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resistant to changes in immune cell
composition
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Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG
methylation values to predict chronological or biological age. Increases in predicted epigenetic age
relative to chronological age (epigenetic age acceleration) are connected to aging-associated
pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However,
epigenetic clocks rely on training data frombulk tissueswhose cellular composition changeswith age.
Here, we found that human naive CD8+ T cells, which decrease in frequency during aging, exhibit an
epigenetic age 15–20 years younger than effector memory CD8+ T cells from the same individual.
Importantly, homogenous naive T cells isolated from individuals of different ages show a progressive
increase in epigenetic age, indicating that current epigenetic clocks measure two independent
variables, aging and immunecell composition. To isolate the age-associated cell intrinsic changes,we
created an epigenetic clock, the IntrinClock, that did not change among 10 immune cell types tested.
IntrinClock shows a robust predicted epigenetic age increase in a model of replicative senescence
in vitro and age reversal during OSKM-mediated reprogramming.

Epigenetic clocks, age predictors based on DNA methylation levels at
selected CpG loci, have grown in popularity as a tool to study aging and
predict health outcomes in humans. Thefirst epigenetic clocks developed by
Hannum et al.1 and Horvath2 showed remarkably high accuracy (R > 0.90)
in predictions of chronological age. These “first-generation” epigenetic
clocks provide unique biological insights into the aging process. For
example, some but not all forms of senescence (replicative, UV-induced,
etc.) accelerate epigenetic clock age predictions3. Using a later clock trained
on chronological age, Kabacik et al.4 identified nutrient sensing, mito-
chondrial activity and stem cell composition as being associated with epi-
genetic aging but not telomere attrition or genomic instability. A recent
report demonstrated the development of an epigenetic clock effective at
predicting age across a variety of species, providing evidence for a shared
mammalian aging program5.

More recently, second-generation clocks designed to predict pheno-
typic aging measures have been developed. These clocks, including
PhenoAge6 and GrimAge7, show strong associations with diseases, such as
depression8 and mortality9. DunedinPACE is a similar marker of pheno-
typic aging that captures the pace of aging rather than the accumulation of
aging10. These clocks show promise as markers of physiological aging, but
their two-step construction methodology (training a DNA methylation

predictor on measures of phenotypic rather than chronological age) adds a
secondary layer of complexity to interpretation.

Given the ability of epigenetic clocks to detect aging phenotypes across
species and levels of organization that include cells, tissues, andorgans, there
is interest in understanding the underlying mechanism(s) enabling their
function. Recent reports have been released on this topic, notably including
one by Levine et al.11 that suggests epigenetic clocks are composites of
different modules characterized by their changes during aging and repro-
gramming.Novel epigenetic clockshave beendeveloped that seek to capture
the aging phenomenon inmore definedways, including by identifyingCpG
sites predicted to be causal by Mendelian randomization12 or those cap-
turing purely stochastic variation13. These clocks are informative about
aspects of the aging process and have the potential to be particularly well-
suited for certain use cases.

One major challenge in understanding the mechanism(s) underlying
epigenetic clocks is the confounding effect of age-related changes in cell-type
composition ofmany tissues.While changes in cell-type composition are an
important part of aging, they can make interpreting epigenetic clocks more
difficult as the relevant CpG sites may be cell-type-specific markers rather
than those affecting cell-intrinsic aging. Most epigenetic clocks are trained
largely on blood, which sees a drop in naïve CD8+ T cells with age and a
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corresponding increase in more terminally differentiated memory T-cell
types14. Some clocks may be more impacted by changes in cell-type com-
position than others, depending on how they were constructed15. These
challenges are not limited to epigenetic clocks; measures of telomere length
in whole blood as predictors of age have also been shown to be linked to the
proportion of naïve T-cells16. Quite recently, T-cell and NK (natural killer)
cell activation have been implicated as major drivers in epigenetic clock
progression17.

Other approaches have been explored to create epigenetic age pre-
dictions that are less sensitive to changes in cell type composition. Most
notably, residuals from regression models that include epigenetic age and
proportions of several blood cell types have been used to generate an
intrinsic epigenetic age accelerationmeasure18.While the resultingmeasure
is cell-type independent, it becomes challenging to biologically interpret as
the underlying signal is derived from a mixture of CpG sites that can be
either cell type-independent or cell type-dependent. Other modern
approaches include the development of single-cell epigenetic clocks19,20,
though theunderlying technologywill require furthermaturingbefore it can
match the sensitivity and accuracy of bulk measurement-based clocks.

In this work, we report our analysis of the differences in epigenetic age
predictions derived from four epigenetic clocks (Hannum1, Horvath2,
Horvath Skin and Blood21, and PhenoAge6) for cytotoxic CD8+ T cells at
different stages of differentiation.We found that humannaïveCD8+T cells,
which decrease in humans during aging, exhibit an epigenetic age 15–20
years younger than effector memory CD8+ T cells isolated from the same
individual. Interestingly, naïve T cells isolated from individuals of different
ages still show a progressive increase in epigenetic age. Based on these
observations, which indicate, as predicted, that current epigenetic clocks
measure two independent variables, aging and immune cell composition,
we created an epigenetic clock, the IntrinClock, that does not change among
10 immune cell types tested. Remarkably, this clock shows an increase in a
model of replicative senescence in vitro and shows decreased aging during
OSKM reprogramming. Lastly, we investigate the IntrinClock’s applic-
ability for use in studying and detecting the effects of cell-intrinsic pertur-
bations on aging.

Results
Existing epigenetic clock age predictions depend onCD8+ T-cell
differentiation state
In humans, CD8+ T cells decrease in frequency, with a particularly pro-
nounced loss of naive T cells during aging22.We used a negative bead-based
selectionmethod to isolate total T cells from seven donors (sixmen and one
woman) of varying ages, all of whom were positive for cytomegalovirus
(CMV+). We then used FACS to isolate CD8+ naive (CD8+ CD28+

CD45RO−), CD8+ central memory (CD8+ CD28+ CD45RO+), CD8+

effector memory (CD8+ CD28− CD45RO+), and CD8+ terminal effector
memory RA+ (CD8+ CD28− CD45RO−) cells (Fig. 1A). After DNA isola-
tion and profiling using the Illumina Infinium MethylationEPICTM plat-
form, we noted a distinct clustering of CD8+ naive cells away from CD8+

central memory (CM), effector memory (EM), and terminal effector
memory RA+ cells (TEMRA) (Fig. 1B) in UMAP analysis. Horvath clock
epigenetic ages were measured in each of the CD8 T-cell subsets and found
to correlate with age across every subset. However, strikingly, naive T cells
consistently showed a significantly younger epigenetic age than other CD8+

subsets (p = .001) (Fig. 1C). This result suggests that epigenetic clock
measurements are affected by CD8+ T-cell differentiation. Equally inter-
estingly, naive CD8+ T cells from individuals of different chronological age
showed an increase in epigenetic age that was parallel to chronological age
but consistently lower than the chronological age (Fig. 1C). The same
observation was made for CMs, EMs, and TEMRAs except that these cells’
epigenetic age appeared closer to the chronological age of the donors.

Next, using differentialmethylation analysis onmethylationM-values,
we identified 22,963 CpGs that changed with age and 370,383 CpGs that
changed between naive CD8+ T cells and CD8+ CM, CD8+ EM, or CD8+

TEMRA cells. Of the 22,963 aging-related CpGs, 9,992 were also correlated

with differentiation state (Fig. 1D). To understand how this could affect
epigenetic clock predictions, we investigated the proportion of CpG sites
used for epigenetic age prediction in the Hannum, Horvath, Horvath Skin
and Blood, and PhenoAge clocks that we identified were correlated with
CD8+ T-cell differentiation state. In all four clocks, more than a third of the
predictive sites were correlated with differentiation state (Fig. 1E), and all
four had a difference in age acceleration for CD8+ T-cell subsets. In all
clocks, CD8+ TEMRA and CD8+ EM cells were predicted to be older than
CD8+ CM cells, which were predicted to be older than CD8+ naive cells
(Fig. 1F–I). The differences in epigenetic ages among the CD8+ T-cell
subsets varied among clocks. For example, PhenoAge predicts CD8+ naive
cells to be over 60 years younger than the donor chronological age, but the
difference wasmuch smaller for bothHorvath clocks with an epigenetic age
prediction of only approximately 12 years lower than chronological age
(Fig. 1F–I).

Development of an epigenetic clock (IntrinClock) resistant to
changes in immune cell composition
Given the overlap of DNA methylation signatures of cellular aging and
CD8+ differentiation, we sought to create a new epigenetic clock that is
unaffectedby changes in immune cell composition.Webeganby generating
a database of 14,601 DNA methylation samples from 71 different
datasets1,22–91, generated on either the Illumina InfiniumTM HumanMethy-
lation450 (450K) or the Illumina InfiniumTM MethylationEPIC (EPIC)
array, all sourced from the Gene Expression Omnibus (GEO) database or
the Genotype-Tissue Expression project (GTEx) (Supplementary Table 1).
The number of samples per dataset ranged from six to 1218, with a mean
number of samples per dataset of 213 (Fig. S4A). The distribution of sexes
was approximately equal (Fig. S4B). Samples were derived from a variety of
tissues with the majority from blood (Fig. S4C), and the DNAmethylation
assay platform was split roughly evenly between the 450 K and the EPIC
array. (Fig. S4D).

Once the database of samples was assembled, we performed a series of
filtering and quality control steps. We filtered out all samples that were
missingmore than10%ofCpGsitesmeasuredby the 450 Karray, those that
were derived from cancerous tissue, and those that were derived from
germline tissues. We then removed outliers, defining outliers as those with
principal components more than two interquartile ranges away from the
mean (Fig. 2B). After performing a random 75-25 training/test split,
9104 samples were used to train themodel and 2994were used to validate it.

Given the uniquemethylation pattern (Fig. 1B) and quiescent biology92

of naiveCD8+T cells, we aimed to use them as a basis onwhich to eliminate
CpGs linked to CD8+ T-cell differentiation and performed additional fil-
tering steps.When constructing our database of DNAmethylation data, we
initially collected all CpG sites measured by the 450 K array for all samples.
To increase reliability, we first filtered out CpG sites that were present in
fewer than 90 percent of samples. To ensure forward compatibility, we also
included only CpG sites that were present on the Illumina InfiniumTM

MethylationEPICv2.0 array. Next, we opted to remove any CpG sites that
were correlated with a sample being a naive CD8+ sample (R > 0.3) within
our CD8+ subset data (i.e., CpG sites whose methylation patterns were
distinct in CD8+ naive cells as compared to CD8+ CM/EM/TEMRA cells).
We also opted to include only those CpG sites correlated with age (R > 0.3)
(Fig. 2C), to decrease the search space for the elastic net algorithm to identify
age-predictive sites. Interestingly, we observed a negative correlation-of-
correlations between the age correlation andnaiveCD8+ correlation ofCpG
sites (R =−0.45) (Fig. 2C), indicating that CpG sites that are hypermethy-
lated with age tend to be hypomethylated in naive CD8+ cells, and vice-
versa.Weutilized the elastic net algorithmon the remaining 55,896CpGs to
generate a new epigenetic clock based on 410 CpG sites. To increase
accuracy and reduce the number of necessary prediction sites, we used an
approach whereby we employed the elastic net algorithm a second time on
the training data filtered only on the 410 CpG sites used for the clock. This
reduced the number of predictive CpG sites in the finalmodel (IntrinClock)
to381, and reducederror by approximately3months (Fig. S5).Wevalidated
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that a similar degree of improvement in predictive accuracy could not be
obtained by tuning the alpha parameter (Fig. S5C).

IntrinClock isaccurateacross tissues,and itsagepredictionsare
not affected by adaptive immune cell compositional changes
Next, we tested the IntrinClock on a variety of tissues in the test set and
observed high overall prediction accuracy (R ~ .972, mean absolute error
(MAE)~3.83) (Fig. 2D). Age prediction errors on blood and saliva were
particularly low (MAE~3.25,MAE ~ 3.21, respectively) (Fig. 2E, G). Tissues
with less immune infiltration also had high epigenetic age correlations with
chronological age (R ~ 0.944 for brain, R ~ 0.841 for skin). We were
interested in discovering whether the IntrinClock would predict chron-
ological age in semen samples, as previous epigenetic clocks have shown
significant age deceleration in sperm2. We found that epigenetic age pre-
dictions of semen had only a weak correlation with chronological age (R ~
0.32), and the predicted age of sperm samples, using a previously generated
dataset93, appears to consistently be ~12 (Fig. 2I).

Importantly and as expected, IntrinClock applied to our generated
CD8+ DNA methylation data showed no epigenetic age prediction dif-
ferences among CD8+ T-cell subsets (p = 0.31) (Fig. 3A). As these
samples were included in the training set for clock construction, we
validated our approach on two external datasets94,95 with CD8+ naive and
CD8+ EMDNAmethylation data and found no differences in epigenetic
age (paired t-test p-value = 0.17) (Fig. 3B). We also tested whether our

clock could find a shift in epigenetic age between CD4+ naive and CD4+

CM cells, as the proportion of CD4+ naive cells also decreases with age96.
Using two external data sets97,98, we discovered no evidence for a shift in
epigenetic age between CD4+ naive and CM cells (Fig. 3C) (paired t-test
p-value = 0.54), despite our filtering strategy being based only on
CD8+ cells.

We also tested whether the IntrinClock would be similarly unper-
turbed in other immune cell types, particularly naive and memory B cells,
which change in frequencywith age99.We sortedCD8+ naive (CD8+CD28+

CD45RO−), CD8+ CM (CD8+CD28+CD45RO+), CD8+ combined
EM/TEMRA (CD8+CD28−), CD4+ naive (CD4+CD28+CD45RO−), CD4+

CM (CD4+CD28+CD45RO+), B-cell naive (CD3−CD19+CD27−IgD+),
class-switched B cells (CD3−CD19+CD27+IgD−), CD16+CD56dim NK
cells (CD3−CD19−CD56dimCD16

+), classical monocytes (CD3−CD19−

HLADR+CD14+CD16dim), and whole-peripheral blood mononuclear cell
(PBMC) samples froma separate set of nine donors (fivewomen, fourmen)
aged 30–68 and collected DNA for methylation analysis. To increase cell
recovery, we performed two sequential rounds of positive selection for
CD8+ and then CD4+ cells using magnetic enrichment kits prior to flow
sorting, similar to a published strategy34. Concurrently, we analyzed the
PBMCsamplesusinghigh-parameter spectralflowcytometry toempirically
determine whether changes in immune cell composition of the
PBMC samples would impact predicted epigenetic age of the whole PBMC
fraction.

Fig. 1 | CpG site changes during T-cell differentiation. A Experimental design for
determining impact of CD8+ differentiation on epigenetic clock age prediction.
B UMAP dimensionality reduction of CD8+ DNA methylation profiles.
CDifferences between predicted epigenetic age as a function of donor age and CD8+

T-cell subset.DComparison of sharedCpG site changes between age inCD8+T cells
and CD8+ cell subset. E Percent of sites in four epigenetic clocks that are correlated

with CD8+ T-cell differentiation. Comparison of the F Hannum (p = 1.1 * 10−7),
GHorvath (p = 0.001),HHorvath skin and blood (p = 2.8 * 10−6), and I PhenoAge
(p = 4.8 * 10−8) epigenetic age acceleration predictions for four CD8+ T-cell subsets.
*** ANOVA p-value less than or equal to 0.001. Samples derived from N = 7
individuals. Boxplots are centered at median and bound one quartile on each side.
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As predicted, we found no evidence for an association between cell
subset and epigenetic age prediction (ANOVA p-value = 0.94) (Fig. 3D) or
between cell subset and epigenetic age acceleration (ANOVA p-value =
0.34) (Fig. S6A). This remained consistent whether epigenetic age accel-
eration was defined as the difference between predicted age and chron-
ological age or as the residual after regressing predicted epigenetic age on

chronological age. In contrast, cell subset and epigenetic age acceleration
were significantly correlated, according to the Hannum (p-value = 3.6 *
10−24; Fig. S6B), Horvath (p-value = 5.3 * 10−5; Fig. S6C), Horvath Skin and
Blood (p-value = 6 * 10−17; Fig. S6D), and PhenoAge (p-value = 5.6 * 10−34;
Fig. S6E) clocks. To further investigate how resistant IntrinClock is to
the change in immune cell composition, we analyzed the correlation

Fig. 2 | IntrinClock design strategy and performance. A Filtering strategy for CpG
sites. B Filtering strategy for samples. C Visualization of the filtering process for
differentiation-independent age-relatedCpGs. Blue CpGs (those correlated with age
but not with being a naive cell) were included in the feature set, whereas gray CpGs
were not. Dashed line indicates linear least-squared regression line of relationship

between CpG age correlation and CpG CD8+ naive cell correlation. D Correlation
between age and IntrinClock predicted age in a variety of tissues from the test set.
E–H Individual correlation plots for specific tissues in the test set. IEpigenetic age vs.
chronological age correlation plot for semen samples.
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between the PBMC epigenetic age and percentage of several PBMC
subsets. As expected, we identified no significant relationship between the
PBMC epigenetic age acceleration and percentage of CD8+ EM cells
(Pearson’s correlation p-value = 0.13; Fig. 3E), CD4+ CM cells (Pearson’s
correlation p-value = 0.89; Fig. 3F), class-switched B cells (Pearson’s cor-
relation p-value = 0.30; Fig. 3G), CD16+ CD56dim NK cells (Pearson’s cor-
relation p-value = 0.63; Fig. 3H), or classical monocytes (Pearson’s
correlation p-value = 0.45; Fig. 3I), relative to their parent populations.
Combined with our observations of the IntrinClock’ s high accuracy across
many tissues, including different cell types in the brain (Figure S6F–G),
these observations indicate that shifts in immune cell composition do not
impact IntrinClock age predictions.

IntrinClock is highly enriched for CpG sites upstream of tran-
scription start sites, and its sites are enriched for motifs whose
TFs are implicated in cancer
One central challenge in understanding epigenetic clocks comes from a lack
of knowledge regarding to what extent epigenetic clocks are tracking a cell-
autonomous or, conversely, a cell-ensemble phenomenon100. Our data
provide evidence that current epigenetic clocks represent a composite of at
least two variables, change in DNA methylation associated with aging in a
cell intrinsic manner (IntrinClock), and a change in cell composition

associated with aging. Due to the IntrinClock’s resistance to changes in
immune cell composition, the CpG sites that constitute the clock may have
more readily interpretable cell-autonomous biology as they are less likely to
trackmarkers of changing immune cell composition. This prediction could
be particularly helpful in the context of identifying a functional or causal
relationship between epigenetic clock sites and aging. We found that the
sites in the IntrinClock that are hypermethylated with age are enriched
within the region 200–1500 bp upstream of gene transcription start sites
(25% in the clockvs 15%globally,p-value = 8.5*10−5), and correspondingly
strongly depleted in sites distant from genes (17% in the clock vs. 25%
globally, p-value = 0.008) (Fig. 4A). In sites that are hypomethylated with
age, there was a significant enrichment within the first exon of genes (8% in
the clock vs. 5% globally, p-value = 0.045) (Fig. 4B). DNA methylation
changes within 1500 bp of the transcription start site aremost closely linked
to alterations in gene expression101. Similarly, IntrinClock CpGs are enri-
ched for being located near CpG islands (45% in the clock vs. 31% globally,
p-value = 1.9 * 10−9) and are depleted from open sea regions (20% in the
clock vs. 36% globally, p-value = 2.3 * 10−10) (Fig. 4C).

Transcription factor activity and DNA methylation are biologically
connected both directly, as in the case of the OCT4 transcription factor pre-
ferring to bind to methylated DNA102, and indirectly, as in the case of passive
methylation from lack of TF binding103,104. We investigated regions within

Fig. 3 | Epigenetic age accelerationsmeasured by different clocks. ADifferences in
epigenetic age accelerations in different CD8+ subsets generated in this study.
Horvath clock predictions overlaid in light gray. B Epigenetic ages of CD8+ naive
cells and effector memory cells, based on data from GSE66564 and GSE83156.
C Epigenetic ages of CD4+ naive cells and central memory cells, based on data from
GSE121192 andGSE71825.D Epigenetic ages of PBMCs, CD8+ naive, CD8+ central

memory, CD8+ combined effector andTEMRA,CD4+naive, CD4+ centralmemory,
B-cell naive, B-cell switched memory, CD16+CD56dim NK, and classical monocyte
cells. E–I Association of percentage of e, effector memory CD8+ cells, f, central
memory CD4+ cells, g, class-switched B cells, h, CD16+ CD56dim NK cells, and i,
classical monocytes with epigenetic age acceleration. Samples derived from N = 9
individuals.
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40 bp of IntrinClock CpG sites and used HOMER105 to identify enriched
motifs associated with transcription factor-binding sites (Fig. 4D). Motifs
associated with TFAP2C, ZNF341, ZFP57, RUNX1, E2F3, HOXA1, SP4,
MYB, GRHL2, MGA, IRF3, and INSM1 binding were significantly enriched,
compared to a 40-bp background of basepairs surrounding CpG sites that are
assayed by both Illumina Infinium HumanMethylation450K and Methyla-
tionEPIC chips. Aberrant activity of each corresponding transcription factor
has been associated with cancer development or worsened prognosis80,106–116.
Some of these, such as E2F3117 and IRF3118, have been associated with aging-
related diseases, whereas a connection for others has yet to be discovered.

We were interested in exploring general patterns of shifts in Intrin-
Clock CpGswith age. To avoid uneven distribution of tissue samples across
age groups, we focused our analysis on blood samples. Given that a linear
regression model was used to build the IntrinClock, we were not surprised
that the two most prevalent patterns were a linear decrease and increase,
respectively, ofDNAmethylationwithage (Fig. S7).However,we also found
several CpGs (Clusters 4, 5, and 6) where the CpGs reverse their age-related
direction of DNAmethylation around the age of 21–30. This indicates that,
for a subset of CpGs in the IntrinClock, there is a distinction between the
processes of maturation and aging after sexualmaturity. Interestingly, these
CpGswere 2.3-fold (34%vs. 14.9%) enriched for being located200–1500 bp
upstreamof a TSS, and 2-fold (19.4% vs. 10%) enriched for being located on
a genomic south shore region (Fig. S8), which are more pronounced
enrichments than identified for IntrinClock sites generally (Fig. 4A–C).

IntrinClock epigenetic age is accelerated in models of intrinsic
hallmarks of aging and in HIV+ individuals
HIV has been associated with changes in DNA methylation state119,120,
including changes in epigenetic age75. HIV infection is associated with a
plethora of clinical manifestations and morbidities consistent with accel-
erated aging. However, HIV also causes major changes in immune cell

composition121, which could skew previous versions of epigenetic clocks. As
a result, it is unclear whether early results showcasing epigenetic age
acceleration during HIV infection are due to changes in blood cell com-
position or an accelerated intrinsic rate of aging. Using the IntrinClock on
previously generateddata fromHIV+ individuals and controls,we identified
an HIV-associated increase in epigenetic age of two years (t-test p-value =
0.04), supporting the model that HIV leads to accelerated aging indepen-
dently of shifts in immune cell composition (Fig. 5A). Furthermore, using a
previously described cell composition prediction algorithm122 combined
with a validated library123 generated on the HumanMethylation450k plat-
form,wewere able to predict changes in ten different immune cell types and
their correlations with clock residuals and HIV status. We observed no
association between IntrinClock residuals and immune cell proportions,
including in the cases of eosinophils and neutrophils (Fig. 5B). In contrast,
we observed significant associations using other epigenetic clocks, in a
manner paralleling the changes seen in HIV (an increase in NK cells and a
decrease in neutrophils).

We also sought to investigate whether the IntrinClock would be
accelerated by other acute immune-related diseases. Using a dataset pri-
marily generated in 2020, we found that the IntrinClock age prediction was
not affected by COVID-19 (t-test p-value = 0.88; Fig. 5C), contrary to
findings in other epigenetic clocks where COVID-19 infection was asso-
ciated with an increase in epigenetic age124. We utilized a library generated
on the MethylationEPIC platform125 to predict changes in immune cell
proportions in individuals with COVID.We did not observe an association
of IntrinClock residuals with the relative proportions of any cell type
(Fig. 5D). Unlike in the case of HIV infection, the associations between the
epigenetic clock residuals of other epigenetic clocks and immune cell type
proportions were more variable. The relationship between the residuals of
several epigenetic clocks and immune cell type compositionmatch the data
we obtained on sorted populations, with naïve B and T cells generally

Fig. 4 | Distributions of CpG positions.
ADistributions of CpG positions relative to genes in
IntrinClock sites that are hyper-methylated with age
relative to background. B Distributions of CpG
positions relative to genes in IntrinClock sites that
are hypo-methylated with age relative to back-
ground.CGenomic distribution of IntrinClockCpG
positions. D HOMER analysis of the top 12 motifs
enriched within 19 bp on either side (5′ or 3′) of
IntrinClock sites (40 bp total). *** one-sample
proportion t-test p-value < 0.001; * < 0.05.
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positively correlatedwith epigenetic age andmemoryT cells associatedwith
older epigenetic age prediction. As the data analyzed in this study
were generated early in the COVID-19 pandemic, most individuals
would have been acutely, rather than chronically, ill with COVID-19. It
remains to be seen whether the IntrinClock will predict a higher epigenetic
age in those who are infected with COVID-19 for a prolonged period (i.e.,
long COVID).

One application of epigenetic clocks is in tracking the effect of reju-
venating or aging interventions on cells. As the IntrinClock was developed
on sites that are not shifting due to immune cell compositional changes, we
reasoned itmaybemore sensitive to such interventions.Consistentwith this
idea, we used an external dataset126 tofind that the IntrinClock is sensitive to
Yamanaka factor–mediated reprogramming in fibroblasts. The study
authors sorted cells positive for TRA-1-60+, amarker for de-differentiation,

at six time points after initiation of reprogramming. We investigated
IntrinClock epigenetic age predictions at each time point and found that,
from an initial mean predicted epigenetic age of 31, the age prediction
decreased to 20 after 11 days of OSKM-mediated reprogramming (t-test p-
value = 0.03). A mean age of 0 was reached after 20 total days of repro-
gramming (Fig. 5E). Conversely, using publicly available data using an
in vitro fibroblast model of replicative cellular senescence127, we found that
the IntrinClock was progressively accelerated with cell divisions as cells
become progressively more senescent. IntrinClock predicted values were
greater after 14 population doublings (predicted age of 15 vs. 10), and then
greater still with a predicted age of 20 after another 14 population doublings
(t-test p-value = 0.038; Fig. 5F). This effect was comparable to that seen
using the PhenoAge clock, and stronger relative to the Hannum, Horvath,
and Horvath Skin & Blood clocks (Fig. S9).

Fig. 5 | Impact on disease and in vitro interventions on the IntrinClock.
A IntrinClock epigenetic age in HIV+ and HIV- individuals, DNAmethylation data
from GSE67751. Samples derived from N = 92 individuals. B Correlation plot of
HIV status, clock residuals, and predicted immune cell type proportions.
C IntrinClock epigenetic age in COVID positive and COVID negative individuals,
DNAmethylation data fromGSE167202. Samples derived fromN = 525 individuals.
DCorrelation plot of COVID status, clock residuals, and predicted immune cell type

proportions. E Epigenetic reprogramming affects fibroblast predicted IntrinClock
age. DNAmethylation data from GSE54848. N = 3 independent biological samples.
F Induced replicative senescence in fibroblasts leads to an increase in IntrinClock
predicted age. DNAmethylation data fromGSE91069.N = 3 independent biological
samples. T-test p-values # < 0.10; * < 0.05; *** < 0.001. Boxplots are centered at
median and bound one quartile on each side.

https://doi.org/10.1038/s42003-024-06609-4 Article

Communications Biology |           (2024) 7:934 7



Discussion
Epigenetic clocks hold great promise for the study of longevity due to their
high correlation with age and (particularly for second-generation clocks)
association with aging-related disease state. As diagnostic tools, they have the
potential to serve as important predictive biomarkers for assessing biological
age, determining risk for age-associated diseases, and assessing the efficacy of
interventions that target the aging process128–132. Recent technical advances,
such as the development of principal component clocks133 and novel tech-
niques for cost reduction134, promise to increase reliability and usability fur-
ther. However, their current status as a composite of multiple aging signals
makes themdifficult to interpret and to link to specificbiological processes.As
anexample, a recent study inpatientspost-COVID19 infectiondemonstrated
a significant PhenoAge epigenetic age acceleration in individuals over the age
of 50, but an epigenetic age reversal for those under the age of 50124. Further,
themanner inwhich clocks trackhealthspan is not fully overlapping, as clocks
can be independently predictive of mortality even when analyzed jointly135.
This challenge in interpretation is equally important for cellularmodels of the
hallmarks of aging. Inmodels of senescence or reprogramming, the sensitivity
or even direction of the perturbation on predicted epigenetic age can dra-
matically differ, depending on the epigenetic clock used. For example, in this
study, we identified the Hannum clock as predicting an age reversal in a
fibroblast model of cellular replicative senescence (Fig. S9).

The immune system changes dramatically with aging, and its decline
can exacerbate or lead to many aging-related pathologies136. Clocks built
solely on inflammatory markers can be used to predict age and risk of
multimorbidity137. However, the presence of CpG sites that track primarily
with immune cell markers makes epigenetic clocks applied to cell-intrinsic
effects (e.g., cellular reprogramming in fibroblast cell culture) difficult to
understand. Such sites can introduce background noise to the resulting
measurement.

Here, using sorted CD8+ T-cell subsets, we observed that naive T cells
consistently showed a younger epigenetic age than other CD8+ subsets
(Fig. 1C), ranging from a 10-year average age under-prediction in some
clocks to as high as a 60-year underprediction in others. We furthermore
demonstrate that epigenetic clocks predict different ages depending on the
cell type measured in subsets other than T cells, including in B cells and
monocytes (Fig. S6). As many of these cell subsets are a substantial pro-
portion of cells found in blood, it demonstrates cell composition plays a role
in determining epigenetic age. Altogether, the cell subsets assessed in this
study compromise between 40-60% of the PBMC blood cell fraction, and
many of these subsets change in relative proportion with age138. These
observations reinforce the finding that current epigenetic clocks represent
the integration of at least two variables: cell intrinsic aging and changes in
immune composition during aging.

To isolate these variables, we developed an epigenetic clock that is
based on CpG sites that do not change with CD8+ T-cell differentiation
(IntrinClock). We further observed that this clock predicts the same age in
each individual across a wide variety of immune cell types. Interestingly, a
filtering step based on naive CD8+ T cells can generate a clock that is not
correlated with differentiation state in cells from different lineages, such as
CD4+ cells or even B cells. This indicates part of a unique “CD8+ naive”
signalmay, in fact, be a conserved quiescence program shared by a variety of
immune cells. This observation is supported byourfinding thatmethylation
patterns associated with naive CD8+T cells have a negative correlationwith
those changing with aging (Fig. 2C). A connection between quiescence and
aging is found in a wide variety of cell types, including neural stem cells139.

The IntrinClock’s higher proportion of sites near transcription start sites
and CpG islands and its expected relationship with reprogramming and
senescence suggest that it is tracking an intrinsic cellular aging program.
Enrichment of IntrinClock CpG sites within motifs bound by transcription
factors linked to cancer progression is consistent with a recent review
investigating the connection between epigenetic clocks, global hypomethy-
lation, cancer, and aging140. It will be important in the future to test whether
acceleration of the IntrinClock is linked to disease states. This application
could be a novel tool used to distinguish age-related diseases caused by

aberrant cell-to-cell interactions from those caused by intrinsic cellular dys-
function. Further improvement could also be made on the IntrinClock
design, suchasby removing tissue-specificDNAmethylation signatures from
training. Although most IntrinClock CpG sites are not linked to tissue, a
minority appear to be tissue-stabilizing for blood and brain tissue (Fig. S10).

The approach described here reduces the potential of cellular compo-
sition changes to be a confounder, particularly in blood or saliva samples, and
will likely increase our understanding of biological aging and age-associated
diseases. The IntrinClock holds the promise of being more sensitive to cell-
intrinsic rejuvenation approaches, as its constituentCpGsites arenot affected
by immune cell composition. It may also bemore closely linked to CpG sites
with a functional or even causal relationship with the aging process. Overall,
IntrinClock represents an instrument to add to the aging biomarker toolkit,
with a potential wide variety of applications and uses.

Methods
Immune cell isolation, sorting, and DNA extraction
PBMCs were extracted from leukopheresis chambers from CMV+ donors.
Donors were volunteers who donated plasma at a blood donation center in
San Francisco after passing a health screening. Blood was first diluted 1:1
with PBSwith 2% FBS. Diluted blood was slowly layered on top of 12mL of
Ficoll in a 50-mL Falcon conical tube. The tube was then centrifuged for
30minutes at 2000 rpm at 21°C without applying a break. The layer con-
tainingwhite blood cellswas removed, dilutedwith FBS-supplementedPBS,
and centrifuged for 3minutes at 2500 rpm. The cell pellet was re-suspended
in 15mL of ACK lysis buffer and incubated for 3minutes. The cells were
topped up with PBS with 2% FBS, centrifuged, and resuspended.

For the initial CD8+ epigenetic clock characterization experiment, an
EasySepTM Human T Cell Isolation kit was used to extract T cells from the
PBMCfraction.Tcellswere thenwashed, stainedwith 1:500LIVE/DEADTM

Fixable Near-IR Dead Cell staining kit, washed, stained with an antibody
cocktail (Supplementary Table 2), and washed again. FACS was performed
onaBDFACSAriaTM II instrument.DNAwas isolatedusing aZymoQuick-
DNATM Microprep Plus kit.

For the second comprehensive immune cell-sorting experiment, 2
million PBMCs were frozen immediately after extraction. The remaining
cells were then positively selected for a CD4 fraction using the EasySepTM

HumanCD4Positive SelectionKit II. TheCD4 cellswere stainedwith 1:500
LIVE/DEADTM Fixable Near-IRDead Cell staining kit, washed, and stained
with CD4/CD8 antibody cocktail (Supplementary Table 2), and the
remaining cells were positively selected for a CD8 fraction using the
EasySepTM Human CD8 Positive Selection Kit II. Both CD8+ cells and
remaining PBMCswere washed, stained with 1:500 LIVE/DEADTM Fixable
Near-IR Dead Cell staining kit and washed again. CD8+ cells were stained
with a CD4/CD8 antibody cocktail (Supplementary Table 2), and the
remaining PBMCs were stained with a B Cell/NK Cell/Monocyte antibody
cocktail (Supplementary Table 3), after blocking with human IgG. The
gating strategy for T cell sorting is shown in Supplementary Fig. 1, and the
gating strategy for remaining PBMCs is described in Supplementary Fig. 2.
All three fractions were then subjected to FACS analysis using a BD
FACSAriaTM II instrument. DNA was isolated using a Zymo Quick-DNA/
RNATM Microprep Plus kit.

For both experiments, DNAwas quantified using QubitTMHS dsDNA
quantification reagents. Bisulfite conversion and DNA methylation
assessment were performed by Diagenode. For all experiments involving
FACS, post-sort validations were performed to verify cell sort purity by
analyzing sorted populations via flow cytometry. The Clock Foundation
assisted with facilitatingDNAmethylation assessment and data transfer for
the initial CD8+ experiment.

High-dimensional flow cytometry
PBMCs were transferred to a 96-well V-bottom plate. Cells were re-
suspended in a 1:500 dilution of LIVE/DEADTM Fixable Blue Dead Cell
Stain kit in cold PBS and incubated for 30minutes in the dark. Cells were
then washed and blocked with human IgG for 30minutes. They were then
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washed twice and stained with a PBMC phenotyping antibody cocktail
(Supplementary Table 4). Cell phenotyping was performing on a Cytek
AuroraTM instrument and analyzed using FlowJoTM. The flow cytometry
analysis strategy is described in Supplementary Fig. 3.

DNAmethylation analysis and pre-processing
idat files were converted into beta values by using the minfi R package141,
with a functional normalization pre-processing step142. For differential
methylation analyses, beta values were converted to M-values through the
formula M = log2(B / (1-B)). The R package umap was used for UMAP
dimensionality reduction142,143.

Dataset collection and pre-processing
All datasets used to build the novel epigenetic clockwere either generated in
this study or downloaded from GEO. Exact ages were obtained for GTEx
data through dbGaP144, as exact chronological ages of tissues were required.
For constructing the clock, the assembled database of DNA methylation
datawasfirst culledof any samples thathadmore than10%ofCpGsmissing
and of any CpGs that had more than 10% samples missing. All samples
derived fromcancer tissueswere removed. To ensure forward compatibility,
we filtered out CpGs that were not on the Infinium MethylationEPIC v2.0
array. Based on our CD8+DNAmethylation data, we tested the correlation
of each CpG methylation with age and with naive CD8+ T cells. To assess
whether CpGs were correlated with naive CD8+ cells, we binarized each
naive sample as “ 1” and each non-naive (CM, EM, TEMRA) sample as “ 0”
and then used the R cor function to compute a Spearman’s correlation
betweenmethylation andnaiveT-cell state. All CpGswith an absolute value
correlation of .3 or greater with naive T-cell state were removed, and all
CpGswith an absolute value correlation of .3 or less with agewere removed.

Once CpGs and samples were filtered, the samples were split 75% for
the training set and 25% for the test set. Imputation of missing was per-
formed separately between training sets and test sets, and separately between
different tissues within training sets and test sets (imputation performed
using the impute R package145). Outliers were detected and removed using
the outlyx function in the R watermelon package146. Untransformed beta
values were used formodel creation and age prediction. Prior to training the
model, ages were transformed using Horvath’s formula used in his original
epigenetic clock2. An elastic net model using glmnet147 was used to develop
the IntrinClock, with alpha value set at .5. Once the first model was gen-
erated, the training data were a subset of only those CpGs with non-zero
coefficients, whichwere used for training thefinalmodel. The regularization
parameter for both elastic net models was generated using cross-validation
(cv.glmnet() function) with ten folds.

Statistics and reproducibility
For comparisons between two measurements from one individual, as in
Fig. 1B, C, paired t-tests were used for assessment of significant changes. For
multiple comparisons between a group and a background reference, as in
Fig. 4A, B, andC, one-sample proportional tests using the prop.test function
from the R stats package were utilized with Bonferroni multiple-
comparisons correction. For samples of multiple measurements, t-tests
with Bonferroni multiple-comparisons corrections were used to test sig-
nificance. Most graphs and figures were created with aid of the ggplot R
package148.

Motif enrichment and pattern analyses
Formotif enrichment analysis, theHOMER software toolwas utilized105. To
define sequences of interest, we investigated 40-bp windows surrounding
the 381 CpG sites that compose the IntrinClock. As a background, we
investigated 40-bp windows around CpG sites in our dataset immediately
before removal of CpG sites associated with naive CD8+ cells and those not
associated with aging. For investigating patterns of IntrinClock CpG shifts
with age, beta values from blood samples were converted to M values, after
which the degPatterns function from the DEGreport R package149 was uti-
lized. Patterns with fewer than 10 CpG sites were discarded from analysis.

Ageswere binned into groups of 10 (0-10, 11-20, 21-30, 31-40, 41-50, 51-60,
61-70, 71-80, 81+). Each bin was confirmed to have at least 100 samples.

Epigenetic age acceleration analysis
To compute DNA methylation age for each epigenetic clock, the R
methylclock package was utilized150. For experiments containing a limited
number of donors or cell types, epigenetic age acceleration was defined as
the difference between epigenetic age prediction and chronological age. For
larger studies, epigenetic age acceleration was defined as the residual after
regressing predicted epigenetic age on chronological age. To analyze asso-
ciations between epigenetic clock residuals and predicted immune cell
proportions, the estimateCellProp function from the ENmix151 package was
utilized along with the corrplot152 package for plotting.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
DNA methylation profiles generated in this study are publicly available
under accession code GSE252045. Publicly available data used to generate
the IntrinClock is listed in Supplementary Table 1. Source data underlying
main figures are provided in Supplemental Data 1.

Code availability
Code used to generate the results in this study is available on Zenodo with
https://doi.org/10.5281/zenodo.10426597153.
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