevelopmental pathways
leading to ASD.

Methods
Animals
We used five adult common marmosets (Callithrix jacchus; all males,
320–450 g, 22–42months). Before the ECoGarrayswere implanted into the
monkeys, they were familiarized with the experimenter and experimental
settings. The animals had ad libitum access to food and water throughout
the experimental period. Two animals (Ji and Rc) were raised and recorded
at RIKENCenter for Brain Science, and the other three animals (Yo,Ca, and
Rm) were raised and recorded at the National Center of Neurology and
Psychiatry (NCNP). Marmosets were housed in an environment main-
tained on a 12/12 h light/dark cycle, and given food (CMS-1, CLEA Japan)
and water ad libitum. Temperature was maintained at 27–30 °C and
humidity at 40–50%.

All procedures of the ECoG study at RIKEN were conducted in
accordancewith a protocol approved by the RIKENEthical Committee. All
procedures of the VPA preparation and ECoG study at NCNP were con-
ducted in accordance with NIH guidelines and the “Guide for the Care and
Use of Primate Laboratory Animals” published by the National Institute of
Neurological Research, National Center of Neurology and Psychiatry, and
approved by the Animal Research Committee of NCNP.

VPA treatment. The method used to produce VPA-treated marmosets
followed the same procedure outlined in previously published work36. In
short, serum progesterone levels in the female marmosets were mon-
itored once a week to determine the timing of pregnancy. In addition to
the blood progesterone level, pregnancy was further confirmed by pal-
pitations and ultrasound monitoring (Ultrasound Scanning; Xario,
ToshibaMedical Systems Corp., Tochigi, Japan).We orally administered
200 mg/kg of sodium valproate (VPA, Sigma–Aldrich, St. Louis, MO,
USA) seven times from day 60 to 66 after conception to the mother
marmosets.We did not observe obvious malformations or deformities in
VPA-treated marmosets.

Electrode implants
Thewhole-hemisphere 96-channel ECoG arrays (Cir-Tech Co. Ltd., Japan)
were chronically implanted. We epidurally implanted the array into the
right hemisphere for Rc and Yo, and the left hemisphere for Ji, Rm and Ca.
Eight electrodes (channels 92 ~ 94) from Rm were cut during the implan-
tation due to tissue adhesions. The surgical procedures for electrode
implantation have been previously described in detail47. The coordinates of
recording electrodes were identified on the basis of the combination of pre-
acquiredMR images andpostoperative computer tomography images using
AFNI software93 (http://afni.nimh.nih.gov). Then,we estimated the location
of each electrode on cortical areas by registering to the Marmoset 3D brain
atlas Brain/MINDS NA21649 with AFNI and ANTS94.

Experimental setup
ECoG signals from monkeys Ji and Rc were acquired at RIKEN using a
GrapevineNIP system (RippleNeuro, Salt LakeCity,UT) at a sampling rate
of 1 kHz. Experiments of monkeys Yo, Rm, and Ca were conducted at
NCNP. The neural signals were stored at a 1017.25Hz sampling resolution
into a TDT signal processing system RZ2 (Tucker-Davis Technologies,
Alachua, FL). During the ECoG recordings, the marmoset was seated in a
primate chair in an electrically shieldedand sound-attenuated chamberwith
their headfixed. The auditory stimuliwere deliveredbilaterally by two audio
speakers (Fostex, Japan) at a distance of ~ 20 cm from the head at an average
intensity of 65 dB SPL.

Stimuli and experimental procedure
Two tones with different pitches (Tone A = 800Hz; Tone B = 1600Hz)
were synthesized. Each tone was 50ms in duration. Series of five tones were
presented with a 150ms inter-tone interval, with 950–1150ms was set
between the offset of the last tone of a sequence and the onset of thefirst tone
of the following sequence (see Fig. 1a). Four different stimulus blocks were
used: AAAAA, BBBBB,AAAAB, andBBBBAblocks. InAAAAAblocks, 20
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AAAAA sequences were delivered, followed by a random mixture of 64
AAAAA and 16 AAAAB. In BBBBB blocks, 20 BBBBB sequences were
delivered, followed by a random mixture of 64 BBBBB and 16 BBBBA. In
AAAAB blocks, 20 AAAAB sequences were delivered, followed by a ran-
dommixture of 64 AAAAB and 16 AAAAA. In BBBBA blocks, 20 BBBBA
sequences were delivered, followed by a randommixture of 64 BBBBA and
16 BBBBB. In each experimental day, we conducted ECoG recordings on
1 ~ 8 blocks, depending on the animal’s condition. For each animal, we
performed 7-9 recordings for each block.

Data analysis
Preprocessing and independent component analysis (ICA). The
ECoG signals were downsampled to 300 Hz by EEGLAB on MATLAB95

(function: pop_resample.m). Bad channels were then removed by visual
inspections: channels 6, 7, 8, and 80 were removed in Rc; channels 8, 68,
71, 81, 83, 85, 87, and 88were removed fromYo; channels 2, 44, 48, 61, 63,
64 were removed in Ca, channels 1, 6, 7, 8, 9, 10, 43, 43, 49, and 81 were
removed in Rm. For each subject, all data were concatenated together,
and ICA was performed by the FieldTrip Toolbox96 (function: ft_com-
ponentanalysis.m with the runica algorithm). For each trial, the ICA
signals were aligned at the onset of the first tone, and signals from 0.3 s
before to 1.7 s after the onset of the first tonewere segmented and used for
the further analyses.

Event-related spectral perturbation (ERSP). For each subject, inde-
pendent component (IC), and trial, the time–frequency representation of
the ICA signal was generated by Morlet wavelet transformation at 150
different center frequencies (1 ~ 150 Hz) with the half-length of the
Morlet analyzing wavelet set at the coarsest scale of 7 samples, which is
implemented in the FieldTrip Toolbox (ft_freqanalysis.m). Baseline
normalizationwas then performed to calculate the decibel values by using
the baseline period from –0.3 to 0 s (time zero as the onset of the first
tone) (ft_freqbaseline.m).

Deviant response. For each subject, the deviant responses (xy|xx – xx|xx
and xy|xy – xx|xy)were calculated for each IC across all trials. Tomeasure
the significance of the difference in ERSP (as the black contours shown in
Fig. 2b), we performed permutations by shuffling trial indices, and used a
nonparametric cluster-based method for multiple comparisons
correction97, which is implemented in FieldTrip Toolbox (ft_freq-
statistics.mwith 500 permutations). Non-significant values in the deviant
responses were set to 0, and ICs with no significant deviant responses in
both xy|xx – xx|xx and xy|xy – xx|xy were considered as non-
significant ICs.

Model-fitting with parallel factor analysis (PARAFAC). We used
PARAFAC, a generalization of principal component analysis (PCA) to
higher-order arrays50, which was previous used for the computational
extraction of latent structures in functional network dynamics42,98. To
decompose deviant responses into components with theorized contrast
values, PARAFACwas performedwith the first dimensionContrast fixed
with the values proposed by the model. This was done by the N-way
toolbox99, with no constraint on all three dimensions (using FixMode and
OldLoad inputs in parafac.m). The convergence criterion (i.e., the relative
change in fit for which the algorithm stops) was set to 1e− 6. The
initialization method was set to be direct trilinear decomposition
(DTLD), which was considered the most accurate method100. For each
fitting, the residual sum of squares (RSS) and the core consistency
diagnostic51 were measured.

Brain spatial contribution. For each significant IC, the absolute values of
the spatial filter (1 × number of channels) were first calculated and nor-
malized by their maximal value (as in Fig. 3). The brain map shown in
Fig. 6b was the linear combination of the normalized spatial filters of all
significant ICs and their contributions in the model-fitting (Fig. 6b).

Single-trial projection. The spectro-temporal structures of PE1 and PE2
were determined by normalizing the corresponding time-frequency
representations (as in Fig. 6c) to values between 0 and 1 and then aver-
aged across subjects. Amask in the high-gamma band was determined as
the top 75% values in frequencies above 40 Hz (red contour in Fig. 7a).
The single-trial contributions of PE1 and PE2 were then obtained by
projecting single-trial EEG responses of each significant IC onto
these masks.

For each subject, a single-trial ERSP response (ERSP= number sig-
nificant ICs × 150 frequency bins × 600 time points) was projected on a PE1
or PE2 spectro-temporalmask (FT = 600 time points × 150 frequency bins)
and the contributions of all significant ICs (S = 1 × number significant ICs)
(as in Fig. 6b). This was calculated as S*ERSP*FT, which yields a single
scalar value. Note that the spectro-temporal masks for PE1 and PE2 were
calculated from all subjects and thus shared across subjects, while the
contributions of all significant ICs were different across subjects.

Model calculation
The detailed model calculation is described in Supplemental Information,
and the MATLAB code for these calculations is provided.

Statistics and reproducibility
The number of trials used is comparable to previous similar studies34,42,44,54,
and the raw ECoG data is provided. The model is fully described through
equations, and theMATLABcode required for its calculations is included. In
terms of data analysis, we detail the variable dimensionality, MATLAB
toolboxes, functions, and key parameters used. For statistical comparisons,
we include details on the number of resamplings and the methods used for
multiple comparisons. The only subjective aspect of our methodology is the
ECoG preprocessing, where bad channels weremanually excluded based on
visual inspection. We adhered to a general guideline, resulting in an exclu-
sion of 6 ± 4% (mean ± standard deviation) of electrodes across different
sessions (0%, 4%, 8%, 5%, and 11% for Ji, Rc, Yo, Ca, and Rm, respectively).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Sourcedataunderlyingmainfigures are presented inSupplementaryData 1.
The raw ECoG data can be freely downloaded (https://dataportal.
brainminds.jp/ecog-auditory-02).

Code availability
The code to calculate values of predictions and prediction errors in the
proposed model has been deposited in Zenodo101.
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