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Exploring cross-tissue DNAmethylation
patterns: blood–brain CpGs as potential
neurodegenerative disease biomarkers

Check for updates

Vanessa Mendonça 1,2, Sheila Coelho Soares-Lima3 & Miguel Angelo Martins Moreira 2

The difficulty of obtaining samples from certain human tissues has led to efforts to find accessible
sources to analyze molecular markers derived from DNA. In this study, we look for DNA methylation
patterns in blood samples and its association with the brain methylation pattern in neurodegenerative
disorders. Using data from methylation databases, we selected 18,293 CpGs presenting correlated
methylation levels between blood and brain (bb-CpGs) and compare their methylation level between
blood samples from patients with neurodegenerative diseases (Alzheimer’s disease, Parkinson’s
disease, Multiple Sclerosis, and X Fragile Syndrome) and healthy controls. Sixty-four bb-CpGs
presented significant distinct methylation levels in patients, being: nine for Alzheimer’s disease, nine
for Parkinson’s disease, 28 forMultiple Sclerosis, and 18 for Fragile X Syndrome. Similar differences in
methylation pattern for the nine Alzheimer’s bb-CpGswas also observedwhen comparing brain tissue
from patients vs. controls. The genomic regions of some of these 64 bb-CpGs are placed close to or
inside genes previously associatedwith the respective condition. Our findings support the rationale of
using bloodDNA as a surrogate of brain tissue to analyze changes in CpGmethylation level in patients
with neurodegenerative diseases, opening the possibility for characterizing new biomarkers.

The difficulty of obtaining certain human tissues has led to efforts to find
epigenetic signatures in more accessible samples as DNA from cells of the
oral mucosa, cervical cells, or peripheral blood1–8. Lymphocyte DNA
methylation has been widely used as a tool for aiding the diagnosis and
prognosis of various diseases, for example: in determining the risk of breast
cancer9–13, development of osteoporosis in postmenopausal women14,15 and
in determining the response to medications in patients with type 2 diabetes
mellitus16. The association betweenmethylation in tissues from difficult-to-
obtain organs and blood is particularly important to neurologic and psy-
chiatric disorders due to risks and difficulties to access brain tissues. For
instance, it has been relevant in the search for new DNAmethylation bio-
markers for early diagnosis without the need to access a brain tissue
sample17,18.

The use of blood cells as a surrogate for some neurodegenerative dis-
eases can reflect the molecular and cellular changes involving various
immunological mediators, including T lymphocytes. This type of cell
accounts for part of nucleated blood cells and can cross the blood-
cerebrospinalfluidbarrier and theblood-brainbarrier, circulating andbeing
present in both brain tissue and blood19. The cross of these barriers is

supportedby thedetectionofT lymphocytes in brain tissue ofAlzheimer’s20,
Parkinson21,22, andMultiple Sclerosis23 diseases. SinceDNAmethylation can
be influenced by the cell environment, we hypothesized that blood cells can
acquire andmaintain specific CpGmethylation patterns after circulating in
the brain and upon its return to the bloodstream.

In this study, we looked for CpGs for which the level of methylation in
blood DNA is correlated with the level observed in brain tissues in patients
with neurodegenerative disorders. Our findings show that there is a distinct
methylation profile for specific CpGs in individuals affected byAlzheimer’s,
Parkinson’s, Multiple Sclerosis, and Fragile X Syndrome when compared
with healthy subjects.

Material and methods
Selection of CpG sites with correlated DNA methylation pattern
between peripheral blood and brain
Two databases, IMAGE-CpG3 and BECon4, were used to establish CpGs
where methylation in blood and brain tissue was correlated. These datasets
were generated using Infinium HumanMethylation450K and Infinium
EPIC (850 K) assays and comparing methylation data from (i) brain
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resection samples, blood, saliva, and oral tissue samples from patients with
refractory epilepsy and (ii) post-mortem blood and brain tissue samples
from individuals without any psychiatric diagnosis or history of substance
abuse. A total of 18,293 CpGs indicated by at least one database with a
correlation coefficient > |0.70| were selected, respecting the statistical ana-
lysis used by each of them (Pearson correlation in IMAGE-CpG and
Spearman in BECon; Supplementary Data 1).

Establishment of the methylation profile in samples from indivi-
duals with neurodegenerative diseases
To establish the model, we compared the beta-values for the 18,293
CpGs between patients and healthy controls. The beta-values, which
represent the proportion of methylated CpG, were estimated by the ratio of
methylated/(methylated+unmethylated) signals and were obtained from
patients with neurodegenerative diseases in the Gene Expression Omnibus
(GEO) database. In this study we adopted an exploratory approach,
respecting the normalization and patient selection applied by the authors of
each dataset, without specific sub-division based on age, sex, ethnicity, or
disease stage. Only studies that evaluated the methylation profile using
the Infinium Human Methylation 450 K or Infinium Methylation EPIC
arrays were included, as these are the methodologies used in IMAGE-CpG
and BECon.

Statistics and reproducibility
The study comprised six different datasets containing beta values (Sup-
plementary Table 1). Two for Alzheimer’s disease: GSE153712, comprising
161 patients and 471 controls, for blood samples; and GSE72778, com-
prising 125 samples from 18 Alzheimer’s patients and 135 control samples
from21 controls, for brain tissues. Two for Parkinson’s disease: GSE111629,
including methylation data from blood DNA of 335 patients and 237
controls; and GSE195834, containing data from the brain DNA of 38
patients and 40 controls. One for Fragile X syndrome: GSE41273, con-
tainingbloodDNAdata from62males, including9patients and53 controls.
One for multiple sclerosis: GSE106648, containing beta values of methyla-
tion for blood DNA from 140 patients and 139 controls.

Results
Selection of CpG presenting correlation of DNA methylation
levels between peripheral blood and brain
To identify the CpGs presenting correlated methylation levels between
blood and brain tissues in paired samples, we analyzed the databases
IMAGECpG and BeCon. First of all, 47,531 CpGs presented methylation
levels with correlation coefficient ≥|0.70 | , when comparing blood and
brain-paired samples, being: 47,360 fromthe IMAGECpGdataset, and1131
from the BeCon dataset. IMAGECpG utilized two methylation arrays
(HumanMethylation 450 K and Infinium EPIC 850 K), and CpGs present
in both arrays exhibiting inconsistent results regarding the correlation
between blood and brain were excluded. We identified 11,772 CpGs
exclusive to the Infinium EPIC 850 K array (considered the most compre-
hensive), and an additional 5390 CpGs shared between the Human-
Methylation450K and Infinium EPIC 850 K arrays and with concordant
results in both analyses. Furthermore, we included the 1131 CpGs from the
Becon dataset, resulting in a total of 18,293CpGs (Fig. 1 and Supplementary
Data 1). These CpGs are hereafter referred to as bb-CpGs, from blood and
brain correlated CpGs.

A schematic representation of the regions where the CpGs are placed,
according to their position concerning CpG islands or genes, is shown in
Fig. 2, as well as the nomenclature used to refer to each of these positions.

Establishment and validation of the blood-brain
correlation model
To identify siteswith differentiallymethylated levels in blood and to verify if
the sameprofile could be found in the brain, themethylationof the bb-CpGs
was analyzed in two case/control datasets of Alzheimer’s disease:
GSE153712, for blood, and GSE72778, for brain. A total of nine bb-CpGs

were found to be differentially methylated, being all hypermethylated in
blood samples of Alzheimer’s Disease (AD) patients in comparison to
healthy controls (Fig. 3a). The chromosomes, genes, and locations of these
bb-CpGs in respect to gene structure and CpG islands are shown in Sup-
plementary Table 2.

To evaluate if these nine bb-CpGs present a similar differential
methylation profile between brain samples from AD patients and healthy
controls, we used the GSE72778 dataset. All brain DNA samples were
grouped for disease or control group, and tissue samples from different
brain regions were analyzed together. The results showed that all nine bb-
CpGswere also significantly hypermethylated inbrain tissue ofADpatients,
similar to what was found in the analysis with DNA derived from blood
samples (Fig. 3b).

Other neurodegenerative diseases
Using the same set of 18,293 CpGs we carried out similar analyses for other
neurodegenerative conditions (Parkinson’s disease, Multiple Sclerosis, and
XFragile Syndrome), comparing themethylation levels of DNA fromblood
between affected individuals and healthy controls. Cases and controls were
specific to each dataset.

The analyses carried out in patients with Parkinson’s disease (dataset
GSE111629) identified nine differentially methylated bb-CpGs. These sites
were found to have a significant decrease in methylation in the Parkinson’s
disease group compared to the control group (Supplementary Fig. 1). The

Fig. 1 | Selection of 18,293 presenting correlation of DNA methylation levels
between peripheral blood and brain (bb-CpGs). Based on filtering CpGs from
IMAGE-CpG and BECon database.
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nine bb-CpGs were mapped to eight different chromosomes and the genes
associated with them, as well as the position of each bb-CpG, are detailed in
Supplementary Table 3.

To carry out comparisons considering these nine bb-CpGs in brain
tissues, the single data set meeting our criteria (i.e., analyzed by Human-
Methylation 450 K or Infinium EPIC 850 K and containing patients and
controls in the same dataset) was GSE195834, based on samples of primary
motor cortex. Of the nine CpGs, eight presented the hypomethylated pat-
tern found in blood samples, although only for one CpG the difference was
statistically significant (cg12230709; Supplementary Fig. 2).

ConsideringMultiple Sclerosis (datasetGSE106648), 28 bb-CpGswere
found to be differentiallymethylated between patients and healthy controls,
with 12 significantly hypomethylated and 16 hypermethylated with respect
to controls (Supplementary Fig. 3). The 28 bb-CpGswere distributed across
nine different chromosomes, and most bb-CpGs were in HLA (Human
Leukocyte Antigen) loci, in chromosome six, where genes associated with
the disease are located. Information about differentially methylated bb-
CpGs is presented in Supplementary Table 4.

In the analysis of the X Fragile Syndrome (dataset GSE41273), 18 bb-
CpGs were found to be differentially methylated between patients and
controls, with 14 sites significantly hypermethylated and four hypomethy-
lated in patients (Supplementary Fig. 4). These 18 bb-CpGswere distributed
across four different chromosomes, predominantly in the X chromosome
and in the ASFMR1 (antisense FMR1) gene, which has been described as

associated with clinical phenotypes of FMR1-related disorders such as X
Fragile Syndrome. The genes in which this and other differentially methy-
lated bb-CpGs were found, as well as the location of each bb-CpG site with
respect to the gene region, are shown in Supplementary Table 5.

The lack of CpG methylation data from brain tissues for Multiple
Sclerosis and X-Fragile patients did not allow to verify if a similar trend to
blood samples can be observed in brain for these diseases.

Discussion
This study provided evidence for the association between the methylation
levels of nine specific bb-CpGs from genomic DNA obtained from
blood samples and the Alzheimer’s disease. Supporting these findings,
we confirmed the association of hypermethylation in these nine bb-CpGs in
an independent dataset by comparing the methylation pattern in brain
tissue of Alzheimer’s patients with control individuals. Additionally, we
found that six of these hypermethylated bb-CpGs were mapped to in pro-
moter regions of genes previously associated with Alzheimer’s, suggesting
that the hypermethylation could be associated with a downregulation of
these genes. This rationale is supported for SCGN, ELOVL2, TRIM59, and
FHL. The SCGN gene, where cg06493994 is located and hypermethylated in
patients, has been found to have a significant reduction in expression in the
brain of Alzheimer’s mouse models24,25. Neurons expressing SCGN
are resistant to cell death in neurodegenerative Alzheimer’s brain and
its expression has been associated to reduced neurodegeneration and to

Fig. 2 | Distribution of CpGs according to their relative position. a In respecto to CpG islands or b in respect to genes and the nomenclature used to refer to each of these
positions.

Fig. 3 | Difference in average beta values between AD patients and controls for
eachCpGanalyzed.The y-axis shows the adjusted p-values by Benjamini-Hochberg
on a logarithmic scale (-Log10(p)). The trace line represents the threshold for sig-
nificant values (≥1.30). On the x-axis is the difference in average beta values (delta
beta) between cases and controls, being positive when there is higher methylation of

the CpG in the case group and negative when there is less methylation in the same
group. a Comparison between DNA samples derived from blood samples from AD
patients and health controls (GEO ID: GSE153712). b Comparison between 125
DNA samples derived from different brain regions of 18 AD patients and 135 from
21 health controls (GEO ID: GSE72778).
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a possible protective effect against the disease24,26. The same could be
applied to bb-CpGs cg21572722, cg16867657, and cg24724428 located in
ELOVL2, a gene associated with increased risk of AD, for which hyper-
methylation was observed in the hippocampus of individuals with the
disease27,28. The gene TRIM59, where cg07553761 is located, was associated
with cell death signaling in the familial form of Alzheimer’s disease when
hypermethylated29. Finally, the FHL2 (where cg06639320 ismapped to)was
described as potentially associated with Alzheimer’s disease, with its defi-
ciency leading to neuronal migration delay and premature astrocyte
differentiation30.

The differentially methylated bb-CpGs in the blood of Parkinson’s
patients were mapped to genes associated with susceptibility or mechan-
istically associated with disease characteristics: NQO2, RAB7A, TBC1D16,
ULK1,CD302,CALD1 and PRTN3. TheNQO2 gene was suggested to be an
important factor inParkinson’s disease, andpromoter polymorphismswere
associated with disease susceptibility31,32. Similarly, hypomethylation of the
5’UTR region of RAB7A could indicate lower expression of this gene,
decreasing the degradation of α-synuclein aggregates33. The gene TBC1D16
promotes the activity of Rab5CGTPase, which is implicated in Parkinson’s
disease34–37. ULK1-mediated autophagy induction occurs early during
axonal degeneration38 and ULK1 inhibition is responsible for causing pro-
tective effects on axonal degeneration and against neurodegeneration in the
mousemodel of Parkinson’s disease39. The transcription of the genesCD302
and CALD1 were found to be downregulated in prefrontal cortex of Par-
kinson patients when compared with healthy individuals40. With respect to
PRTN3, the literature shows no evidence of association with the disease
characteristics.

We investigated these same nine CpGs in a single dataset available
(GSE195834) containing beta-values derived from brain tissue of patients
with Parkinson’s disease. Of the nine CpGs, eight exhibited the hypo-
methylated pattern observed in blood samples, although only one
CpG showed statistically significant differences (cg12230709; Supple-
mentary Fig. 2). The limited brain representativeness, due to the sampling
being restricted to the primary motor cortex, could account for the non-
significant differences in the remaining CpGs and the divergent pattern of
one of them.

For Multiple Sclerosis and Fragile X Syndrome, most bb-CpGs with
differential methylation were clearly associated with the phenotypic pre-
sentation. For Multiple Sclerosis, an autoimmune condition, differential
methylation in multiple HLA-DR loci in the blood reflects this fact, being
corroborated by the increased expression ofHLA-DRB1 andHLA-DRB5 in
the brain of Multiple Sclerosis patients41. For Fragile X Syndrome, multiple
bb-CpGs in the X-chromosome were found to be differentially methylated.
Beyond theASFMR1 gene, placed head-to-head with FMR1 gene (Fragile X
Messenger Ribonucleoprotein 1 gene) in the X chromosome, two other
genes, THSD1P (TSS) and CTAG2 (exon 1), exhibited hypomethylation of
bb-CpGs in promoter regions, which may correspond to increased protein
expression. However, no previous data linked these two genes to Fragile X
Syndrome. In spite of the association between Fragile-X Syndrome and
Amyloid Beta Precursor Protein expression42–44, no bb-CpG with differ-
ential methylation found in AD patients was differentially methylated in
Fragile-X patients.

Interestingly, bb-CpGs found in intergenic regions (IGR) in Alzhei-
mer’s and Parkinson’s dataset had at least one of the flanking genes pre-
viously associated with neurodegenerative diseases or neuronal
development. For Alzheimer’s disease, the single differentially methylated
IGR bb-CpG (cg03032497) in blood samples was mapped in an enhancer
region between the SALRNA1 and SIX1 genes. SIX1 has been shown to
participate in neuronal development45 and has also been found to have
differential expression in the superior temporal gyrus of Alzheimer’s
patients46; on the other hand, SALRNA1 does not have a well-established
relationship with Alzheimer’s disease. The differentially methylated bb-
CpG cg11725581 in Parkinson’s Disease dataset is mapped between the
AIMP2 and USP42 genes. AIMP2 has a strong association with the brain
features of Parkinson’s disease and is responsible for increasing the

accumulation of α-synuclein47. On the other hand, the association between
USP42 and the disease is still unknown. For multiple Sclerosis, two of the
three bb-CpGs found in IGR were placed in the HLA region, and the other
(cg26328180) placed between genes (LOC107985911 and KMT2CP4) not
related with the disease’s pathogenesis. In fragile X syndrome, the two bb-
CpGs found in IGRs (cg27524192 and cg02180907, mapped between
RNA5S13 and RNA5S14 genes, and ERICH1 and LOC286083, respectively)
had flaking genes not associated with the syndrome. However, the absence
of CpG methylation data from brain tissues for Multiple Sclerosis and
X-Fragile patients do not allow to confirm the same trend observed in blood
samples, particularly for the genes not placed in HLA/MHC loci or
X-chromosome.

No differentially methylated bb-CpGs nor the genes mentioned above
were consistently identified across the diseases, suggesting that methylation
patterns observed are specific for each neurodegenerative condition. On the
other hand, the results found for Alzheimer’s and Parkinson’s Diseases in
blood samples and brain tissues reinforce that the evaluation ofmethylation
profile of bb-CpGs in blood can reflect epigenetic changes in brain tissue.
Although analyzing DNAmethylation in blood as a surrogate for brain has
its limitationswith regard to underrepresentation of the alterations that take
place in the disease-affected tissue, it has a potential use in the identification
of biomarkers that could help diagnosis and disease monitoring. In this
context, the data presented here support the rationale of using blood as a
surrogateof brain tissue to analyze changes inmethylationprofile inpatients
with neurological disease, opening the possibility for the characterization of
new biomarkers.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The neurodegenerative diseases used for comparisonwere defined based on
the availability of blood datasets at GEO database. (Supplementary Table 1)
containing both patients and healthy individuals and included: Alzheimer’s
(GSE153712), Parkinson’s (GSE111629), Multiple Sclerosis (GSE106648),
and Fragile X Syndrome (GSE41273). The inclusion of Fragile X Syndrome
is due to the association between Fragile X Mental Retardation Protein
(FMRP) pathway and the translation of Amyloid Beta Precursor
Protein42–44, whose accumulation in the brain is a hallmark of Alzheimer’s
Disease. Additionally, we were able to investigate in brain tissue the blood
differentially methylated CpGs corresponding to two of the analyzed dis-
eases: Alzheimer’s and Parkinson’s. For Alzheimer’s, we utilized a dataset
with beta-values (GSE72778) obtained from DNA samples representing
various brain regions (frontal lobe, parietal lobe, occipital lobe, caudate
nucleus, cingulate gyrus, cerebellum, hippocampus, etc.) from patients and
healthy controls. The Parkinson’s dataset (GSE195834) was limited,
focusing solely on DNA samples from the primarymotor cortex of patients
and unaffected controls.

Code availability
Datasets containing normalized methylation beta values were loaded into
RStudio andfiltered to includeonly regionsof interest using the list of 18,293
pre-selected CpGs. Then, we used a linear Bayesian regression model,
implemented through the “champ.DMP()” function from the “ChAMP”
package, to define differentially methylated CpGs (DMPs) between cases
and controls of eachdisease data set. TheDMPswere considered statistically
significant if their adjusted p-values were ≤0.05.; Adjusted p-values for
multiple comparisons were obtained using the Benjamini-Hochberg
method considering the 18,293 CpGs. The volcano plots were generated
using the data shown in SupplementaryData 2withVolcaNoseR, (available
at https://huygens.science.uva.nl/VolcaNoseR/).
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