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Foraging confronts animals, including humans, with the need to balance exploration and exploitation:
exploiting a resource until it depletes and then deciding when to move to a new location for more
resources. Research across various species has identified rules for when to leave a depleting patch,
influenced by environmental factors like patch quality. Here we compare human and gerbil patch-
leaving behavior through two analogous tasks: a visual search for humansand aphysical foraging task
for gerbils, both involving patches with randomly varying initial rewards that decreased exponentially.
Patch-leaving decisions of humans but not gerbils follow an incremental mechanism based on reward
encounters that is considered optimal for maximizing reward yields in variable foraging environments.
The two species also differ in their giving-up times, and some human subjects tend to overharvest.
However, gerbils and individual humans who do not overharvest are equally sensitive to declining
collection rates in accordance with the marginal value theorem. Altogether this study introduces a
paradigm for a between-species comparison on how to resolve the exploitation-exploration dilemma.

“Should I stay or should I go? “In natural situations, foraging animals
constantly find themselves confronted with the dilemma to either keep
exploiting a current source of energy thereby depleting itmore andmore, or
to move on and explore the environment for novel sources of energy.
Overall, there is no clear rule fordecision-makingonwhen to stop exploiting
and when to start exploring. This so-called patch-leaving behavior can be
driven by external events as well as by internal urges1,2. Here, we report
results from a behavioral study inwhichwe tested 52 human participants in
a probabilistic foraging task and compared their patch-leaving behavior to
that of 18 gerbils. For this purpose, we designed two distinct foraging tasks
suitable for the respective species. Yet, the two tasks were similar enough in
their principle operationalizations to allow the comparison between human
and rodent patch-leaving decisions. Our central goal was to analyze the
reward-dependent foraging behavior across the two species using two
specific paradigms that can eventually pave the way for future research on
cross-species comparisons. Importantly, our approach does not imply that
specific patch-leaving behaviors can be expected to occur universally,
independent of the experimental paradigms used.

The human participants engaged in a visual foraging task embedded
within a visual search paradigm3,4. This task mirrors the foraging environ-
ments encountered by animals, including our hunter-gatherer ancestors,
where resources are spatially and temporally distributed across patches,
such as different forest districtswith varying prey richness. Foraging in such
environments involves serial decision-making and incurs temporal travel
costs as animals move from one patch to another. This aspect of foraging is
better captured ina serial visual search task, asopposed to traditional bandit-
like gambling tasks used to study the exploration-exploitation dilemma5,6,
where decisions involve simultaneous choices. In our task, participants
searched for target items among distractors on monitor displays, deciding
whether to continue searching the current display or switch to a new one by
pressing a button. Each successful find earned a monetary reward. This
approach aligns with previous studies combining serial visual search with
patch-based foraging tasks3,4. Adapting similar experimental conditions for
rodents, we used an established paradigm7 where gerbils foraged in a box-
like arenawith two spouts dispensing food rewards. Bothhumanand rodent
tasks shared a probabilistic and patch-based structure, with reward prob-
abilities decreasing exponentially, thus simulating a natural foraging
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environment where success declines the longer foragers remain in the same
patch. Thus, both animal and human subjects were comparably forced to
make patch-leaving decisions to achieve optimal foraging.

Aplethora of theories and formalmodels have beenproposed tomodel
the decision-making process that results in exploration and to predict the
optimal time for patch-leaving8–10. One common assumption is that varia-
tions in environmental reward probabilities and patch quality influence
patch-leaving behavior, helping to identify decision rules about the optimal
time to leave a patch11,12. Our study focuses on the extent to which human
and rodent foragers utilize implicit probabilistic knowledge and their own
reward histories in making patch-leaving decisions. The Marginal Value
Theorem (MVT), introduced byCharnov in 19768, is a prominentmodel in
our research. It suggests that foragers should leave a patch when the
instantaneous collection rate (ICR) of rewards falls below the mean col-
lection rate (MCR) of the environment, implying that foragers must access
and utilize their memory of recent foraging experiences to track their cur-
rent and average energy intake. To promote the use of a probabilistic patch-
leaving rule based on reward history, we manipulated reward probabilities
in two ways. Firstly, both experimental paradigms introduced an expo-
nential decay of rewards,mimicking a quickly depleting food source7. In the
rodent paradigm, after a gerbil received a reward from nose-poking, the
probability of receiving another reward at the same spout decreased expo-
nentially toward zero. Similarly, in the human task, once a target item was
collected, it became inactive and remainedon thedisplay; additionally, other
target items were progressively deactivated. This meant that fixating on
these deactivated targets did not yield a reward. The number of target
deactivations followed the same exponential decay functions used in the

gerbil task. This setup increased the difficulty of the search over time,
encouraging participants to switch to a new display. At the same time, we
avoided using a Poisson distribution for reward probabilities. Under a
Poissondistribution, the number of prey in a patch is expected to be random
and independent of the time spent in the patch13. Consequently, the
expected rate of reward does not decline over time, as it typically would in
environmentswhere resourcesdeplete due to time spent in thepatch.With a
Poisson reward distribution, the optimal strategy is to spend a fixed amount
of time in each patch, regardless of the number of rewards collected, and
thenmove to the next patch. This ‘fixed-T rule’maximizes the expected rate
of reward per unit time, as the average number of reward items found in a
given area or time is constant and does not depend on the duration of the
search13. This strategy does not require knowledge of the subjective average
and instantaneous reward intake rates. However, this becomes suboptimal
when the reward probability decreases as a function of residence time, as is
the case in our tasks.

In addition, the initial reward probabilities varied randomly among
high (100%),medium (75%), and low (50%) levels. Importantly, these patch
qualities were not initially indicated to the participants. This design pre-
vented patches from having a uniform number of available rewards, which
would make the optimal patch-leaving rule a simple matter of collecting a
fixed number of rewards, such as 10, before leaving (i.e., thefixed-N rule, see
Fig. 1b). Such a strategy becomes suboptimal in environments where patch
quality varies greatly, and foraging time is limited12. In low-quality patches,
foragers adhering to the fixed-N rule would spend excessive time collecting
the predetermined number of rewards, reducing their overall capture rate
given the limited available foraging time. Similarly, using a fixed-T rule in

Fig. 1 | Simple heuristics to time patch-leaving decisions. Using a fixed-time rule
(a), the patch is left independent of the number of prey encounters (green stars),
whereas a patch is left after a fixed number of prey encounters have been found if a
fixed-number rule is used (b). According to incremental rule (c), each prey capture

increases the probability of staying in a patch, postponing the patch-leaving. Using
the giving-up-time rule (d), the tendency to stay in the patch declines as a function of
an unsuccessful search and each prey capture resets this tendency to a maximum.
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poor-quality patcheswould result infixed time intervals of foragingwith few
or no rewards, as foragers would continue until the predetermined time is
reached, regardless of success. Therefore, environmentswith highly variable
patch qualities necessitate a different behavioral adaptation for optimal
foraging.

In such environments, it is challenging to reliably estimate the quality
of a patch upon entry, but each reward capture suggests that the current
patch is ofhighquality, thereby increasing the tendency to stay12.This results
in an incremental mechanism (see Fig. 1c). The probability of staying in a
patch initially decreases upon entering anewpatch, but each reward capture
subsequently increases the likelihood of remaining14. This rule allows for-
agers to rely primarily on their success in foraging to guess the patch quality,
rather than needing to estimate it initially, which can be difficult or
impossible. Foragers using this rule tend to spendmore time in high-quality
patches compared tomedium and low-quality ones. Additionally, each new
reward capture should incrementally extend the forager’s residence time,
regardless of thepatch’s quality.Therefore, regressing residence times on the
number of rewards captured at the subject level should yield positive slopes.

Like the incremental rule, the Giving-Up Time (GUT) rule10,15 (see
Fig. 1d) does not require prior knowledge or judgment about the quality of
a patch. TheGUT rule posits that a forager tolerates only a certain amount
of time without finding a new reward since the last capture. Once this
temporal threshold is exceeded, the forager leaves the patch. This
mechanism can be compared to a countdown timer that starts as soon as
the forager enters a patch. Each reward capture resets and restarts this
timer. If no reward is captured before the timer expires, the forager departs
from the patch. Consequently, in patches with high reward probability,
where prey is encountered more frequently, the timer is reset more often,
leading foragers using the GUT rule to spend more time in high-quality
patches compared to lower-quality ones. GUT durations should also be
consistent within individuals and exceed the durations of intervals
between two target captures (inter-target times, ITT): if a subject’s GUT
threshold is 4 s, then their ITT should always be shorter than or equal to 4 s
because the subject will leave the patch once the ITT exceeds this
threshold. Like the incremental rule, the GUT rule utilizes past success to
estimate future success and does not necessitate a prior assessment of
patch quality. This makes the GUT rule particularly effective in envir-
onments with patches of varying quality and where patch quality is dif-
ficult to determine in advance12.

Given the rapid depletion of rewards and the unpredictable variations
in patch quality, we hypothesized that both humans and gerbils are sensitive
to variable reward probabilities and adopt either an incremental or a GUT
rule to optimize their patch-leaving decisions, similar to mice tested in a
comparable foraging task whos’ patch-leaving behavior was best explained
by amodelwhere reward captures incrementally increased theprobabilityof
staying, analogous to the incremental rule. This led to optimal timing of
patch-leaving as the mice’s ICRs at the time of leaving were statistically
indistinguishable from the MCR7. Thus, we predicted that also our gerbils’
ICRs would approximate their MCRs at the time of leaving.

Previous studies have shown that humans performing a visual search-
based foraging task do not necessarily conform to this prediction of the
MVT, often residing longer than predicted by the theory. This appears to be
particularly the case when subjects have the option to switch between target
types within the same display, when the patch quality varies greatly4 (i.e.,
when subjects foraged in patches that had one out of ten randomly chosen
reward probabilities), or when visual information is reduced to the extent
that foragers can no longer discernwhether a target item is associatedwith a
reward4. This evidence suggests that when foraging tasks become more
complex, patch-leaving behavior may no longer align with the MVT.
Compared to these studies, our human task was less complex because
subjects searched for one target type only (no switches between targets), and
theunderlying rewardprobabilitywas varied inonly three conditions.Given
these simpler conditions, we also expected humans’ ICRs to approximate
the MCRs at the time of leaving, consistent with the MVT.

Results
The number of reward captures and residence times increased
with patch quality
Timing patch-leaving decisions by a fixed number of reward capture (i.e.,
the fixed-n rule) would result in equal numbers of rewards- across patches.
Inconsistent with this, our human foragers showed an increased number of
reward captures with increasing patch quality, F(2,82) = 449.848. The
average number of reward captures did not differ between humans tested in
the PC laboratory and those tested in the fMRI lab, p = 0.259. The highest
number of rewardswas yielded inhigh-quality patches [M= 11 ± 3], a lower
number of rewards was captured in medium-quality patches [M= 8 ± 3,
t(40) =−4.606, p = 0.001], and the lowest number in low-quality patches
[M= 5 ± 2, t(40) =−10.196, p = 0.001].

The same pattern of results was observed in the foraging gerbils. They
also achieved more reward captures with increasing patch quality:
F(2,34) = 1052.868. The reward yield in low-quality patches was 2 ± 0.3
rewards on average, in low-quality patches, 3 ± 0.3 in medium-, and 4 ± 0.3
inhigh-quality patches.Thedifferenceswere statistically significant between
high- and low- [t(16) =− 22.095,p < 0.001], and high- andmedium-quality
patches [t(16) =−10.240, p < 0.001]. Point plots of averaged median
rewardsobtained as a functionof patchquality (i.e., start rewardprobability)
for both species are shown in Fig. 2a.

The fixed-time rule states that a foragerwould spend an equal amount
of time in a patch regardless of the current intake rate or given patch
quality. Thus, onewould expect equal residence times across all three patch
qualities. Trial durations did not differ between both human samples and
were again averaged for the analysis, [fMRI: M = 41.992 ± 17.330; PC:
M = 37.714 ± 17.617, t(40) = 0.773, p = 0.221]. Unlike the prediction of the
fixed-time rule, humans’ averagedmedian residence timesweremodulated
by the reward probability, F(2,82) = 66.955, p < 0.001, with the longest
average residence times of 45.594 ± 17.506 s in the high-quality patches,
followed by 40.561 ± 17.453 s in medium-quality, and the shortest resi-
dence time [33.100 ± 19.100] in low-quality patches. Yet, post hoc tests
showed that only residence times in high-quality patcheswere significantly
higher than those in low-quality patches, t(41) =−3.132, p = 0.006; low vs.
medium: Tukey’s HSD p = 0.152, medium vs. high: p = 0.421).

Similarly, gerbils’ residence times increased with patch quality,
F(2,34) = 38.761, p < 0.001. The averaged median time that gerbils spent in
the low-quality patches [13.675 ± 1.021 s]was on average 7.293 ± 1.342 (SE)
s shorter than the averaged median time spent in high-quality patches
[20.968 ± 4.138 s, t(16) =−5.435, Tukey’s HSD p < 0.001] and the averaged
median residence time inmedium-quality patches [16.786 ± 3.324 s]was on
average −4.182 ± 1.342 s shorter compared to high-quality patches,
t(16) =−3.117, Tukey’s HSD p < 0.001. Averaged residence times as a
function of patch quality (i.e., start reward probability) for both species are
shown in Fig. 2b.

Given the rapid depletion of rewards, subjects were encouraged to
readily leave a current patch instead of spending too much time in it.
Consistentwith this, human residence timeswere negatively correlatedwith
the total number of reward earnings (in €) they yielded in an entire foraging
session [PC-lab: r Pearson =−0.717, p < 0.001; fMRI-lab: r Pearson =−0.653,
p = 0.002] (see Fig. 2c, d). In other words, the more time subjects invested
searching per patch, the less earnings they yielded throughout the entire
experiment.Noevidence for such a relationshipwas found in thegerbil data,
[r Pearson = 0.280, p = 0.258].

Splitting groups by their median giving-up times
We observed a large variation in human participants’ residence times
[range = 66.936 s] and giving-up times [GUTs; range = 14.419]. This was in
stark contrast to the very consistent gerbil data (range of residence time =
7.866 s; range of GUT = 3.580). In human participants, residence times
strongly correlated with the GUTs, r Pearson = 0.729, p < 0.001. Like human
residence times, GUTs of both the PC- and the fMRI-lab samples
correlated negatively with total earnings, r Pearson =−0.668, p < 0.001,
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r Pearson =−0.676, p = 0.001. No such correlation was found in gerbils,
r Pearson = 0.350, p = 0.153.

Thus, to better account for the heterogeneity in humans, we split
the group by its median GUT (6.951) into a long- and a short-GUT
group [long-GUT, n = 20: residence time: M = 49.960 ± 14.729 s, GUT
M= 10.414 ± 2.036 s; short-GUT, n = 20: residence time M = 30.415 ±
14.729 s, GUT M= 4.138 ± 1.842 s]. Both residence times and GUTs for
both subgroups are shown in Fig. 3a, b). Unsurprisingly, the long-GUT
subjects had significantly longer residence times compared to short-GUT
subjects, t(42) = 4.412, p < 0.001. GUTs were, on average, significantly
longer in the fMRI subjects, [fMRI: M = 8.510 ± 3.543; PC:
M = 5.858 ± 3.378; t(40) = 2.414, p = 0.021. This means that more fMRI
subjects entered the long-GUT group (15 out of 21 subjects), while more
PC-lab participants were included in the short-GUT group (14 out of 21).
Yet, importantly, within the short- and long-GUT groups, there were no
differences in GUTs between fMRI and PC-lab participants, [long-GUT,
p = 0.145, short-GUT, p = 0.150].

For comparison,we also split the groupof gerbils in the sameway into a
long-GUT, [GUT M= 5.690 ± 0.780 s, residence time M= 19.004 ±
1.127 s], and a short-GUT group [GUT M= 4.347 ± 0.390, residence time
M= 15.282 ± 0.843 s]. Also, in gerbils, residence times were significantly
longer in the long-GUT group, t(16) = 4.946, p < 0.001, but in contrast to
humans, the two groups of gerbils did not differ in the total reward captures,
p = 0.722. Figure 3d shows the gerbils’ residence times as well as GUTs as a
function of patch-quality for both groups.

Prolonged giving-up times indicate a bias for exploitation
in humans
An optimal GUT rule should account for differences in patch-quality with
longerGUTs inbetterpatches (McNair, 1982). In contrast to this prediction,
already Fig. 3b) shows that the long-GUT humans invested the longest
GUTs with an average of 11.033 ± 2.896 in low-quality patches. Compared
to this, GUTs decreased to 10.006 ± 2.422 in medium-, and to
9.699 ± 2.127 s in high-quality patches. Yet, a one-way ANOVA provided
no evidence for true differences, Friedman F(1.905, 38.095) = 2.674,

p = 0.084. In the short-GUT group of humans, average GUTs were
4.250 ± 2.246 s in low-, 3.959 ± 1.940 s in medium-, and 3.769 ± 1.840 s in
high-quality patches. This time, we found a significant effect of patch-
quality on GUTs, Friedman F(1.905, 38.095) = 3.333, p = 0.049. Post-hoc
tests provided anecdotal evidence for different GUTs between high- and
low-quality patches, p = 0.054

GUTs with comparable durations across patch types would still be in
accordance with a simple GUT rule that does not account for differences in
patch-quality. If participants applied such a rule, their GUTs should then
consistently exceed previous time intervals between two consecutive reward
captures (i.e., inter-target times, ITT). This is because participants using a
fixed GUT to time the patch-leaving, would leave a patch before their ITTs
exceed their GUTs because they only tolerate the fixed duration (i.e., the
GUT threshold) without a new capture. Averaged ITTs and GUTs as a
function of patch-quality are shown in Fig. 4a) for each long-GUT subject
and in Fig. 4b) for short-GUT subjects. In the long-GUT group, all
21 subjects had averaged GUTs consistently longer than their average ICIs
across all three patch types. This proportion dropped significantly in the
group of short-GUT subjects, with only 6 participants displaying a GUT-
ITTpattern in support of a simpleGUT rule, proportions z-test: z =−4.582,
p < 0.001. This pattern of results showed that long-GUT subjects’ behavior
was consistent with a fixed GUT rule in all participants of that group. Yet,
their GUTs were prolonged to an extent where it affected the overall task
performance negatively. In the humans’ short-GUT group only less than
half of the participants’ data was in support of a GUT rule. Single gerbils’
GUT–ITTs patterns showed that in the long-GUTanimals, eight out of nine
individuals had, on average, longer GUTs than ITTs, and in the short-GUT
animals, only one individual had average ITTs exceeding its GUTs in
medium-quality patches (see Fig. 4c, d). Thus, in both groups of gerbils, the
data pattern was consistent with a simple GUT rule with no significant
changes in proportions of animals behaving against the rule’s predic-
tion, p = 0.303.

Taken together, on average, all but one gerbil’s GUT data was con-
sistent with the predictions of a simpleGUT rule. In humans, only the long-
GUT group behaved in accordance with the simple GUT rule. Yet, unlike

Fig. 2 | Task performance measures. a Dot plot shows the number of reward
captures as a function of patch quality for humans (dark red) and gerbils (orange).
Small dots indicate individual subjects’ values and green diamonds are the sample
mean. bResidence times for humans (dark red) and gerbils (orange) as a function of
patch quality. c–e Plots show the relationship between the total number of rewards

obtained at the end of foraging sessions and residence times per patch. In both the
PC-lab (c) and the fMRI-lab (d), humans’ residence timeswere negatively correlated
with total earnings. The association was reversed in gerbils (e) but was not statis-
tically significant.
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the animals, these human subjects seemed to choose suboptimal GUT
durations.Given the task conditions, especially due to the quick depletion of
reward, there was no benefit in prolonging residence times after the first few
target encounters. Long-GUT humans who did this regardless showed
significantly poorer task performance compared to short-GUT humans.
This difference in performance did not exist between long- and short-GUT
animals, likely due to the onlymarginal difference inGUTs between the two
groups of animals.

Increments in residence times following reward captures in both
species
Overall, the data provided good evidence for theGUT rule in both groups of
gerbils as well as in the long-GUThuman subjects. The short-GUTgroup of
humans, however, showed data that were inconsistent with such a rule.
Thus, we next examined the relationship between reward captures within a
patch and residence times. Given the unpredictable changes in patch-
quality, rewards encounteredwithin apatchprovide the only viable estimate
of the underlying patch-quality. If foragers relied on this estimate, they
would extend their residence times incrementally with each novel reward
capture because each new reward encounter would suggest that the current
patch is potentially of high quality. To test this, we again calculated within-
subject regressions, but this time, we regressed the residence times on the
number of reward captures12,16. This way, we obtained a slope and intercept
for each participant, where the intercept represented the Initial time spent in

the currentdisplaywithout a rewarddetection, and the slope represented the
increase in the residence time with each new reward capture.

Individual slopes in both subgroups of human participants were in all
cases positive and, on average, significantly above zero, [short-GUT: mean
slope = 3.372 ± 0.975, t(20) = 15.457, p < 0.001, long-GUT: mean slope =
3.748 ± 0.712, t(20) = 23.528, p < 0.0001] (Fig. 5a). This suggested that
participants indeed extended their residence time in response to a new
reward capture, consistent with the incremental patch-leaving rule.Within-
subject slopes in the short-GUT group of humans, that had shown less
evidence for a GUT rule, did not differ from the slopes of the long-GUT
group, t(40) =−1.390, p = 0.172, indicating that the incremental effect of
reward captures on the likelihood to stay in the current patch was com-
parable in both groups of humans. We conducted the same within-subject
regressions also for the short- and long-GUTgroupof gerbils andobtained a
similar pattern of results. The mean slope was 3.368 ± 0.690 in the short-
GUT group, t(8) = 13.795, p < 0.0001, and 4.507 ± 0.674 in the long-GUT
group, t(8) = 18.900, p < 0.0001. The average slopes of long-GUT gerbils
were significantly larger than the average slope of the short-GUT gerbils,
indicating a stronger incremental relationship in those animals with longer
GUTs, t(16) = 3.335, p = 0.004 (Fig. 5b).

Although we anticipated that reward encounters affected residence
times incrementally, we agree that onemust be careful to not infer causation
from correlation: regressing residence times on the number of rewards
(residence times ~1+ reward encounter * β), we anticipated that the slopes

Fig. 3 | Residence times and giving-up times as a function of patch-quality after
group-splitting. a Point plots show humans’ residence times as a function of patch-
quality. Small dots in orange indicate individual data points of the long-GUT
humans and dark-red dots index individual data points of the short-GUT group.

Diamonds index the mean values. bGUTs of humans as a function of patch quality.
c Gerbils’ individual residence times after group splitting. d GUTs as a function of
patch-quality are shown for the long- (orange) and short-GUT (dark-red) gerbils.
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would be positive, reflecting an incremental mechanism between the two
variables. Yet, alternatively, it could be that longer residence times might
simply increase the likelihood of finding more rewards, thereby creating a
positive correlation between captures and time spent. In this scenario the
time spent in a patch is random and not influenced by capture success. To
test this ‘random model’ against our incremental model, we followed
Hutchinso’s approach16 and took individuals’ residence times as well as the
initial reward probabilities and simulated the number of reward encounters
on a trial-by-trial basis, assuming that reward captures are simply pro-
portionally related to the residence times (number of reward captures =
residence time * initial reward probability/100). In a second step, we con-
ducted the same within-subject regressions, regressing residence times on
the number of (simulated) reward captures on a trial-by-trial basis. Lastly,
we compared the slopes obtained in the simulation (i.e., the increment in
residence times by a reward encounter if the relationship was random)with
the slopes observed in the real data. The results indicated significantly larger
slopes in the real data, supporting the idea that participants indeed extended
their residence time following each capture16,17.

Simulations of reward encounters and the within-subject regressions
were carried out 100 times for each subject. We then recombined the
resulting slopes via bootstrapping on group-level using 100,000 bootstraps
to get an estimate of the distribution of slopes on group-level that would be
obtained assuming that the time spent in a patch is random and not

influencedby capture success. Because therewasno indicationof differences
between long- and short-GUT humans, we carried out this control analysis
jointly for both subgroups. The results are shown inFig. 5a) and confirmed a
smaller slope (mean slope = 2.138 ± 0.326, 95% bootstrap interval [2.137,
2.159]) obtained from within-subject regressions on simulated data in
which the relationship between residence times and number of reward
encounters was randomly proportional, t(40) =−11.061, p < 0.001.

The sameanalysiswe also conducted for the gerbil data.Here,however,
the additional analysis provided no further support for an incremental
relationship between reward encounters and residence times (Fig. 5b),
and the slope obtained from analyzing the simulated data (mean slope =
5.475 ± 0.252, 95% bootstrap interval [5.453, 5.480]) was even larger than
the slopes based on the observed data, short-GUT gerbils t(25) = 8.861,
p = 0.999, long-GUT gerbils t(25) = 4.199, p = 0.999.

Taken together, analyzing the association between reward encounters
and residence times provided evidence for the incremental rule of patch-
leaving (Fig. 1c) only in humans.

Instantaneous and average collection rates—early gerbils,
belated humans
According to the marginal value theorem, optimal patch-leaving decisions
are timed to the moment when the ICR approximates the MCR. As an
estimate of the collection rate at which a reward capture i occurred, we used

Fig. 4 | Testing the GUT rule. a Point plots show individual humans’ GUTs and
averaged time intervals between two consecutive reward captures (i.e., inter-target
intervals, ITT) in seconds (s) plotted for each patch quality of the long-GUT group.
Connecting lines indicate the values that belong to the same individual. In all sub-
jects GUT durations consistently exceeded the average ITTs, in accordance with a
GUT rule used for patch-leaving. bCorresponding GUT and ICI data shown for the

short-GUT group, red lines show a downward trend indicating 14 subjects who had
lower GUTs than ITTs and, thus, a GUT-ITT pattern not conforming to the GUT-
rule. c The point plot shows the same GUT-ITTs relation for the long-GUT gerbil;
the single red line indicates the deviation from the GUT-rule in a single gerbil.
d Point plots show short-GUT gerbils’GUT-ICI patterns. Here, all animals showed
data consistent with the GUT rule.
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the inverse of the time that had passed between the previous reward capture
i− 1 and the reward capture i (i.e., 1/intertarget times). To approximate the
collection rate in the moment of patch-leaving, we used the inverse of
the observedGUT, i.e., the time since the last reward capture and leaving the
current patch15. The MCR we obtained by dividing the total number of
reward captures by the total search time including travel times4. Given the
difference in the number of total earnings between short- and long-GUT
human subjects, we predicted that the latter group of participants had
extended their residence times longer than what is considered optimal
according to the MVT (i.e., estimated ICRs at the time of leaving should be
significantly lower than the average collection rate).

Figure 6a shows the trajectory of the ICRs as a function of target
captures for the long-GUThuman subjects andb) for the short-GUTgroup.
Testing theMVTprediction, a one-way repeatedmeasureANOVAwith the
type of time interval (ICRs for the three patch qualities as level 1–3, and
the average collection rate as the level 4) yielded a significantmain effect for
the type of interval, F(3, 60) = 102.502, p < 0.001. In linewith our prediction,
post hoc contrasts showed that all three estimated collection rates at the time
of patch-leaving were below the average collection rate of 0.165 ± 0.02
rewards/s, with p < 0.001 in all three patch types. Also, in the short-GUT
humans we found a significant main effect of the type of time interval,
Friedman F(2.905, 58.095) = 3.457, p = 023. However, post hoc tests
revealed that in high-quality patches, estimated ICRs at the time of patch-
leaving were still significantly above the average collection rate, p = 0.015,
and no evidence for a difference was found in medium- and low-quality
patches, with p = 0.277, and p = 614. Thus, at least in medium and low-
quality patches, we found evidence for an optimal timing of the patch-
leaving according to the MVT.

Repeating the same analysis for the gerbil data, the one-way repeated
measure ANOVAwith the type of time interval as the single factor yielded a
significant main effect in both groups of gerbils, [long-GUT: Friedman
F(2.778, 22.222) = 8.701, p < 0.001; short-GUT: F(2.778, 22.222 = 19.0,
p < 0.001]. Post hoc contrasts for the long-GUT gerbils showed that in low-
quality patches, the estimated collection rates at the time of leavingwere still
significantly higher than the MCR, p = 0.001. No evidence for such differ-
enceswas found formedium- andhigh-quality patches,p = 0.185, p = 0.670.
In short-GUT gerbils, ICRs in low- and high-quality patches were still
significantly above the MCR, p = 0.001, p = 0.010, in medium-quality

patches the evidence was anecdotal, p = 0.052. Figure 6c, d shows the tra-
jectory of the ICRs as a function of target captures for the long-GUTand the
short-GUT group of gerbils, respectively.

Formal model testing of cues used to inform patch-leaving
decisions
Lastly, we used Cox regressions to test different predictors that potentially
increased or decreased the likelihood of staying in the current patch16. For
this purpose, we used cox-regressions that model the impact of different
factors on theprobabilityof leaving the currentpatch (i.e., thehazard ratioof
the patch leaving). The Cox proportional hazard model is a regression
model typically used in epidemiology to find out the relationship between
the survival time of a patient and one or more predictor variables18. The
model has also becomewidely used in the foraging literature7,16 tomodel the
residence times using the following hazard function:

hðtÞ ¼ h0ðtÞ * expðb1x1 þ b2x2 þ . . .þ bnxnÞ

where t is the residence time, and h(t) the hazard function of the residence
time, b indicates the impact of the predictor x on the probability to reside in
the current patch. The resulting value exp(bi) is called the hazard ratio for
the predictor i. It refers to the relative ‘risk’ of leaving the current patch for
different levels of the ith predictor. In otherwords, it quantifies the change in
risk of leaving the current patch associated with a unit change in the ith
predictor.Ahazard ratio greater than 1 indicates an increased risk of leaving
thepatch,while ahazard ratio less than1 indicates adecreased risk.Ahazard
ratio of 1 indicates no change in risk.

Thewithin-subject regressionswith the number of rewards captured as
the predictor and the residence times as the outcome had already indicated
an incremental relationship between the two variables, consistent with an
incremental mechanism based on reward encounters driving patch-leaving
decisions in both species. Given this finding, we entered the number of
reward captures as the first predictor of the model and expected a hazard
ratio below 1, i.e., a protective effect of the number of rewards decreasing the
risk of patch-leaving. Since all humans and gerbils had positive slopes in the
within-subject regressions, we expected this protective effect to be sig-
nificant in both short- and long-GUT humans and animals. In addition, we
used the averaged inter-target times (ITT) between the last and the second

Fig. 5 | Incremental relationship between reward captures and residence times.
a A dot plot on group level for all humans plotting individual averaged residence
times as a function of a number of rewards per patch. Black dots index individual
means. The gray line indicates the averaged empirical slope obtained from the
within-subject regressions, regressing residence times on the number of rewards for
both groups of humans. Subgroups were not distinguished further because the
empirical slopes between short-GUT and long-GUT humans did not differ. The
black line shows the averaged slope obtained in the same within-subject regression

analysis (residence time ~ reward) but performed on the simulated number of
rewards. b The same dot plot for the gerbils, where each dot represents an animal’s
averaged residence time as a function of reward. Colored lines in blue (long-GUT)
and green (short-GUT) indicate the averaged empirical slopes obtained in the
within-subject regressions (residence time ~ reward). The black regression line
indexes the average slope obtained from the within-subject regressions based on the
simulated number of rewards.
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before-last reward captures and between the second-last and the third-last
reward captures. This value could provide subjects with a good estimate of
the recent collection rate. Increases in value should increase the risk of
leaving, at least in the short-GUT group of humans that had shown col-
lection rate data most closely in accordance with the MVT16. Thus, we
expected a hazard ratio significantly larger than 1 in the short- but not in the
long-GUT group of humans, indicating that only the former group of
subjects used their recent reward capture rates as a cue for patch leaving.

In line with our prediction, the Cox regression for the short-GUT
humans revealed that, while controlling for the number of rewards, the
hazard ratio for the averaged ITTwas 5.01, 95%CI [1.30, 19.42], indicating a
substantial increase in the ‘risk’ of patch-leaving, Wald χ2(1) = 2.33,
p = 0.02. In other words, if the average ITTs of the last two target captures
increased by 1 s, subjects were 5 timesmore likely to leave the current patch
compared to no increase in the averaged ITT. Thus, consistent with the
MVT, theCoxmodel confirmed that the short-GUThumanswere sensitive
to declines in their current collection rates and timed their patch-leaving
accordingly. Again, in line with our prediction, the number of reward

captures conversely appeared to be a protective factor regarding the ‘risk’ of
patch-leaving as they decreased the risk of leaving by 80% with each new
reward capture, (hazard ratio = 0.20, 95% CI [0.09, 0.44], Wald
χ2(1) =−3.95, p < 0.005), consistent with the incremental rule.

Next, we computed the same Cox regression model also for the long-
GUT group. Again, we could confirm the results of within-subject regres-
sions that had indicated an incremental relationship between reward cap-
tures and residence times in that the number of reward captures had a
protective effect on the ‘risk’ of patch-leaving, decreasing the risk by 73%,
hazard ratio = 0.27, 95% CI [0.13, 0.55], Wald χ2(1) =−3.59, p < .005.
Intriguingly, in the long-GUT group, the average ITT had no effect on the
‘risk’ of patch-leaving, hazard ratio = 3.89 95% CI [0.38, 39.63], Wald
χ2(1) = 1.15,p = .25. Thus, in the long-GUTgroup, subjects’ estimates of the
recent collection rate did not impact their patch-leaving. These findings are
consistent with results from the collection rate data showing that long-GUT
humans’ ICRs were not in agreement with the MVT.

The data obtained from gerbils with long- and short-GUT were much
more consistent between the two groups. We did not find any significant

Fig. 6 | Collection rates. Point plots show the ICRs for the seven last reward
captures averaged for the long-GUT (a) and short-GUT humans (b). Error bars
equal ±standard error. The gray dashed line marks the averaged overall collection
rate given by the number of total rewards divided by the total search time in seconds
(the shaded area indicates the 95% confidence interval). The estimated capture rate
at the time of leaving was defined as the inverse of the participant’s GUT with short
GUTs leading to higher estimated ICRs at the time of leaving compared to long
GUTs. Point plots show ICRs for the long-GUT (c)) and short-GUT (d)) gerbils of
the last three reward captures. Note that only the last three reward captures are
plotted here because this was the average number of rewards obtained. In contrast to
the MVT prediction, ICRs in gerbils were well above the MCR (red dashed line) at

the time of leaving (i.e., the ICR at which the last rewardwas captured). This estimate
of collection rate in themoment of patch-leaving (=1/GUT) is independent of actual
reward encounters, relying solely on the participants’ propensity to continue fora-
ging unsuccessfully. A lowerGUT implies a higher estimated collection rate at patch-
leaving, potentially even leading to an increase of the rate compared to the collection
rate at which the preceding rewards had been captured, as seen in Fig. 6b, where the
estimated CR at patch-leaving was higher than the CR of the last and second last
reward (i.e., ‘−1’ on the x-axis). It is essential to note that this estimate does not
originate froman actual reward encounter and, thus, does not violate the assumption
of a depleting patch.
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differences in the effect of the number of rewards and averaged ITTs on the
risk of gerbils’ patch-leaving between the two groups. Hence, the Cox
regression was carried out for the entire group of gerbils (pooled long- and
short-GUT animals together). The results matched those of the humans in
the short-GUT group: if the averaged ITT increased by one second, gerbils
were almost 3.5 times more likely to leave the current patch, hazard
ratio = 3.46, 95% CI [1.03, 11.69], Wald χ2(1) = 2.00, p = 0.05, while a new
reward capture decreased the ‘risk’ of leaving by 94%, hazard ratio = 0.06,
95%CI [0, 0.90],Wald χ2(1) =−2.04,p = 0.02, confirming that gerbils relied
on the reward encounters they experienced (incremental rule) but also on
their current collection rates (MVT) in order to make patch-leaving
decisions.

Restricted access to food facilitated that the animals started each daily
session with appetite and motivation. However, it is important to consider
that this motivation might diminish with satiation. Such a decrease in
motivation could lead to reduced task commitment, potentially resulting in
a higher occurrence of task-unrelated behaviors. This, in turn, could notably
affect behavioral measures such as the average collection rate. To explore
this hypothesis, we performed a split-half analysis within each session,
comparing the behavioral parameters of gerbils between the two session
segments and across the three levels of patch quality. These results indeed
revealed behavioral changes consistent with a decrease in task motivation.
While the number of nose pokes remained constant throughout an
experimental session, increases in the inter-poke intervals, residence times,
and travel times suggested an increase in the frequency or duration of task-
unrelatedbehaviors suchas grooming.Details of this analysis are reported in
the supplementarymaterial, S1, and Supplementary Fig. 1.However, crucial
parameters describing the animals’ patch-leaving behavior suggested that
animals continued to optimize the timing of their patch departures despite
the fading taskmotivation.Although the average collection ratedeclined as a
function of session split andGUTs increased in the second compared to the
first half of a session, the difference between ICRs and MCRs was, on
average, significantly smaller in the second half. Importantly, these results
do not challenge the conclusion that wemade based on the results reported
previously. Details of this analysis are reported in the Supplementary
Material, S1.1, and Supplementary Fig. 2.

Discussion
This study had the goal of elaborating a probabilistic foraging paradigm for
inter-species comparisons. To this end, we designed two separate foraging
tasks tailored to suit each species.Although the tasks differed in their specific
details, the underlying reward structurewas standardized in both tasks. This
allowed us to investigate both the similarities and dissimilarities in patch-
leaving behavior between animals and humans during foraging.

Timing patch departures based on a fixed number of reward captures
or based on a fixed amount of time only works well if the forager roams an
environment that offers patches that do not differ greatly in quality. How-
ever, both the fixed N- as well as the fixed-T rule are not optimal if patches
within an environment differ greatly in quality13,19. Thus, given the ran-
domly changing rewardprobabilities in our paradigms, theuse of these rules
would have been disadvantageous for our species. The findings that both
residence times and reward captures increase with increasing patch quality,
confirmed this assumption. However, humans showed high variability in
individual residence times and GUTs. We, therefore, divided the sample of
humans based on the median GUTs into long- and short-GUT individuals
to evaluate whether different rules apply to these two subgroups of human
participants. For better comparison we did the same also for the group of
gerbils. Only human subjects showed evidence for the incremental rule of
patch-leaving (see Fig. 1c), whereas both species, except for the long-GUT
humans, timed their patch-leaving optimally according to the MVT.

Being confronted with unknown and randomly varying initial reward
probabilities, single reward encounters provided a firstmeans for the gerbils
and humans to learn about the quality of the current patch, where each new
reward encounter could be perceived as an indication that the current patch
may be of good quality, and, thus worthwhile to spend more time in it.

Consistent with this notion, the within-subject regressions of residence
times on the number of reward captures, showed a positive slope in all
individuals of both species, suggesting that residence times were extended
incrementally following a new reward capture13. However, longer residence
times could have simply increased the likelihood of finding more rewards,
resulting in a positive correlation between captures and time spent. In this
case, the time spent in a patch is random and not causally driven by capture
success. An additional simulation analysis supported a causal relationship
(i.e., the incremental rule) only inhumansbutnot in gerbils. The slopes from
data simulatedwith the assumptionof a randomlyproportional relationship
between reward encounters and residence times were less steep than those
slopes obtained from within-subject regressions on the actual data, sug-
gesting that the human participants did indeed increase time in a patchwith
each reward capture, confirming previous findings12. In gerbils, an analo-
gous simulation analysis did not confirm this notion, inconsistent with the
results inmicebyLottemandcolleagues7. The authors analyzedmice’snose-
pokes and fitted their datawith a proportional hazardmodel. The estimated
hazard rate reflected the probability of leaving a current patch as a function
of nose-pokes that started at its minimum at the beginning of a trial and
would increase with each unrewarded nose poke. Each rewarded nose poke,
however, decreased the hazard of leaving, prolonging residence times, like
our results in the Cox regression, where new reward encounters decreased
the ‘risk’ of leaving. While the mice collection rates at the time of leaving
were in keeping with the MVT, the incremental model showed a sig-
nificantly better fit compared to an MVT-based model fitting in Lottem’s
study7. Thus, using the same foraging paradigm in gerbils, it will be
important to test if those findings can be replicated when analyzing nose-
pokes instead of residence times and reward encounters. At this point, only
our human data confirms the incremental rule driving patch-leaving
decisions.

The long-GUT humans also showedGUT datamost consistent with a
simple GUT rule: their GUTs appeared to be consistent across patch-types,
and always exceeded the previous ICIs (see Fig. 4a). These subjects had
adopted a ratherdetrimentalGUTrulewith excessively longGUTs resulting
in overharvesting (i.e., exploiting a patch longer than what is considered
optimal according to theMVT). The disadvantageous timing of their patch-
leaving became evident in the significantly poorer overall performance
measured in terms of total reward earnings compared to short-GUT
humans. In the short-GUT group of humans, in contrast, only aminority of
subjects demonstrated foraging behaviorwithGUT rule-conformingGUT-
ICI patterns. Hence, the strongest evidence for a fixed GUT rule in humans
was found in subjects who had the tendency to overharvest. Unlike the
humans, both subgroups of gerbils had consistent GUTs across patch-
qualities, and GUTs exceeded the ICIs in all but one animal, confirming a
simple GUT rule. In accordance, also previous studies in other foraging
animals facing patches of unpredictably varying quality reported patch-
leaving behavior that agreed with a GUT-rule20,21.

Amundane explanation for theoverharvestingoccurring exclusively in
humans might be that these individuals possibly failed to understand the
task. However, neither subjects’ responses to post-briefing questions, nor
their prior training performance supported this hypothesis.Moreover, prior
to the main experiment, all subjects were told that an exhaustive search
strategy (i.e., trying to find all existing rewards per display) would be det-
rimental to the overall task performance. Studies in elderly foraging humans
reported age-related increases in GUTs as an indication of an increased
behavioral tendency to exploit22. This suggests that exploration and
exploitation as opposing behavioral tendencies together form a continuum
and that individualsmaydiffer in their position along this continuumdue to
age differences and other factors. Consistent with this, a recent study in
patients with opioid-use disorder showed that the interindividual variability
in overharvesting (in both users and controls) was related to a poorer
neuromelanin signal, and indirectly catecholaminergic function (i.e.,
dopamine), of the ventra tecmental area23. Neurotypical subjects may
already differ in their tendency to either explore or exploit based on genetic
variations in those genes that control, e.g., the formation of the
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catecholaminergic system. Still, the extent to which long-GUT subjects
tended to overharvest is striking, given the disadvantage that arose from this
strategy and more research is needed to further examine potential reasons
that could explain these interindividual differences we observed.

The MVT theory posits that foragers decide when to leave a patch
based on diminishing returns. Specifically, they should leave the current
patch when the ICR—representing the current rate of rewards obtained—
falls below theMCRof the entire environment. This timing ensures that the
energy spent on acquiring additional rewards does not surpass the benefits
gained and is thus considered optimal. Notably, the overharvesting long-
GUT humans displayed a bias toward exploitation, which resulted in esti-
mated ICRs at the time of patch-leaving significantly below the average
collection rate. In contrast to this, the short-GUT humans, who tended to
leave patches earlier, aligned with MVT predictions with estimated ICRs
comparable to the average collection rate. Intriguingly, this latter group of
subjects includedparticipants of whom less than half exhibited ITTpatterns
conforming to theGUT-rule. Thus, ourfindings suggest that while themost
compelling evidence for amaladaptiveGUT rulewas found in humanswith
above-median GUTs, those who left patches earlier in time showed col-
lection rate patterns more consistent with MVT principles than with the
GUT rule. This implies that the two groups may have employed different
cues to determine their patch departures. In the case of the GUT rule, a
subjective temporal threshold for unsuccessful searching is employed,
whereas subjects adhering toMVTprinciplesmay have used recent ICRs as
an estimate of their present intake rate and a cue for timing the patch-
leaving. This hypothesis is supported by our Cox regression results in short-
GUT subjects, where the average of the last two inter-target intervals – an
effective estimate of the current ICR-—emerged as a robust positive pre-
dictor for patch-leaving. Increasing this interval (reflecting a decrease in the
estimated ICR) heightened the ‘risk’ of leaving the patch. Conversely, within
the long-GUT group, the same predictor (current ICR) yielded no statistical
significance.

A recent foraging study used a visual search paradigm similar to our
human task and reported that human participants foraged longer in a given
patch than predicted by the MVT3. The participants performed either a
conjunction search task (i.e., targets were defined by a combination of two
features as in our experiment) or a feature search task (i.e., targets were
defined by a single feature), and the results indicated similar foraging
behavior for both search types. Yet, in contrast to the conjunction search
taskused in thepresent study, the volunteerswere allowed to switchbetween
target typeswithin a given patch.During these switches the ICRwould drop
well below theMCR,but the subjects stayed in the samedisplay, inconsistent
with theMVTprediction.Additional investigations employing visual search
paradigms, such as virtual berry-picking experiments, have also revealed
deviations from the MVT’s predictions under specific circumstances. The
deviations are notably pronounced when patch quality exhibits large
variability, and when visual information becomes impaired to the extent
that foragers are unable to discern whether a target item offers a reward4.
This evidence suggests that by rendering foraging tasks more complex, e.g.,
by allowing changes between search types3 or introducing a high degree of
reward variability4, patch-leaving behavior appears to be no longer in
accordance with the MVT. In humans, we showed that inter-individual
differences in displaying a behavioral bias to exploit affect whether patch-
leaving conforms to the MVT or not. A stronger exploitation bias leads to
patch-leaving decisions that are less in keeping with the MVT in humans.

Testing the MVT in gerbils and animals in the long-GUT groups
showed collection rates more aligned with MVT predictions. Only in low-
quality patches these animals left the current patch when ICRs were still
significantly above theMCR. Conversely, short-GUT gerbils demonstrated
a higher propensity for early patch-leaving, with ICRs at the time of
departure still significantly above the average rate in two out of three reward
conditions. Thus, while gerbils’ ICRs andMCRs suggest that they tended to
leave patches slightly earlier than predicted by theMVT, the Cox regression
analysis indicated that decreases in the ICR increased the likelihood of
patch-leaving, consistent with MVT principles. Previous studies have

providedmixed evidence regarding theMVT, with some supporting it7 and
others not24. Our data suggest that although the gerbils’ ICRs were not
perfectly aligned with the environment’s MCR at the time of patch-leaving,
they were still sensitive to changes in their ICRs, as conformed by formal
model testing, aligning with the predictions of the MVT.

A potential confound in our study could have arisen from differences
in how rewardprobability decreased in the twoparadigms. In the gerbil task,
the reward was depleted with each executed nose-poke, whereas in the
human task, depletion occurred following a new reward capture but not
merely a target fixation, which would have been analogous to a nose-poke.
Consequently, the reward decay following nose-pokes led to a faster
depletion of the remaining reward probability. This might explain why the
gerbils left patchesmore readily, resulting in very short residence times anda
lower number of reward captures per patch compared to humans. Impor-
tantly, however, the unpredictable variability of reward distribution across
patches was identical in both experiments, ensuring that both species faced
similar environmental challenges with aggregated reward distributions.
Therefore, despite the differences in reward decay mechanisms, we are
confident that the two tasks were sufficiently similar to allow for a com-
parative study of patch-leaving decisions in humans and rodents. None-
theless, future investigations should aim to standardize the reward decay
process across both tasks to eliminate this potential confound and further
align the experimental conditions.

Lastly, it needs to be noted that the high-GUT vs. low-GUT groups
were introduced for data analytic reasons, i.e., to compare two extreme
groups. Importantly, these two groups were no natural subpopulations
resulting from the observed variance structure. The group splitting was
rather ameans to dealwith the large variance in humans’ residence aswell as
giving-up times data. Human subjects received only aminimumof training
to familiarize themwith the task. Thus, when starting the experiment, their
performance may have not yet stabilized, introducing more within-subject
noise compared to the intensively trained and, thus, more consistently
behaving animals. Additionally, inter-individual differences in the pro-
pensity to explore versus exploit couldhavebeendriving the largedispersion
inparticipants’GUTsand residence times. Even though theoptimal strategy
was to leave patches rather early, subjects’ disposition to either persist or to
leave more readily certainly impacted their behavior and introduced the
large dispersion in both parameters. In support of this notion, a large study
in humans recently confirmed that ADHD symptom-like behavior assessed
by self-report predicted the residence times during a patchy virtual foraging
task25. The higher a subject scored on an ADHD self-report screening
assessment, the shorter their residence times were. This finding not only
offers an interesting perspective on the evolutionary benefits that ADHD
traits may offer, but it also provides an explanation of why inter-individual
differences in strategies during a virtual foraging taskmaybe large, especially
if participants had not undergone extensive training before.

Tobetter understand theneural codingmechanismsunderlyingpatch-
leaving decisions, it will be crucial to use fMRI in humans and recordings of
local field potentials in gerbils. A central structure enabling attentional
exploration in humans is the anterior prefrontal cortex,mainly consisting of
Brodmann area 10 (aPFC)26–29. Lesions of the aPFC, both in human and
non-human primates30,31 prevent the exploratory allocation of attentional
resources to novel aspects of the environment, thereby preventing optimal
adaptation to the environment. Although aPFC has a causal role for
exploratory attention shifts in primates, rodents lacking a distinct aPFC32,
undeniably show exploratory behavior33. This leads to the question of how
the rodent brain supports exploratory and rule-based (conditioned) atten-
tional resource shifts. Rodent experiments are therefore not only of interest
from a phylogenetic perspective but also open opportunities for mesoscale
investigations. Moreover, as the behavioral data reported here suggest that
humans display strong interindividual differences in their tendency to
exploit a current patch, future studies should target the question of whether
such behavioral differences also translate to physiological differences, such
as differential activations of the aFPC and other areas of the frontoparietal
attention network.
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The present findings indicate that both species adapt to changing
reward probabilities by avoiding disadvantageous rules of thumb for patch-
leaving, using novel reward encounters to extend residence times. However,
a subset of humans exhibited overharvesting, leading to prolonged GUTs
and reduced earnings, a maladaptation absent in the rodents. Optimally
timed patch-leaving was observed in non-overharvesting humans and
gerbils, aligning with theMVT. These results underscore the value of inter-
species comparisons but also highlight the variability in human foraging
decisions, suggesting individual differences play a role in adherence to
ecological models. Altogether, this study paves the way for future research
comparing the neural substrates involved in exploratory decision-making
between species, contributing to our understanding of the phylogenesis of
cognitive control structures in the brain.

Methods
Statement of compliance with ethical regulations
Allmethodswereperformed in accordancewith theGermananimalwelfare
law, the local ethics committeeof theOtto-von-GuerickeUniversity, and the
State of Saxony-Anhalt.

Human study
Participant. In total, 52 (17male) nativeGerman speakers participated in
the experiment. Thirty-two of the participants were tested in the PC-
laboratory (lab), while 20 subjects were tested in a follow-up neuroima-
ging experiment using functional magnetic resonance imaging (fMRI-
lab). For this report, we used the behavioral data of the fMRI subjects to
increase the original sample size. All volunteers were between 19 and 37
years old (M = 24.25 years), right-handed by self-report except for two
participants, and had normal or corrected-to-normal vision. They pro-
vided written consent consistent with the protocols approved by the local
ethics committee of Otto-von-Guericke University prior to the experi-
ments and were monetarily reimbursed based on the earnings they made
performing the foraging task. We excluded eight PC-lab participants
from the data analysis because they performed less than six trials in at
least one of the reward conditions. Another two PC-lab subjects who

yielded an overall number of trials below the 1st or above the 99th per-
centile of the group distribution were also excluded. Thus, the final
sample size was 42.

Visual search paradigm
Set-up and Stimuli. We used the Python toolbox “PsychoPy”34 to con-
trol the stimulus display and responses. The stimuli were presented on a
24′′ Samsung monitor (1920:1080 resolution, 60 Hz refresh rate). All
participants were positioned 50 cm away from the screen. Stimuli con-
sisted of geometrical forms. These were either squares or circles that
appeared in either blue or green color. All stimuli subtended 0.59° visual
angle. Their spatial locations were randomly assigned on a spatial grid
spanning a rectangle field of 12.9° * 14° visual angle. One stimulus type
(e.g., blue circles; Fig. 7) was assigned as a target, while the three
remaining stimulus classes would serve as distractors. As a reward
indication, we used an image of a Euro-Cent symbol that subtended 0.70°
visual angle.

The experimental task. To study the exploration-exploitation dilemma
in human subjects, we designed a probabilistic foraging task. Participants
were asked to search and collect target items among distractors in a visual
feature conjunction search task. Stimuli consisted of simple square- and
circle-shaped objects randomly located in the search display. They used
themouse to navigate through the display. Target itemswere defined by a
specific conjunction of shape (i.e., circle) and color (i.e., blue), and equal
numbers of distractors would differ either in shape (blue squares), in
color (i.e., green circles), or in both feature dimensions (i.e., green
squares). The total search timewas restricted, and a countdown timerwas
constantly visible to the participants at the left bottom corner of the
display. To obtain a reward, participants had to navigate the mouse
pointer to a target. Once a target had been fixated for 300 ms, the target
turned into a reward indicator (i.e., Euro-Cent) and then returned to its
previous appearance. This served as the feedback that the target had been
“foraged”, and a reward was received. The participants were then able to
continue the search for the next target in the display. At the display’s left

Fig. 7 | Human visual search task. Diagonal sequence represents a trial. At the
beginning of a session, the target object (here a blue circle) was introduced. The
beginning of a trial was cued by a central fixation (1 s) followed by a blank (1 s). Next,
the search display (i.e., patch) appeared. By navigating the mouse cursor to a target
(red square with red dot at center in lower left), participants realized a reward

capture. Upon such a capture, the collected target turned into a reward for 500 ms
(euro-cent image) and then changed back to its previous appearance. An already
collected target would not turn into a reward again if fixated again.With each reward
capture, all items changed positions randomly. At any time, participants were able to
switch to a new display by button-press.
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bottom corner, the participants were able to constantly track the total
number of rewards they had already earned. At the display’s right bottom
corner, they could keep track of the remaining time.

Once a collected target returned to its previous appearance, it was
turned inactive so that a second fixation of the same target would not result
in a further reward capture. Moreover, with each collected target item,
additional targets, randomly located in the display, were also deactivated. In
thisway, afterfixationonanew target, the remaining rewardprobability in a
given display decreased exponentially, mimicking a quickly depleting food
source. Furthermore, thewhole spatial configurationof target anddistractor
locations changed after each collected target, and all targets and distractors
consequently appearedatnew locations.Thismanipulationmade the search
increasingly difficult and quickly inefficient as it was impossible to
remember target locations thathadbeen already visited and, thus,wouldnot
promise a new reward following fixation. To compensate for this, partici-
pants could choose to end the search in a display and to proceed to the next
display at any time. The countdown did not pause when volunteers were
directed to thenext display, and each switch to anewdisplay consumed time
(3.5 s in the PC-lab, ~5.75 s in the fMRI-lab; see Task design) analogous to
patch-leaving costs in ecological foraging or the movement from one
foraging spout to the other in the gerbil experiment.After volunteers pressed
the spacebar to continue to a new display, a central fixation cross appeared
for one second, followedbyablank screen for another secondbefore thenew
display appeared. With the appearance of a new display, the fixation cross
(mouse point) was relocated to the display center. A depiction of a trial
sequence is shown in Fig. 7.

Task design. We aimed to determine the optimal task conditions to
study patch-leaving behavior in humans. This required a task in which
volunteers actively decide to leave an exploited patch and switch to a new
patch. Thus, residence times (i.e., trial durations) varied and were given
by the time between entering a new display and switching to the next by
button press. Travel times were given by the time between the onset of the
button press and the occurrence of a new display. This exploratory
foraging behavior is facilitated if the overall number of search targets in
each search display is high and if the travel costsmoving fromone display
to another is relatively short4,35,36. Therefore, we chose a total number of
40 targets and a relatively short travel time of 3.5 s. Due to additional
intermediate data storage during the travel in addition to generating the
upcoming display, travel times in the fMRI experiment were, on average,
5.75 ± 0.1 s.

To make reward encounters dependent on the foregone foraging
success we chose an exponential decay function for the depletion of reward

following each reward capture7. That is, the number of available rewards
drastically decreased within a relatively short period of time, resulting in an
inefficient search. Due to the time constraint, participants decided to switch
to a new display to improve search efficacy. The following decay function
was adopted from Lottem et al.7 (see Fig. 8):

Pðon ¼ 1jtiÞ ¼ Aie
ð�ðn�1ÞÞ=5 ð1Þ

here ti is the ith trial type, i.e., low-, medium-, and high-quality trials.
The different trial types had three exponential scaling factors A1 = 0.5,
A2 = 0.75, A3 = 1. N indicates the number of already achieved reward
captures (previous target fixations that resulted in an earning) within a trial.
On is the positive outcome of the nth target fixation (1 for reward). We
additionally varied the initial reward probabilities by applying three con-
ditions from high, middle to low probabilities to be able to test whether
subjects adapted their patch-leaving strategies according to probabilistic
changes in the environment. In the high reward condition (i.e., high-quality
patch, blue function in Fig. 8), all 40 target items (100%) were active and
would turn into a reward following a first fixation. In the medium reward
condition, only 75% of all targets (i.e., medium quality patch, orange
function in Fig. 8) were active and were associated with reward following a
fixation. Only 50% of all targets were initially active in the low reward
condition (i.e., low-quality patch, green function in Fig. 8).

The participants started the experimental session with two training
trials in which they searched for target items in two consecutive displays
without the time constraint, and no reward was registered. Once volunteers
terminated the search in the second display, they were informed that the
main experiment would start next and that they were given a total search
time of 30minutes (PC-lab), or 6 ×10minutes (fMRI-lab), respectively. The
fMRI session took place on a single day, and participants were able to take
short breaks between the runs while remaining in the scanner.

Animal study
Animal experiments were performed with 18 adult maleMongolian gerbils
(Meriones unguiculatus, in-house bred).The age of the animals during these
experiments varied between three to four months. All experiments were
performed in accordance with the German animal welfare law (NTP-ID:
00041189-1-X).

Food restriction. The animals had free access to water but were food-
restricted starting three days before the beginning of the foraging task.
Before food restriction was started, the animals’ body weight was mea-
sured over three days to obtain an average baseline body weight (BBW).
The BBWof the animals was 70-80 g before starting the foraging task. To
keep the animals’ bodyweights above the critical level (85%BBW)during
the foraging task period, food was supplemented inside the cage at least
2 hours after the end of the foraging task. The total daily food intake,
including the amount of food retained during the training session of an
animal, was between 3-7 g based on the performance of the animals in the
foraging task.

Foraging setup and stimuli. Foraging tasks were performed in a ‘fora-
ging box’ placed inside an electrically shielded and sound-proof chamber.
The box had a wooden framework, and the walls consisted of vertical
cylindrical plastic bars placed 1 cm apart from each other. The floor of the
box consisted of a plastic mesh. Two foraging spouts were placed on
opposite sides of the box and attached to food dispensers (Campden
Instruments Ltd., USA). The dispensers were operated by custom-built
Arduino hardware that was controlled by a custom-written application
program in MatLab (Version 2019). On the sides of each spout, an
infrared sensor pair was located to register the nose-pokes of the animals.
The dimensions of the foraging box were 37 cm×26 cm x 48 cm. The
distance between the spouts was 36 cm. The foraging setup for the ani-
mals is shown in Fig. 9.

Fig. 8 | Reward probability protocol.Graph shows the decaying reward probability
as a function of obtained rewards (i.e., patch) for the three reward conditions (100%,
75%, 50% initial reward probabilities – include label into legend). The exponential
decay function was adopted from Lottem et al. 7.
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Probabilistic foraging paradigm. Each animal was trained once per day.
In each training session, the number of trials was dependent on the animals’
behavior. The total foraging time was restricted to a maximum of 30min
during the initial learning phase of five sessions. After three training sessions,
the animalsmastered the taskmorequickly, anda single experimental session
was typically concluded after 15–20minonce the animal becamedisengaged.
Each animal performed 20 sessions on 20 consecutive days. A trial was
defined as the time between entering a given spout and switching to another
spout. In every trial, we recorded the number and duration of nose-pokes at
the spouts. Nose pokes with a duration of less than 100 ms were counted as
errors andpokes lasting longer than100mswere recordedashits. Errorpokes
remained unrewarded. Hit pokes were either rewarded with 20mg of com-
mercially available food pellets (Dustless precision pellets, Grain-based,
20mg, Plexx B.V.) or unrewarded based on the current reward probability
and reward outcome. The reward probabilities decreased with increasing
numbers of pokes following the same exponential decay functiondeployed in
the human visual search task (see Fig. 9). As a result, the probability of new
reward capture diminished quickly, encouraging the animal to alternate
between the spouts during the foraging session. Like in the human task, we
used three different patch qualities (100%, 75%, and 50% reward prob-
abilities) that were randomly interleaved between consecutive trials. To
obtain more trials from the animals and to maintain the motivation of the
animals, the reward probability was set to zero after the 20th hit nose-poke of
a trial. After each reward, a dead time of 100ms occurred.

Statistics and reproducibility
Weused custom-written Python code (version 3.6) for all data analyses to
test whether foraging behavior in gerbils and humans was influenced by
patch quality and if these influences differed between species. We
employed single-factor repeated-measuresANOVAandmixedANOVAs
withTukeyHSDcorrection formultiple comparisons using the ‘pingouin’

package. QQ-Plots checked for normality violations, using non-
parametric measures like Friedman tests with Nemenyi post-hoc con-
trasts when necessary. Greenhouse-Geiser corrections were applied for
non-sphericity. All analyses used averaged medians without outlier cor-
rection for descriptive reporting and statistical testing. Within-subject
regressions were conducted using the ‘lingress’ function from SciPy
(version 1.10.1), and Cox regressions were performed with the ‘lifelines’
package. The study included 42 human participants, initially 22 tested in a
PC lab and subsequently 20 during neuroimaging sessions. Each human
participated once. The animal study involved 18 gerbils, each performing
20 sessions over consecutive days.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Both animal and human data can be accessed from https://osf.io/fexgb/ 37.

Code availability
The original custom Python code used for data analyses can be accessed
from https://osf.io/fexgb/ as well as on git-hub (https://github.com/
LGparrot/exploratory-attention-in-visual-foraging).
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