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Double dissociation of visuomotor
interaction mediated by visual feedback
during continuous de novo motor learning
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Junghyun Kim1, Sungbeen Park2, Kwangsun Yoo 3,4 & Sungshin Kim 1,2,5,6

While the sensorimotor cortices are central neural substrates for motor control and learning, how the
interaction between their subregions with visual cortices contributes to acquiring de novo visuomotor
skills is poorly understood.Wedesign a continuous visuomotor task in fMRIwhere participants control
a cursor using their fingers while learning an arbitrary finger-to-cursor mapping. To investigate
visuomotor interaction in the de novomotor task, wemanipulate visual feedback of a cursor such that
they learn to control using fingers under two alternating conditions: online cursor feedback is available
or unavailable except when a target is reached. As a result, we find double dissociation of fMRI activity
in subregions of the sensorimotor and visual cortices. Specifically, motor and late visual cortices are
more active with online cursor feedback, and somatosensory and early visual cortices aremore active
without online cursor feedback.We also find a significant reduction in functional connectivity between
somatosensory cortices and early visual cortices, which is highly correlated with performance
improvement. These findings support the distinct interaction between subregions of sensorimotor
cortices and visual cortices, while the connectivity analysis highlights the critical role of
somatosensory cortices during de novo motor learning.

Visuomotor learning involves the execution and correction of motor
commands to achieve a task goal based on visual feedback, which is
underpinned by adaptive interaction between sensorimotor and visual
cortices1,2. Thanks to its anatomical location in the dorsal visual stream
between sensorimotor and visual cortices, the posterior parietal cortex
(PPC) integrates visual and proprioceptive information3,4. Indeed,
numerous neuroimaging studies have focused on the PPC as neural
substrates of visuomotor learning, either motor sequence learning5–7 or
motor adaptation3,8. However, the interaction between the sensorimotor
and visual cortices has yet to be explored during visuomotor learning,
especially among their subregions, such as motor, somatosensory cor-
tices, and early and late visual cortices. To investigate visuomotor
interaction, manipulation of visual feedback could be a promising
approach as it modulates activities of neural substrates involved in the
interaction9–13. For instance, we can manipulate the visibility of the
feedback, which provides continuousmovement of the end-effector or its
position only at the end of movement9,14,15. The visibility could affect the

integration of the visual feedback with other sensory feedback, such
as proprioception, which is processed by the somatosensory
cortices. Additionally, the visibility could distinctively modulate activity
in early and late visual cortices and their interaction with sensorimotor
cortices.

However, the motor and somatosensory cortices are often coacti-
vated during motor tasks, as reported in previous fMRI studies using a
similar manipulation of the visual feedback14–17. The coactivation would
be primarily due to intricate interaction between motor and somato-
sensory cortices during movement13. The motor and somatosensory
cortices are closely interconnected, playing roles in creating motor
commands, anticipating sensory outcomes, and processing sensory
feedback. The intertwined interaction makes it challenging to determine
the extent to which motor versus somatosensory cortices contribute to
motor learning13. Previous studies employed simple motor control tasks
such as tracking a target14, moving a pendulum15, and hand-grasping
tasks16,17, in which they have not investigated neural plastic changes in the
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sensorimotor network. Moreover, these laboratory-based tasks would be
too simple to investigate complicated visuomotor interactions that we
experience in everyday life.

Thus, we employed a delicate continuous de novo motor task in
fMRI where participants learned an arbitrary visuomotor mapping.
Specifically, they used their fingers to control an on-screen cursor while
learning a novel hand-to-cursor mapping18–20. In contrast to typical
motor adaptation and sequence learning tasks with well-defined sensory
targets, our task requires exploration in a high-dimensional motor space
while learning proprioceptive state, i.e., hand posture, which is mapped
to a low-dimensional target space. Furthermore, manipulation of the
visibility of the visual feedback allowed us to explore howmotor cortices
and somatosensory cortices differentially interact with visual cortices
during motor learning. We hypothesized that the activity patterns in the
visuomotor regions could be dissociated depending on the relative
contribution of the afferent proprioceptive state of the hand, which is
mediated by the visibility of the visual feedback.We also investigated how
the interaction among the subregions of sensorimotor and visual cortices
accounts for the performance of de novomotor skill learning. Finally, we
discussed the clinical implications of our findings, which provide insight
into rehabilitation for patients with visual deficits and sensorimotor
impairment by highlighting differential interaction among those sub-
regions and their contribution to visuomotor learning.

Results
Behavioral data analysis
Twenty-four participants completed the experiment. The main task began
after the localizer session. The purpose of the localizer session was to define
regions related to handmovement. In themain session, participants wore a
data glove on their right handandcontrolled anon-screen cursor bymoving
their right fingers. The cursor position was calculated from a predefined
hand-to-cursor mapping, which was calibrated for individual participants
(see Methods). Their goal in the experiment was to reach a target with a
cursor as quickly as possible. Participants performed the task under two
different conditions alternately (Fig. 1A, Supplementary Movie 1). In the
continuous visual feedback condition (CF), continuous online visual feed-
back was provided as the position of an on-screen cursor. Additionally, a
target appeared red when reached by a cursor. In the other binary visual
feedback condition (BF), the online cursor positionwas not provided. Thus,
the target color, which appeared red when reached, was the only feedback
available to participants. The hand-to-cursormappingwas identical in both
feedback conditions.

To quantify how much participants learned a motor skill through the
experiment,we formalized success rate as a proportionof timeduringwhich
a target turned red in a trial. For example, a success rate of 0.1 indicates that
participants spent 3.6 seconds to reach a target and stayed in the target for
0.4 seconds. The higher the success rate, the faster the participants reached

Fig. 1 | Overview and behavioral performance of
motor learning task across the experimental con-
ditions. A Overview of the de novo motor learning
task. Participants learned to control a cursor by
moving their right fingers with combinations of
adduction, abduction, flexion, and extension. Their
goal was to reach a target on a 5 × 5 grid as quickly as
possible and stay on the target until the next target
was turned on. Two visual feedback conditions,
continuous feedback (CF) and binary feedback (BF)
conditions, were alternated across blocks, each
consisting of 12 trials. Participants could see both
cursor movement and a target in the continuous
feedback condition, whereas cursor movement was
hidden in the binary feedback condition.B Learning
curves for CF and BF conditions. The increase in
success rate implies that participants reached the
targets more quickly and stayed on them longer.
Participants performed better with the CF condi-
tion. The shaded areas represent the standard error
of themean.CAveraged success rates of the first and
the last runs for both conditions. Success rates sig-
nificantly increased in both conditions, implying
they also learned themapping in the binary feedback
condition. The level of significance was represented
by asterisks as follows. ***p < 0.001, ****p < 10−4.
The error bars in (B) and (C) represent one standard
error. Red and blue dots in (B) and (C) represent
individual data for corresponding conditions.
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the target, which implies that the participants had learned hand-to-cursor
mapping.During the first run of the experiment, the average success rates of
CF and BF were 0.207 and 0.078, respectively, and the difference was sta-
tistically significant (t(23) = 7.53, p < 10−4). Then, they gradually learned the
task throughout the experimentwith significant improvement of the success
rate from the first run to the last run both in the continuous feedback
condition (t(23) = 13.33, p < 10−4) and in the binary feedback condition
(t(23) = 4.49, p < 0.001) (Fig. 1B, C). The improvement of the success rate
was 3.27 times higher in the continuous feedback condition than in the
binary one (t(23) = 13.97 p < 10−4) (Fig. 1C), confirming that participants
learned faster when online cursor feedback was provided. All the partici-
pants improved their performance throughout the experiment, as shown in
individual learning curves (Supplementary Fig. 1).

Activation in sensorimotor and visual cortices
To understand the distinct roles of sensorimotor cortices in acquiring a
novel motor skill with the two visual feedback conditions, we contrasted
fMRI activity between the conditions using a conventional GLM analysis.
Notably, we defined regions of interest in the sensorimotor cortices on the
cortical surface for all the analyses in the present study since the surface-
based analysis improves the specificity of fMRI activity across folded cortical
regions over the volume-based analysis21. In particular, the surface-based
analysis is critical to dissociate fMRI activity between the primary motor
(M1) and somatosensory cortices (S1), which are a fewmillimeters apart in
3D volume space, i.e., Euclidean space. In addition, we focused our analyses
on the contralateral (left) hemisphere.

The cortical surface-based GLM analysis revealed that the dorsal
premotor cortex (PMd) and higher-order visual cortices in the dorsal and
the ventral visual pathways exhibited significantly higher fMRI activity in
the continuous feedback condition than in the binary one (Fig. 2A). In
contrast, S1 and early visual areas demonstrated significantly higher fMRI

activitywhen the binary feedbackwas provided.M1 is an intermixed region
where the activation levels were similar between the conditions (Fig. 2B, C).
Notably, the activity in S1 and part of M1 is contralateral, meaning that we
do not observe it on the right hemisphere (Supplementary Fig. 2). In con-
trast, all the other activation patterns are bilateral. Since the participants
used their right hand in the experiment, we focused on the contralateral left
hemisphere for subsequent ROI and connectivity analyses (refer to Sup-
plementary Fig. 2 for the GLM results in the right hemisphere).

To analyze the regional specificity of fMRI activity in the sensorimotor
cortices modulated by the visual feedback, we defined seven ROIs across
sensorimotor cortices related to finger movement (see Methods and Sup-
plementary Fig. 3 for the localizer GLM result). In the continuous feedback
condition, activation was significantly higher in BA6 (PMd) and BA4a
(anterior M1), with statistical outcomes of t(23) = 10.32, p < 10−4, and
t(23) = 5.83, p < 10−4, respectively. Although the activation is not sig-
nificantly different between the conditions in BA4p (posterior M1)
(t(23) = 0.54, p = 0.56), the activation trends reveal a pivotal shift sur-
rounding this region. In the binary feedback condition, activation became
elevated in BA3a, 3b and 1 (S1), as evidenced by t(23) = 6.89, p < 10−4;
t(23) = 12.21, p < 10−4; and t(23) = 10.43, p < 10−4, respectively. As activa-
tion decreased in both conditions in BA2 (S1), there was no difference
between the conditions (t(23) = 0.96, p = 0.35). All p-values reported for
statistically significant findings were Bonferroni-corrected for multiple
comparisons (Fig. 2C). While the overall fMRI activity in the sensorimotor
cortices was comparable (F(2, 46) = 2.30, p = 0.112), there was a significant
difference between the feedback conditions (F(1, 23) = 13.25, p < 0.01).
Importantly, we found a clear double dissociation of the fMRI activity
between the feedback conditions across three representative ROIs, PMd,
M1, and S1. The activitywas higher inmotor cortices (PMd andM1) for the
continuous feedback (t(23) = 4.19, p < 0.001) and was higher in somato-
sensory cortices (S1) for the binary feedback (t(23) =−3.82, p < 0.001),

Fig. 2 | GLM result for the continuous vs. binary
feedback conditions in sensorimotor regions.
A Univariate activation map from the lateral view
for the contrast, continuous feedback > binary
feedback. B Enlarged map for (A) highlighting
sensorimotor regions.C ROI analysis (seeMethods)
of the mean activation ( ± standard error of the
mean) across the 28 searchlights. The inset shows
the sensorimotor ROIs, the intersection of the sig-
nificant clusters identified from the localizer GLM
result, and the Brodmann areas 1, 2, 3, 4, and 6. The
t-test results are based on the seven Brodmann areas.
Note that the significance level is unusually high in
BA4a, despite a small difference with a relatively
large standard error of the mean. The significance
level of multiple paired t-tests was represented by
asterisks as follows. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 10−4 (Bonferroni-corrected).
Red and blue dots in (C) represent individual data
for corresponding conditions.
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resulting in significant interaction between ROIs and feedback conditions
(F(1, 23) = 160.92, p < 10−4).

Interestingly, a similar double dissociation of fMRI activity was also
found in the visual cortices (Fig. 3A). While the overall activity across ROIs
in the visual cortices (Early visual area, V3AB, and V7; F(1, 23) = 3.45,
p > 0.05)was comparable, it was significantly different between the feedback
conditions (F(1, 23) = 29.74, p < 0.001). The early visual areas (V1, V2, and
V3) were more activated when participants could not see the online cursor
movement (t(23) = 2.71, p < 0.05); however, V3AB and V7 showed higher
activation for the continuous feedback condition (t(23) = 3.46, p < 0.01;
t(23) = 11.98, p < 0.001, respectively) (Fig. 3B), resulting highly significant
interaction effect between ROIs and feedback conditions (F(1, 23) = 97.60,
p < 0.001). Generally, early visual areas were more activated with the binary
feedback, whereas higher-order visual areas were more activated with the
continuous feedback.

In addition,while ourmain focus is on sensorimotor andvisual cortices,
we also discovered significant activations in the dorsal attention network
(DAN) and the ventral attention network (VAN) during the continuous
feedback condition compared to the binary feedback condition (t(23) = 9.30,
p < 10−4, and t(23) = 3.69, p < 0.01, respectively; Supplementary Fig. 4). In
contrast, no significant differences were observed in the fronto-parietal
network (FPN) and the default mode network (DMN) between the two
conditions (t(23) = 0.36, p = 0.72, and t(23) = 1.12, p = 0.27).

Connectivity between sensorimotor and visual cortices
Next, we examined whether the brain functional connectivity between
sensorimotor and visual networks could explain de novo visuomotor skill
learning. As a functional connectivity analysis, we calculated a partial

correlation controlling the effect of task-related coactivation22. In this way,
we made the connectivity analysis orthogonal to the GLM analysis23.

We hypothesized that the connectivity would decrease as learning
hand-to-cursor mapping progressed with the increasing autonomy of each
network1. Furthermore, we sought to find which specific sensorimotor or
visual regions are involved in de novo skill learning. To define nodes for
connectivity analysis, we first chose the top five most significant clusters,
which were determined based on the group-level GLM results from the
main task session. Then we split the largest motor cluster into two regions:
PMd and M1, resulting in three regions for each sensorimotor (PMd, M1,
and S1) and visual (dorsal, ventral, early) network (Supplementary Fig. 5).
The final six nodes of the networks were defined as circular masks of 3mm
radius around the vertices with the peak intensity in the six regions of
interest (Fig. 4A).

Intriguingly, the connectivity patterns after controlling for task-specific
effects were comparable with coactivation patterns under the two alternate
conditions shown in Fig. 2 (Fig. 4B). In particular, we found higher con-
nectivity between the motor cortices (PMd and M1) and the late visual
regions (dorsal and ventral) than between the motor cortices and the early
visual region regardless of conditions or fMRI runs (see Methods; CF and
the first run: t(23) = 10.80, p < 10−4; CF and the last run: t(23) = 10.33,
p < 10−4; BF and the first run t(23) = 10.89, p < 10−4; BF and the last run:
t(23) = 10.11, p < 10−4; all Bonferroni-corrected). In contrast, the con-
nectivity between S1 and the early visual regionwas higher than between S1
and the late visual regions in the first runs of both conditions (CF and the
first run: t(23) = 4.07, p < 0.001; CF and the last run: t(23) = 1.54, p = 0.55;
BF and the first run t(23) = 3.93, p < 0.001; BF and the last run: t(23) = 2.54,
p = 0.07; all Bonferroni-corrected).

Fig. 3 | GLM result for the continuous vs. binary
feedback conditions in visual regions.
A Univariate activation map from the caudal view
for the contrast, continuous feedback > binary
feedback.BROI analysis of themean activation over
visual areas ( ± standard error of the mean). The
significance level was represented by asterisks as
follows. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 10−4(Bonferroni-corrected). Red and blue
dots in (B) and represent individual data for corre-
sponding conditions.

Fig. 4 | Functional connectivity in the sensor-
imotor and visual networks and its behavioral
correlations. A Six network nodes around the ver-
tices with peak activity of a representative subject
used for the connectivity analysis. The white dotted
circles are the GLM cluster result of the main task
session from which each peak is chosen.
B Functional connectivity between the nodes in the
sensorimotor network and those in the visual net-
work. The color of the nodes is consistent with the
color of the peak vertices in (A). C The relationship
between S1-early visual cortices connectivity and the
success rate revealed by a linear mixed-effect model.
Each participant underwent four fMRI runs, which
were indicated by the different shapes of the dots.
The shaded region represents a 68% confidence
interval.
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To investigate the relationship between the strength of visuomotor
interaction and learning performance, we tested how connectivity between
sensorimotor and visual cortices changes over time. Among all the 18 tests
for connectivity between three sensorimotor ROIs and three visual ROIs for
each feedback condition, only the connectivity between S1 and early visual
cortex significantly decreased from the first to the last fMRI run in the
continuous feedback condition (t(23) = 5.12, Bonferroni-corrected,
p < 0.001) (Fig. 4B). All the other connectivity did not reach significance
level of corrected p < 0.05 for multiple tests. Then, we correlated the con-
nectivity reduction with the improvement in learning performance, mea-
sured as an averaged success rate during each feedback condition and fMRI
run. A linear mixed effect model analysis (fixed effect: connectivity across
four fMRI runs, random effect: participants) revealed that the reduction of
connectivity between S1 and the early visual region was highly correlated
with performance improvement when continuous feedback was provided
(coef =−0.36, SE = 0.077, p < 0.001) (Fig. 4C).

Discussion
In thiswork,we founddistinctive involvement of the sensorimotor andvisual
cortices subregions in learning a motor skill de novo.We found clear double
dissociation of fMRI activity in the subregions and their interactionmediated
by visual feedback. Motor and late visual cortices were more activated when
continuous visual feedback was available than when only binary visual
feedback was available. In contrast, somatosensory and early visual cortices
exhibited the opposite activation pattern. We also found a significant
learning-induced reduction of connectivity between somatosensory and earl
visual cortices, which was correlated with improved performance.

It is challenging to separate fMRI activity between closely located
motor and somatosensory cortices since efferent motor commands and
afferent proprioceptive feedback are processed simultaneously during
continuous motor control13. In our experiment, manipulation of visual
feedback allowed us to dissociate the fMRI activity bymodulating the extent
to which participants depended on visual or proprioceptive feedback to
perform the task. When visual feedback is limited to binary feedback, par-
ticipants are more likely to attend to proprioception, i.e., hand posture,
leading to higher fMRI activity in somatosensory cortices than in motor
cortices. In other words, the extent of visual feedback switches attentional
focus on the visual or proprioceptive modality, as suggested in a previous
study17. In our experiment of learning an arbitrary hand-to-cursormapping,
this dissociation would be more prominent than in typical motor learning
tasks due to considerable uncertainty about the motor and sensory goals of
the task13. We also found the boundary of the dissociation in the primary
motor cortex. Specifically, the anterior part showed greater activation with
the presence of online feedback compared to its absence, while the posterior
part exhibited the reverse pattern. Our results are consistent with other
studies claiming that the anterior M1 is more involved in motor execution,
which is externally triggered, and the posterior M1 is more related to
increased sensory attention24,25. Indeed, the anterior and posterior M1 were
known to differ not only in their cytoarchitecture and neurochemistry but
also in their functions26–28.Althoughour surface-basedGLManalysis has the
advantage over a volume-based GLM in delineating the boundary with less
overlapped fMRI activity betweenM1 and S125, the spatial resolution would
not be enough to dissociate the functional difference. Future studies using
7 T fMRIwith superior spatial resolution and signal-to-noise ratiowould be
necessary to dissociate the roles of sensorimotor subregions more clearly.

The dissociative responses observed in visual cortices could be
explained by competition for cognitive resources between early and late
visual cortices. In the online feedback condition, we reasonably assumed
that participants were visually tracking the cursor to perform the task,
although we do not have eye-tracking data to support this assumption.
Thus, the late visual cortices, including V5/MT sensitive to visual motion,
would be more activated than in early regions. On the other hand, in the
binary feedback condition where no online visual feedback is provided, the
cognitive resource would be released from the late visual cortices, resulting
inhigher activation in the early visual cortex16,17. Alternatively, thedifference

in visual attention and eye movement strategies between the two alternate
conditions could influence neural activities. Future research with eye-
tracking could elucidate the role of eye movements in visuomotor learning,
offering a more nuanced understanding of the neural mechanisms.

A landmark fMRI study revealed that visuomotor interaction in long-
termmotor sequence learning ismoredominant inanearlier stageof learning
visuomotor mappings and decreases in the later stage of learning with more
automatic performance1. Our study similarly found a significant reduction of
visuomotor interaction, specificallybetweenS1andearly visual cortex, during
short-termdenovomotor skill learning.Themore significant contribution of
S1 than M1 to learning is potentially due to the complexity of our task with
highlyuncertain sensory targets,which emphasizes the role ofproprioception
necessary to estimate sensory states (i.e., hand postures)2,13. The somatosen-
sory cortex could play amore critical role in initial visuomotor learningwhen
a sensory target is highly uncertain2, as in our task learning an arbitrary hand-
to-cursor mapping. Our study has a limitation without providing an expla-
nation of the role of S1 in more long-term visuomotor learning.

Additionally, the more significant contribution of the early instead of
late visual corticeswouldbe related tohigher spatial selectivity of visualfields
corresponding to target positions in the early visual cortex29. In contrast,
while the interaction between motor cortices and late visual cortices con-
tributed to learning, as shown inmore significant connectivityduring theCF
condition than during the BF condition, there was no significant decrease
during learning. This lack of change could be due to the relatively short
duration of learning (~40minutes) for the complicatedmotor task. It would
be intriguing to investigate whether multiple time scales in the interaction3

between M1/S1 and early/late visual cortices contribute to de novo visuo-
motor learning3 with more extensive practice20.

Finally, our results provide important insight into rehabilitation for
patients with visual deficits or sensorimotor impairment. Specifically,
research has shown that S1 and early visual areas are functionally connected
in early blind individuals, who lost their vision before the age of 16, and thus
rely on tactile information that is transferred to V1 to compensate for their
loss of vision30. When repetitive transcranial magnetic stimulation (rTMS)
was applied over S1 in early-blinded people, V1 showed significantly higher
activation, underscoring the robustness of S1-early visual area connection in
those individuals31. Our study extends these findings by demonstrating a
functional connection between S1 and early visual areas in sighted indivi-
duals as well, specifically in the context of proprioceptive tactile information
and visual information integrated during motor learning.

Methods
Subjects
Twenty-six healthy adults from the Sungkyunkwan University community
participated in this study. According to the Edinburgh Handedness
Inventory32, all participants were right-handed. In addition, they had no
history of neurological or psychiatric disease and had normal or corrected-
to-normal vision. Twenty-four participants (14 females; mean age = 24.9 ±
4.7 years, age range = 18-35 years) completed all the experiment sessions.
Similar sample sizes were used in recent fMRI experiments with the data
gloves20,33,34. Two participants dropped out in the middle of the experiment
due to severe fatigue; thus, their data were excluded from the analysis. All
participants were provided written consent. All the experimental proce-
dures adhered to the Declaration of Helsinki and were approved by the
Institutional Review Board of Sungkyunkwan University, Suwon, Republic
of Korea (IRB No. 2018-05-003-032). All ethical regulations relevant to
human research participants were followed. Participants underwent two
scanning sessions for 1.5 hours at a 3 T fMRI scanner and receivedmonetary
rewards for participating after the experiment.

fMRI data collection
The present study acquired fMRI data using a 3-T Siemens Magnetom
Prisma scanner equipped with a 64-channel head coil. Functional images
were obtained using an echo-planar imaging (EPI) sequence with specific
parameters: a total of 300 volumes (with 310 volumes for localizer fMRI), a
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repetition time (TR) of 2,000ms, an echo time (TE) of 35.0 ms, a flip angle
(FA) of 90°, a field of view (FOV) measuring 200mm, a matrix size of 101
×113 × 91 voxels, 72 axial slices, and a slice thickness of 2.0 mm. For
anatomical referencing, a T1-weighted anatomical scan of the entire brain
was conducted using a magnetization-prepared rapid acquisition with
gradient echoMPRAGE sequence. This anatomical scan employed specific
parameters, including aTRof 2300ms, aTEof 2.28ms, anFAof 8°, an FOV
of 256mm, a matrix size of 204 × 262 × 260 voxels; 192 axial slices, and a
slice thickness of 1.00mm.Before the functional scans, twoEPI imageswere
acquired with opposite-phase encoding directions (posterior-to-anterior
and anterior-to-posterior) to enable subsequent distortion correction.

Data glove
Participants wore the MR-compatible data glove (5DT Glove 14 Ultra) on
their right hand.With the data glove, hand postures recorded by 14 sensors
were converted to cursor positions on the 2-dimensional screen. The hand-
to-cursor mapping is defined below.

x

y

� �
¼

ax;1 ax;2 ax;3 � � � ax;14
ay;1 ay;2 ay;3 � � � ay;14

" #
× s1 s2 s3 � � � s14
� �T þ x0

y0

� �

where skðk ¼ 1; 2; . . . ; 14Þ indicates each of the 14 sensor inputs from the
data glove, and x and y indicate the cursor’s horizontal and vertical position.
The time-series data of the 14 sensors was sampled at 60 Hz. The above
equation can be rewritten as r ¼ Asþ r0, where themappingmatrixA and
the offset r0 were determined from the calibration and localizer session.

Calibration
Before fMRI scanning, participants had a calibration phase in an MRI
scanning control room. After wearing the data glove, participants moved
their right hands while they could see a graph of 14 barsmoving in real-time
based on the 14 sensors. Participants were instructed to try various combi-
nations of hand postures, including adduction, abduction, flexion, and
extension of fingers. Next, we conducted a principal component analysis
with the covariance matrix derived from the time series collected from the
14 sensors. The first two principal components were employed to create
the mapping matrix A, and the offset r0 was calculated to ensure that
the averagehandposturewas alignedwith the center of the screen.After that,
we ensured that participants could visit all 25 cells of a 5 × 5 grid (Fig. 1A).

Localizer session
After the calibration phase, participants moved to an MRI scanning room.
They lay on their back in the scanner, observing the screen via a mirror.
Foam pads were applied to all participants to reduce head movement. In
addition, they wore the data glove on their right hand and put the hand in a
comfortable position. Notably, participants could not see their hands
moving during the entire fMRI experiment.

The localizer session aimed to define the brain regions related to finger
movement, independently from themain task.When “Move”wasdisplayed
on the screen, participants performed natural-speed movements with their
right fingers, ceasing their movements upon the appearance of the “Stop”
text. Each “Move” or “Stop” condition had a duration of 48 seconds,
separated by 2-second intervals, and a total of six sets of “Move” and “Stop”
conditionswere executed.Toensure it is denovo learning toparticipants,we
recalibrated themappingmatrixA and the offset r0 using the data acquired
from the finger movements in the last two “Move” blocks. We also ensured
that all 25 grid cells were reachable by finger movements.

Main task session
Participantswere required tomove their rightfingers to control a cursor and
reach a target cell with all combinations of adduction, abduction, flexion,
and extension of their fingers. A target cell is a gray cell with a yellow
crosshair in its center. If participants reached a target cell, its color changed
to red, and they were required to stay in the target cell withoutmoving their
fingers until the next one appeared. In other words, the main task was to

reach a target as quickly as possible and to stay as long as possible at the
target. A target cell appeared for 4 s. Regardless of whether participants
reached a target or not, the targetwas changed to the next one after 4 s. Each
block had 12 trials with a sequence of either 13-3-25-21-13-25-3-21-25-13-
21-3 (Sequence 1: triangle) or 13-23-5-1-13-5-23-1-5-13-1-23 (Sequence 2:
inverted triangle), where the number indicates the grid cell number deter-
mined by the formula k ¼ 5iþ j� 5, with i representing the row index and
j representing the column index. Half of the participants were presented
with Sequence 1, and the other half were presented with Sequence 2 for
counterbalancing. In total, there were four runs, and each run consisted of
12 blocks. Thus, the duration of each run was about 576 s (144 trials × 4 s).

Notably, there were two experimental conditions: continuous visual
feedback and binary visual feedback. In the continuous feedback condition,
participants could see both cursor movement and targets. On the other
hand, in the binary feedback condition, participants could only see targets.
However, the cursor was not visible (Fig. 1B). Thus, participants could only
guess their cursor position by the color of the targets. The two conditions
were applied in separate blocks alternately. During odd-numbered blocks,
the cursor position was continuously represented by a white crosshair,
whereas it was hidden during even-numbered blocks.

Behavioral data analysis
The proportion of time during which a target turned redwasmeasured as a
trial-by-trial success rate. For example, the success rate of one block was
defined by the amount of time targets turned red during one block divided
by 48 s, a total time of one block.We used a two-sided paired t-test between
different feedback conditions, or fMRI runs to see if there was a significant
difference. MATLAB (version R2022a, MathWorks), Python (version
3.10.8), and JupyterNotebook (version 6.4.12) were utilized for all statistical
analyses.

fMRI data analysis: preprocessing
MRI data were analyzed with FreeSurfer (version 7.2.0)35. We first fol-
lowed the FreeSurfer ‘recon-all’ pipeline to preprocess anatomical data.
Then, for functional data, we followed the FreeSurfer Functional Analysis
Stream (FS-FAST) preprocessing pipeline (https://surfer.nmr.mgh.
harvard.edu/fswiki/FsFastTutorialV6.0/FsFastPreProc). Functional
data from each subject were registered to the same-subject FreeSurfer
anatomical data with motion correction and slice-timing correction.
Then, the functional data were resampled to common FreeSurfer space.
Note that we did not perform spatial smoothing, which reduces the
spatial specificity of the GLM analysis36, since our primary goal of the
analysis was to achieve precise brain mapping to distinguish sensor-
imotor areas. This approach follows the non-smoothing method of
previous studies that have successfully distinguished shared voxels37,38.
Furthermore, unlike a typical GLM analysis, spatial smoothing should be
avoided for a functional connectivity analysis39,40.

fMRI data analysis: GLM
Weutilized FS-FAST for the GLM analysis, a FreeSurfer fMRI data analysis
tool41. We contrasted fMRI activity between “Move” versus “Stop” condi-
tions and continuous feedback (CF) versus binary feedback (BF), respec-
tively, for the localizer session and the main session. For each session, the
regressors of interest were computed by convolving boxcars encoding the
contrasting two conditionswith the SPMcanonical hemodynamic response
function (HRF) of zero derivatives. We added nuisance regressors, which
are motion parameters created in preprocessing, and third-order poly-
nomial regressors to the designmatrix for the GLM analysis. After the first-
level analysis, individual results were concatenated into one file with the
“isxconcat-sess” function. Then, group GLM was performed with
“mri_glmfit .” Multiple comparison correction was done by “mri_glmfit-
sim” with cluster-forming threshold (CFT) of p < 10−4 and cluster-wise
p-value of p < 0.05. The final full width at half maximum (FWHM) of the
inherent smoothness was considered for multiple comparisons correction.
A similar analysis was also done on the localizer result with different
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conditions of “Move” and “Stop” to identify regions responding to hand
movement (Supplementary Fig. 3A).

ROI selection and analysis
For regions of interest in (ROIs) the sensorimotor cortices, we identified
overlapping regions between significant clusters related to finger movement
(the localizer GLM result, Supplementary Fig. 3B) and Brodmann areas
provided by FreeSurfer42 (BA6 for PMd; BA4a and 4p forM1; BA1, 2, 3a and
3b for S1; https://surfer.nmr.mgh.harvard.edu/fswiki/BrodmannAreaMaps).
These sevenROIswere employed in the univariate activation analysis, where
beta estimates obtained from theGLManalysis within theROIs are averaged
and presented in line graphs with their means and standard errors of the
means (Figs. 2C and 3B). We reported Bonferroni-corrected p-value for
seven statistical tests performed on theROIs. For visualization purposes only
(as shown in Fig. 2C), we defined 28 rectangular searchlights covering the
sensorimotor ROIs with regular intervals. The boundaries of these 28 rec-
tangular searchlights were adjusted to align as closely as possible with the
Brodmann area boundaries. For ROIs in the visual cortices, we used the
surface-based atlas provided byWang et al.43. They grouped V1d, V1v, V2d,
V2v, V3d, and V3v regions, defining the group as an early visual region, and
we adhered to their classification.

For connectivity analysis, we chose the five most significant clusters
made from the GLM result (Supplementary Fig. 5). On the other hand,
based on our hypotheses, we divided the yellow cluster in Figure S4A into
PMd and M1 parts based on the Brodmann area. We also used only the
posterior part of the scarlet cluster anddefined it as a dorsal visual cluster.As
a result, we have six clusters of PMd,M1, S1, dorsal, ventral, and early visual
regions. Then, we defined individual circular masks of 3mm radius from
each cluster (Fig. 4A). First, we used the “mri_surfcluster” function to
identify each vertex number, which serves as the center of a circular mask.
This was determined by locating the vertex with the highest absolute beta
estimates from the first-level GLM analysis of the main task. After that, the
circular masks were drawn around the center with the “mri_volsynth,”
“mris_fwhm,” and “mri_binarize” functions.

fMRI data analysis: connectivity
The task-based time-series data were extracted and averaged within the
seedsdefined inROIsby “mri_segstats”. For the time-series dataof each run,
we regressed out the samemotion parameters and third-order polynomials
as used in the GLM analysis, as well as other nuisance signals, such as a
global signal, which is computed as an averaged signal within the whole-
brain mask, two signals projected on the top principal component within
whitematter (WM) and ventricular cerebrospinal fluid (vCSF), respectively
from PCA using “fcseed-sess”. To remove task-related components, func-
tional connectivity between two seeds was calculated as a partial correlation
controlling the task regressors used in the GLM analysis. The functional
connectivity was calculated for nine pairs of sensorimotor ROIs (PMd,M1,
and S1) and visual ROIs (early, dorsal, and ventral) for each of the two visual
feedback conditions (18 connectivity values).

To check whether there was a significant difference in functional
connectivity between the sensorimotor ROIs and the visual ROIs from the
first to the last run, we performed 18 separate two-tailed paired t-tests with
Bonferroni-corrected p-values for the multiple tests. Given the significant
decrease in functional connectivity between S1 and the early visual region,
we further conducted the linear mixed effects (LME) model analysis with
random intercepts (fixed effect: connectivity across four fMRI runs, random
effect: participants). The LME analysis aimed to examine the correlation
between the observed changes in functional connectivity and the
improvement in behavioral performance.

Data availability
All data includingMRI data used in this study are archived in the Hanyang
University Network Attached Storage (NAS). The corresponding author
canprovide any informationon the dataset necessary to generate results and
figures shown in this study. Small numeric data used in the analyses are also

available in the first author’s github (https://github.com/AndyJHKim/GL_
sensorimotor.git).

Code availability
All codes used in this study, including those related to FreeSurfer, are
archived in the HanyangUniversity Network Attached Storage (NAS). The
corresponding author can provide any information on the codes necessary
to generate results andfigures shown in this study. The codes for figures and
related analyses are also available in the first author’s github (https://github.
com/AndyJHKim/GL_sensorimotor.git).
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