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Symbiont community assembly shaped by
insecticide exposure and feedback on
insecticide resistance of Spodoptera
frugiperda
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Exploring the mechanism of microbiota assembly and its ecological consequences is crucial for
connecting microbiome variation to ecosystem function. However, the influencing factors underlying
microbiota assembly in the host-microbe system and their impact on the host phenotype remain
unclear. Through investigating the prevalent and worsening ecological phenomenon of insecticide
resistance in global agriculture, we found that insecticide exposure significantly changed the gut
microbiota assembly patterns of a major agricultural invasive insect pest, Spodoptera frugiperda. The
relative importance of various microbiota assembly processes significantly varied with habitat
heterogeneity and heterogeneous selection serving as a potential predictor of the host’s insecticide
resistance in field populations. Moreover, disturbance of the gut microbiota assembly through
antibiotics was revealed to significantly affect the rate and heritability of insecticide resistance
evolution, leading to a delay in insecticide resistance evolution in this insect pest. These findings
indicate that the gut microbiota assembly process of the insect host is influenced by persistent
exposure to habitat conditions, particularly insecticides. This variation in insecticide exposure-related
community assembly process subsequently influences the insect host’s insecticide resistance
phenotype. This study provides insights into gut microbiota assembly processes from a symbiotic
perspective and underscores the significant impact of symbiotic community changes on host
phenotypic variation.

Environmental and animal microbiota (i.e., microbial communities) are
influenced by four fundamentals ecological processes: diversification, selection,
drift, and dispersal1, 2. Deterministic processes in ecology often involve non-
random factors such as environmental filtering and biotic interactions like
competition, facilitation, mutualism, and predation3. Stochastic processes
encompass probabilistic diffusion, random species formation and extinction,
andecologicaldrift4.Recently, researchershavebegun todeconstruct andassess
the significance of these ecological processes using null model analysis, which
establishes a statistical framework to investigate and quantify the effects of
different ecological processes on microbial community structure, succession,
andbiogeography.Throughtheuseofwithnull-model-basedphylogenetic and

taxonomic β-diversity metrics such as β nearest taxon index (βNTI), beta net
relatedness index (βNRI), and Raup-Crick Bray-Curtis distance (RCBray), the
mechanisms driving changes in phylogenetic and taxonomic diversity can be
identified using β diversity indices5. Ning et al., present a novel pipeline to
quantitatively infer community assembly mechanisms through phylogenetic
bin-based null model analysis (iCAMP), which can quantify relative impor-
tance of five assembly processes including, homogeneous selection (HoS),
heterogeneous selection (HeS), homogenizing dispersal (HD), dispersal lim-
itation (DL) and drift (DR)6. By employing these approaches, the assembly
process of ecological models can be measured, enabling a more precise dif-
ferentiation between the roles of stochastic and deterministic processes in
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microbial communities, thus enhancing our comprehension of the mechan-
isms governing microbiota assembly.

Usually, microbiota assembly related ecological processes can be
influenced by biotic or abiotic factors7. However, while these analyses are
frequently applied in modeling environmental microbiomes, their use in
investigating the assembly mechanisms of symbiont communities in ani-
mals is limited6. Several recent studies have shown that microbiota com-
munities of insects can be partially driven by deterministic processes8. For
example, deterministic processes play a larger role than stochasticity in
driving the fungal community assembly in wild stonefly. Conversely, some
studies suggest that stochastic processes such as drift and dispersal limita-
tion have a greater impact on host community assembly8. Recent research
on the gut microbiota of Apis cerana, Apis mellifera, Drosophila simulans
and Dicranocephalus wallichii bowringi has indicated that stochastic pro-
cesses like dispersal limitation and drift are the key factors in shaping gut
microbiota assembly8,9. These species-specific differences not only demon-
strate a significant role of the insect host in the assembly of its symbiotic
community but also underscore the influenceof different environments and
ecological niches on the structuring process of symbiotic bacteria.

Insect pests can develop resistance to xenobiotics, including chemical
insecticides, over prolonged exposure. Despite restrictions on pesticide use
in some countries tomitigate insecticide resistance and environmental risks,
insect pests continue to evolve, leading to escalating levels of resistance in
recent years10. Host-microbe interactions canmediate insecticide resistance,
reflecting the coordinated response of the host and its microbiome to
insecticides11. Insect pests with varying insecticide resistance levels often
exhibit distinct microbiome structures, diversity and functions12,13. How-
ever, existing studies have primarily focused on core microorganisms
associated with insecticide resistance, overlooking the impact of symbiont
interactions on the insecticide resistance in their hosts14. The collective
response of the host and its microbiome to insecticides may manifest in
differences in community assembly, influencing host evolution in response
to insecticides15. However, the impact of insecticide exposure on host
microbiota assembly and its subsequent feedback on host phenotypes
requires further investigation.

The primary question revolves around whether insecticide stress
influences the selection of the host and its symbionts. If yes, howmuch such
influences may lead to changes in microbiota assembly processes and
potentially impact the host’s insecticide-resistant phenotype. Addressing
the above-mentioned critical questions is challenging due to the multi-
faceted interactions in complex natural environments. To overcome this
challenge, we designed a series of experiments to explore the causal rela-
tionship between insecticide exposure, community assembly processes of
host symbionts, and the resulting insecticide resistance phenotypes in a
laboratory model insect pest, i.e., Spodoptera frugiperda or the fall army-
worm, a globally invasive notorious insect pest in agriculture. We hypo-
thesize that insecticide exposure induces alterations in the symbiotic
community assembly of insect pests, leading to changes in microbial
interactions that subsequently impact the host’s insecticide resistance
phenotype. By integrating microbiome analysis, community assembly
modeling, and insecticide resistance evolution analysis, we confirmed the
hypothesis that insecticide exposure significantly modifies the community
assembly processes of host symbiotic bacteria, transitioning between
deterministic and stochastic processes based on exposure duration. This
shift in community assembly processeswas found todelay the evolution rate
and heritability of insecticide resistance in the insect pest host. This study
underscores the pivotal role of symbionts in shaping the evolution of insect
pest insecticide resistance and offers a foundational basis for developing
symbiont-targeted insect pest control strategies.

Materials and methods
Field sampling and laboratory experimentation of insects
The six field populations of S. frugiperdawere collected frommaize fields in
five provinces of China, including Zhejiang, Guangdong, Anhui, Hubei and
Guangxi in 2022 (Table S1). Fifth-instar larvae and their faeces were

collected on-site, and the larvae were immediately dissected to obtain gut
tissue and contents. All field populations were brought back to the labora-
tory to assess their resistance levels to three insecticides including, chlor-
antraniliprole, indoxacarb and lambda-cyhalothrin. NN population was
randomly chosen for long-term indoor feeding for future experiments, such
as short-term insecticide exposure and insecticide resistance evolution
assay. The larvae were fed an artificial diet in the laboratory following a
previous study16. Adultswere housed in 30 cm×30 cm× 30 cm insect cages
and provided with a 10% honey solution for nutritional supplementation.
All insectsweremaintained at 25 ± 1 °Cand65 ± 5%relative humidity (RH)
under 16-hour light:8-hour dark (L:D) photoperiod.

The indoor-resistant populations were selected from a field population
(SS) collected from maize in Sanya, Hainan Province (109.12°E, 18.37°N),
during the 2021 crop season. The selection bioassays were conducted using
third-instar larvae of the F2 generation. The resistant populations were
named chlorantraniliprole-resistant population (CR), indoxacarb-resistant
population (IR) and lambda-cyhalothrin-resistant population (LR),
respectively.

Three chemical insecticides used in this study (chlorantraniliprole
98%, lambda-cyhalothrin 96% and indoxacarb 95%) were provided by
ShanDong WeiFang Rainbow Chemical Co., Ltd and HuBei WeiDeLi
Chemical Technology Co., Ltd, respectively. Stock solutions of the insecti-
cides were diluted with acetone orN,N-dimethyl formamide to the desired
concentrations.

Short- and long-term insecticide exposure of S. frugiperda
The diet-overlaymethod was used for field population insecticide bioassays
as described previously with a slight modification17,18. In detial, 900 μL of
artificial diet was added to a well in 24-well plates. Subsequently, 100 μL of
the insecticide solution was added to the diet surface to ensure even cov-
erage. Five concentrations of insecticide (prepared by diluenting with dis-
tilledwater containing0.1%TritonX-100) andacontrol (0.1%TritonX-100
in distilled water) were used for bioassay for S. frugiperda. After the insec-
ticide solution had dried, 24 healthy 3rd-instar larvae of S. frugiperda were
carefully placed individually in each well of the plates, with three replicates
for each concentration. The treated insect larvae were maintained in the
insect-rearing environment and mortality was recorded at 24 h (lambda-
cyhalothrin), 48 h (indoxacarb and chlorantraniliprole) after treatment. The
lethal concentration of 50% (LC50) of S. frugiperda to each insecticide was
calculated using Polo Plus (ProbitLogitAnalysis, Le-OraSoftware).

The NN population was treated with sub-lethal concentrations of
insecticides (LC50 of each insecticide) for 24 h, representing short-term
insecticide exposure populations (chlorantraniliprole, indoxacarb and
lambda-cyhalothrin exposure named C, I and L, respectively) (Fig. 1a). The
SS population was treated with sub-lethal concentrations of insecticides
(LC50 of each insecticide every generation) for 48 h each generation and
maintained for 10 (IR) or 15 (CR and LR) generations as a long-term
insecticide exposure population (Fig. 1a).

DNA extraction, 16S rRNA gene amplicon sequencing and
bioinformatics analysis
Total genomic DNA of insecticide-treated populations of S. frugiperda was
extracted using the OMEGA Tissue DNA Kit (Omega Bio-Tek, Norcross,
GA, USA), following the manufacturer’s instructions. The extracted DNAs
were quantified and their quality was assessed using a NanoDrop NC2000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and
agarose gel electrophoresis, respectively.

PCR amplification of the bacterial 16S rRNA gene V3–V4 region was
performed using the forward primer 338F (5′-ACTCCTACGGGAGG
CAGCA-3′) and the reverse primer 806R (5′-GGACTACHVGGGTWTC
TAAT-3′). Sample-specific 7-bp barcodes were incorporated into the primers
for multiplex sequencing. The PCR components included5 μL of buffer (5×),
0.25 μL of Fast pfuDNAPolymerase (5U/μL), 2 μL (2.5mM)of dNTPs, 1 μL
(10 μM) of each forward and reverse primer, 1 μL of DNA template, and
14.75 μL of ddH2O. Thermal cycling consisted of initial denaturation at 98 °C
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for 5min, followed by 25 cycles of denaturation at 98 °C for 30 s, annealing at
53 °C for 30 s, and extensionat 72 °C for 45 s,with afinal extensionof 5min at
72 °C. PCR amplicons were purified with Vazyme VAHTSTM DNA Clean
Beads (Vazyme, Nanjing, China) and quantified using the Quant-iT Pico-
Green dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA). After individual
quantification, amplicons were pooled in equal amounts, and pair-end 2 ×
250 bp sequencing was performed using the Illumina NovaSeq platformwith
NovaSeq 6000 SP Reagent Kit (500 cycles) at Shanghai Personal Biotechnol-
ogy Co., Ltd (Shanghai, China).

The 16S rRNA gene amplicon sequence data were analyzed using
QIIME2 The data were demultiplexed with the demux plugin and then
subjected to primer cutting with the cutadapt plugin19. subsequently, the
sequence data underwent processing with the DADA2 plugin for quality
filtering, denoising, merging, and removal of chimeras. Non-singleton
amplicon sequence variants (ASVs) were aligned using maft. Taxonomy
was assigned to the ASVs using the classify-sklearn naïve Bayes tax-
onomy classifier in the feature-classifier plugin, against the Silva138
Database.
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Fig. 1 | The relationship between microbiome diversity, community assembly
mechanisms and their relation to insecticide resistance levels in field fall army-
worms. a Relative importance of microbiota assembly processes in the gut, gut
content and faeces of 5 strains of field fall armyworms. b The α-diversity (Shannon,
Evenness and Richness) of the microbiome in the gut, gut content and faeces of
5 strains of field fall armyworms, n = 17 biologically independent samples. c PCoA
analysis of the microbiome of the gut, gut content and faeces of 5 strains of field fall

armyworm. d Correlation analysis of microbiome similarity and differences in
insecticide resistance in gut contents of 5 strains of field fall armyworms.
e Correlation between the relative importance of heterogeneous selection (Hes) and
the resistance level of fall armyworms to chlorantraniliprole, n = 5 biologically
independent strains. DR: Drift; HD: Homogeneous diffusion; DL: Diffusional lim-
itation; HoS: Homogeneous selection; HeS: Heterogeneous selection. “*” and “**”
represent significantly difference set up as P < 0.05 and P < 0.01, respectively.
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Analysis of community assembly processes of S. frugiperda
symbionts under insecticide exposure
The contribution of different ecological processes to community assembly
based on phylogenetic bin-based null model analysis was identified using
MbioAssy2.0 (https://github.com/emblab-westlake/MbioAssy)20 which
implements the iCAMP package6. To quantify various ecological processes,
the observed taxa are initially categorized into distinct groups, referred to as
‘bins’, based on their phylogenetic relationships. Subsequently, the processes
governing each bin are identified through null model analyses of phyloge-
netic diversity, utilizing the beta Net Relatedness Index (βNRI), as well as
taxonomic β-diversities assessed via the modified Raup–Crick metric (RC).
For each bin, the proportion of pairwise comparisons exhibiting βNRI
values less than -1.96 is interpreted as the percentage of homogeneous
selection, while those with βNRI values exceeding+1.96 are regarded as the
percentage of heterogeneous selection, in accordance with previously
established thresholds. Following this, the taxonomic diversity metric RC
is employed to analyze the remaining pairwise comparisons where |
βNRI| is less than or equal to 1.96. The fraction of pairwise comparisons
with RC values below -0.95 is classified as the percentage of homo-
genizing dispersal, whereas those with RC values above +0.95 are cate-
gorized as indicative of dispersal limitation. The remaining comparisons
that fall within the ranges of |βNRI| ≤ 1.96 and |RC | ≤ 0.95 are inter-
preted as representing percentages of drift, diversification, weak selection,
and/or weak dispersal6.The observed taxa were first divided into different
‘bins’ according to a phylogenetic signal threshold (ds = 0.2, bin.size.limit
= 12) within the phylogenetic tree to determine the relative importance of
heterogeneous selection, homogeneous selection, homogenizing dis-
persal, dispersal limitation.

Co-occurrence network based on the Spearman’s rank correlation was
created using the “Co-occurrence_network.R” script in MbioAssy2.0
package. A threshold of Benjamini-Hochberg method-adjusted P < 0.05
and r > 0.6 was subsequently applied to eliminate weak interactions7,20.
Global network properties were analyzed using the Molecular Ecological
Network Analysis Pipeline21,22 and visualized with Gephi v0.9.2.

Evolution risk assessment of insecticide resistance and estima-
tion of realized heritability
Wild-type insects were fed an artificial diet with or without antibiotics
(1000mg/L ciprofloxacin and 1000mg/L rifampicin) continuously. Sub-
sequently, the insects were subjected to insecticide resistance selection. Each
generation was screened using the LC50 of the previous generation and
mortality rates were recorded.

The realized heritability (h2) of resistance to chlorantraniliprole in S.
frugiperda and antibiotic-treated S. frugiperda was estimated using a
threshold trait analysis method, as described by Tabashnik23,24:

h2 ¼ R=S ð1Þ

where R is the response to selection and S is the selection differential.

The response to selection (R) is the difference in mean phenotype
between the offspring of the selected parents and the entire parental gen-
eration before selection, and it was estimated as:

R ¼ log final LC50

� �� logðinitial LC50Þ
n

ð2Þ

where the final LC50 is the LC50 of offspring of the insect surviving after “n”
generations of selection, the initial LC50 is the LC50 of the parental gen-
eration before “n” generations of selection and R is the average response to
selection per generation.

The selection differential (S) represents the difference in mean phe-
notype between the selected parents and the entire parental generation,
which was estimated as:

S ¼ iσp ð3Þ

where i is the intensityof selectionandσp is thephenotypic standarddeviation.
The intensity of selection (i) was estimated from p, the percentage of

surviving selection, which is based on the properties of a normal distribu-
tion. The phenotypic standard deviation was estimated as the reciprocal of
the mean of the estimated slopes of the probit regression lines from the
selected colony (σp = 1/average slope).

The response to selection (R) can be estimated as the product of her-
itability (h2) and selection differential (S):

R ¼ h2S ð4Þ

Basedon the responseof insects to selection in the laboratory, thenumber
of generations required for a tenfold increase in LC50 (G) is the reciprocal ofR:

G ¼ R�1 ¼ ðh2SÞ�1 ð5Þ

h2 was used to predict the rate of insecticide resistance development at
different mortality rates, representing the strength of selection), with mor-
tality rates of 50%, 60%, 70%, 80%, 90%and99%, respectively.Assuming the
initial and final slope of estimated slopes of the probit regression lines were
the same (b = 2), the generations required (N) for resistance evolution to
increase by100 times (RR = 100) at each selection strength, as follows:

N ¼ b1 þ b2
� �

× logðRRÞ
2h2i

ð6Þ

Statistics and reproducibility
The source data for this study are stored in database Figshare25, identified
by the doi numbers of https://doi.org/10.6084/m9.figshare.26867302
(Fig. 1), https://doi.org/10.6084/m9.figshare.26868445 (Fig. 2), https://
doi.org/10.6084/m9.figshare.26868451 (Fig. 3), https://doi.org/10.6084/

Fig. 2 | Co-occurrence networks showing com-
munity-wide correlation between insecticide
resistance and symbiont abundance in thefield fall
armyworm. Three networks were created to illus-
trate the correlation between bacteria abundance in
the gut, gut content and faeces samples and insect’s
insecticide resistance. The colors represent the dif-
ferent modules highlighting ecological niches.
Details of the network analysis are available in
Table S3.
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m9.figshare.26868475 (Fig. 4) and https://doi.org/10.6084/m9.figshare.
26868481 (Fig. 5).

The α-diversity and β-diversity of insect microbiota were estimated
using the diversity plugin of q2-diversity with rarefied samples, including
three α-diversity indices [Shannon, evenness, and richness]. The VEGAN
package (version 2.5-7) was used to calculate the Bray–Curtis distances

between samples with the ASVs table, and principal coordinate analysis
(PCoA) was performed with distance matrices using the cmdscale function
in R. All results from R were visualized and plotted using ggplot2 (version
3.3.3). The microbiome function prediction was performed by PICRUST2
(version 2.5.2). The bacterial taxa and their prediction function difference
analysis of different populations or treatments were performed with
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STAMP analysis on the online Omicstudio (https://www.omicstudio.
cn/index).

Multiple regression analysis was performed using R packages Car
(version 3.1) and MASS (version 7.3). Car package was utilized to test
whether the relationship between variables anddependent variables satisfies
the model conditions (including linear relationship, data independence,
normal distribution, residual, etc.), and then to obtain the optimal model
equation using the “backward”method of the MASS package.

Significance analysis was performed by t-test (for two groups) and
multiple comparison (formultiple groups) usingGraphPad8,with “*”, “**”
and different letters indicating significant differences (P < 0.05).

Results
The entire microbiome collectively shapes the field insecticide
resistance of S. frugiperda
Insecticide resistance facilitated by gut microbes raised global concerns
on its threats on agricultural health and sustainability. In order to explore
whether the insecticide resistance level of S. frugiperda was related to the
symbiont, we collected 5 field populations from different provinces of
China and measured the LC50 of these populations to three insecticides.
The experimental results showed that compared with the susceptible
strain (SS), the resistance level of the field S. frugiperda collected was
distributed from low-level resistance to high-level resistance to chlor-
antraniliprole (1.12-53.89), lambda-cyhalothrin (0.41-1.57) and indox-
acarb (48.59-119.76) (Table 1). Based on the variation in insecticide
resistance levels of the field population, we hypothesize that the variation
in insecticide resistance levels among field populations of S. frugiperda
may be influenced by the effects of insecticide exposure, leading to
alterations in symbiont community assembly processes. To investigate
this, we collected gut, gut content, and feces samples from in-situ larvae
in the field for 16S rRNA gene amplicon sequencing. Subsequently, we
calculated the relative importance of the main processes of symbiont
community assembly.

The results revealed that homogeneous selection (24.76–90.87%),
dispersal limitation (0–58.66%) and drift (4.74–51.19%%) were the
predominant processes, collectively explaining 96.87% to 99.96% of
community assemblage (Fig. 1a). Similar to the variation in insecticide
resistance, the symbiont community assembly process varied among field
populations. For instance, the GX population was primarily influenced
by dispersal limitation (DL) process, while the ZJ, HB and GD popula-
tions were mainly driven by homogeneous selection (Hos) (Fig. 1a).
Additionally, we observed that the α-diversity (Shannon, evenness, and
richness) increased in the order of gut > content > faeces, correlating with
their increasing levels of environmental exposure (Fig. 1b). The relative
importance of the symbiotic assembly process in three out of five
populations (ZJ, HB and AH) increased in diffusional limitation process
with the extent of environmental exposure (Fig. 1a). Among these
populations enriched in dispersal limitation process, we noted that the
symbiont composition was more similar, while GX and GD exhibited
more variation compared to those three populations (Fig. 1c). Another
explanation for this noticeable difference is geographical dependent, as
the similarity in gut microbiome structure between populations decreases
with geographic distance (Fig. S1). According to the Mantel test, the gut
symbiont community showed a strong correlation with the insecticide

resistance of insect (Table S2). The differentiation in insecticide resis-
tance also significantly correlated with the similarity in gut symbiont
community, suggesting that insecticide application not only enhances
insecticide resistance but also influences the symbiont community of S.
frugiperda (Fig. 1d). Importantly, the relative proportion of hetero-
geneous selection in the deterministic processes was significantly posi-
tively correlated with the resistance level of chlorantraniliprole
(P = 0.049, Fig. 1e). These findings indicate that the gut microbiome is
closely associated with the insecticide resistance levels of S. frugiperda
under complex field environmental exposure.

We further sought to identify the core symbionts associated with
insecticide resistance in field S. frugiperda. The correlation-based associa-
tion network between symbiont abundance and insecticide resistance level
were analyzed. We identified three patterns of resistance level-symbionts
and symbionts-symbionts networks in different positions of the micro-
biome (Fig. 2). In contrast to the intensive correlation among symbionts-
symbionts (average degree: 55.79, 7.12 and 12.91 in gut, content and faeces,
respectively), resistance level-symbionts showed weak correlation: only 4 (3
correlated with chlorantraniliprole and 1 correlated with indoxacarb,
average degree: 1.33), 5 (2 correlated with chlorantraniliprole and 3 corre-
lated with indoxacarb, average degree:1.67) and 13 (9 correlated with
indoxacarb and 4 correlatedwith lambda-cyhalothrin, average degree: 4.33)
bacterial taxa were associated with insecticide resistance of insect in gut,
content and faeces, respectively (Fig. 2). However, 7383, 595 and 1198
pairwise associations between bacteria taxa were identified in the gut,
content and faeces, respectively (Fig. 2). The number of significant bacterial
associations in the gut was significantly higher than in the contents and
feces, suggesting a high degree of reciprocal cooperation among gut sym-
bionts (Fig. 2 and Table S3).

Based on topological analysis and modularity (md) comparison
between the observed co-occurrence networks (Table S3), we found clear
patterns of niche convergence (i.e., one major module) in the insect gut
microbiome while niche differentiation or segregation (i.e., multiple
modules) in the contents and faece microbiomes (Fig. 2). There are 9.25,
2.00, and 3.15 average correlation connections (i.e., edges) with insecti-
cide resistance-related nodes, which are significantly lower than the
average degree (ad: 55.79, 7.12 and 12.91) in gut, content and faeces
microbiota, respectively (Fig. 2 and Table S3). We found that the clus-
tering coefficient (cc) of the networks decreased in the following order:
gut (0.90) > content (0.76) > faeces (0.69), suggesting environmental
factors exposure loosens the aggregation patterns of microbiota com-
munity (Fig. 2 and Table S3). We also analyzed the contribution of
different microbes to insecticide resistance using multiple regression
analysis. The results indicated that the abundance of 6 out of the top 10
genera significantly explained the insecticide resistance level by 24% to
77% (Table S4). Among them, Enterococcus, Microbacterium and
Methylobacterium were the more important predictors on insecticide
resistance of insect (Table S4). Insecticide resistance of fall armyworm
can be affected by a maximum of one to four microbials, while only
Methylobacterium in faeces, alone was predicted to significantly affect the
resistance to chlorantraniliprole (Table S4). These results strongly imply
that the symbiont variation caused by insecticide exposure may depend
on the interaction between the symbiont species, whereas the contribu-
tion of individual bacteria is weak.

Fig. 3 | Long- and short-term insecticide exposure shaped the symbiont com-
munity assembly process and diversity in fall armyworm. a Experimental design.
b PCoA analysis of microbiome in insecticide resistant (long-term insecticide
exposure) and susceptible strains of fall armyworm. c Relative importance of sym-
biont community assembly process and, respectively, resistance level in three
insecticide resistant fall armyworm strains. d PCoA analysis of fall armyworm
microbiome in short-term insecticide exposure. e Relative importance of symbiont
community assembly process of fall armyworm microbiome in short-term insecti-
cide exposure. f The α-diversity (Shannon, Evenness and Richness) of microbiome
of insecticide exposure, n = 9 and 30 for control and insecticide exposure,

respectively, biologically independent samples, the bar chart is shown as mean ±
standard error. g–i Differences in symbiotic abundance between resistant and sus-
ceptible fall armyworm strains, n = 5 biologically independent samples, the bar chart
is shown as mean ± standard error. SS: susceptible strain; IR: Indoxacarb-resistant
strain; CR: chlorantraniliprole-resistant strain; LR: lambda-cyhalothrin-resistant
strain. NN: Nanning strains; I: Indoxacarb exposure; C: chlorantraniliprole expo-
sure; L: lambda-cyhalothrin exposure. DR: Drift; HD: Homogeneous diffusion; DL:
Diffusional limitation; HoS: Homogeneous selection; HeS: heterogeneous selection.
“*” and “**” represent significantly difference set up as P < 0.05 and P < 0.01,
respectively.
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long-term and short-term insecticide exposure altered the
diversityofsymbiontsand theprocessesofcommunityassembly
We further hypothesize that short- and long-term exposure to insecticides
not only induces a stress response in the S. frugiperda host, but also affects its

bacterial symbiont. Thus, 16S rRNA gene amplicon sequencing was used to
analyze the response of symbionts to insecticide exposure (Fig. 3a). After the
susceptible strain (SS) was exposed to three commonly used insecticides in
the field for multiple generations, the resistance of the insect host to
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Fig. 4 | Differences in the impacts of long-term and short-term insecticide
exposure on host microbial communities. a Abundance of the top 10 microbials
before and after long-term and short-term insecticide exposure. b, c Co-occurrence
networks between microbial taxa in short-term (b) and long-term (c) insecticide
exposure. The colors represent the different aggregation modules of species, high-
lighting their ecological niches. Details of the network can be found in Table S5.
d PCoA analysis of the fall armyworm microbiome in long-term and short-term
insecticide exposure. e α-diversity ratio of long-term and short-term insecticide

exposure over their respectively initial strains, n = 5 biologically independent sam-
ples, the bar chart is shown as mean ± standard error. f, gMicrobiota difference of
long-term and short-term insecticide exposure over their respectively initial strains
(f); and differences in microbiota within populations after insecticide exposure (g),
n = 20 biologically independent samples, the bar chart is shown as mean ± standard
error. “*” and “**” represent significantly difference set up as P < 0.05 and P < 0.01,
respectively.
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chlorantraniliprole (CR), lambda-cyhalothrin (LR) and indoxacarb (IR)
significantly increased by 10.77, 55.14, and 110.57 times, respectively
(Table 1). The symbionts’ β diversity of SS and the three resistant popula-
tions was not significantly different (Fig. 3b, PERMANOVA: R2 = 0.046,
P = 0.94). The relative importance of the five ecological processes of
microbiota assembly, i.e., homogeneous selection (HoS), heterogeneous
selection (HeS) homogeneous dispersal (HD), drift and others (DR) and
dispersal limitation (DL), was different among the three resistant popula-
tions, reflected in the relative importance of HoS increasing with the host’s
resistance level to insecticide (Fig. 3c), which implies insecticide resistance
development may promote the dominant process from stochasticity to
deterministic of the host’s symbiont community assembly. Short-term
exposure to these insecticides had aweak effect on the symbionts β diversity
(Fig. 3d, PERMANOVA: R2 = 0.15, P = 0.62), whereas the relative impor-
tance of symbiont community assembly processes changed, increasing in
the DR process with decreasing HoS compared to the control (NN), which
implies that short-term insecticide exposure makes the symbiont

community assembly process become stochastic (Fig. 3e). There are dif-
ferent patterns of symbiont community assembly between long- and short-
term insecticide exposure, the diversity, richness and evenness increased
after the insecticide exposure (Fig. 3f). Among them, the relative abundance
of rare species (relative abundance < 0.5%) in resistant strains (CR, LR and
IR) increased compared to the SS strain, including Lactobacillus,Weissella,
Lactobacillales, Allobaculum and Streptococcus (Fig. 3g–i). These results
indicate that insecticide exposure changed the symbiont diversity and
community assembly pattern of S. frugiperda and distinguished by the
duration of insecticide exposure.

Different responses of insect gut microbiota in long-term and
short-term insecticide exposure
We found that chlorantraniliprole exposure exhibited the strongest and
effects on the host microbiome, leading to differences inmicrobial diversity
and composition (Fig. 3b, g). Therefore, we further selected this insecticide
to resolve and distinguish between short-term and long-term exposure
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effects of fall armyworms. The results showed that not only the insect gut
microbiota composition differed under both short-term and long-term
insecticide exposure, but also their interaction and aggregation patterns
showed significant variations (P < 0.05, Fig. 4a–c). Short-term stress
exhibited higher collinearity network strength (graph density: 0.082 and
0.052 for short- and long-insecticide exposure, respectively), as also evident
in the increased number of nodes and edges in its network (short-term
exposure: 1207 edges with 172 nodes; long-term exposure: 530 edges with
143 nodes; Fig. 4b, c andTable S5). Conversely, long-termexposure resulted
in the fall armyworm’s microbial community co-occurrence network
exhibiting slightly higher modularity (short-term exposure: 0.81 vs. long-
term exposure: 0.89), indicating that long-term insecticide stress enhanced
niche differentiation within the insect intestinal microbiota (Fig. 4b, c,
Table S5). The average degree of these two co-occurrence networks differed
by approximately 2 times (short-term exposure: 14.03 vs. long-term expo-
sure: 7.41), suggesting more frequently and probably more complex inter-
actions among microbes in the short-term insecticide exposure scenario
(Fig. 4b, c, Table S5). Besides interaction intensity, there was a significant
differentiation in themicrobiota structure between fall armyworms exposed
to long-term and short-term insecticide exposure (R2 = 0.49, P = 0.008;
Fig. 4d). Moreover, more pronounced fluctuations in alpha diversity were
observed in fall armyworms under long-term insecticide exposure (short-
term exposure: 1.23 vs. long-term exposure: 1.70, Fig. 4e). Additionally,
although there was no significant difference in the variation of microbial
populations with or without insecticide exposure (for both long- and short-
term insecticide exposure), the variation within the populations under
different treatments significantly increased during long-term exposure,
indicating that long-term exposure amplified individual microbiome dif-
ferences (Fig. 4f–g). Therefore, we further examined the possible changes in
microbiome function after insecticide exposure using functional profile of

microbiome predicted using PICRUST2. Interestingly, short-term insecti-
cide exposure had aminimal impact onmicrobiome functional profile, with
only 47 differential functional categories identified, most of whose abun-
dance decreased (by 66.00%) after insecticide exposure. In contrast, long-
term insecticide exposure revealed 2430 differential functional categories
compared to initial populations (SS), with 81.40% showing potential
increased functional categories (Supplementary Data 1). Among these
increasing potential functional categories, enzymes like cytochrome c oxi-
dase, N-acetyltransferase, and alkane 1-monooxygenase may contribute to
insecticide degradation, suggesting that long-term exposure, rather than
short-term exposure, may altered the function of the host microbiome by
enriching functional pathways involved in insecticide degradation, thereby
enhancing insect resistance to insecticides (Supplementary Data 1).
Although there are constraints on functional predictions derived from
species annotations using PICRUST2, we believe that there are likely
functional differences resulting from these changes in microbial
community.

Antibiotics enhance the deterministic process of symbiont
community assembly and thereupon delayed the evolution of
host resistance to insecticides
Based on the significant time-dependent effects we observed of insecticide
exposure on the hostmicrobiota.We hypothesize that other strong selective
pressures, such as antibiotics, can have a significant impact on the host
microbiome, disrupting the shapingprocess of host-microbe interactions by
insecticides and affecting the evolution of resistance to insecticides in the
holobiont. After antibiotic treatment, deterministic processes in the
microbiota assembly were strengthened, indicating a strong selective pres-
sure of antibiotics on the host gut microbiome (Fig. 5a). Subsequently, an
insecticide resistance evolution assay was conducted. The LC50 of wild-type

Table 1 | LC50 of S. frugiperda population to insecticides used in this study

Insecticide Population N Slope (SE) LC50 (95%CI) χ2 (df) RR

Chlorantraniliprole AH 144 1.60 (0.38) 1.01 (0.28-1.74) 0.77 (3) 1.12

GX 144 1.18 (0.26) 48.50 (26.88-166.13) 1.62 (4) 53.89

GD 144 2.07 (0.26) 18.19 (13.41-25.08) 4.14 (4) 20.21

HB 144 1.15 (0.13) 18.80 (9.92-17.05) 1.46 (4) 20.89

ZJ 144 1.53 (0.34) 22.85 (14.36-59.26) 2.04 (3) 25.39

SS 168 2.66 (0.45) 0.90 (0.69-1.31) 1.18 (4) 1.00

CR 180 2.32 (0.35) 49.38 (38.63-67.46) 3.29 (3) 54.87

NN 144 1.19 (0.27) 14.7 (7.70-60.86) 4.25 (4) 16.33

Lambda-cyhalothrin AH 144 1.57 (0.31) 19.88 (13.87-30.76) 1.69 (3) 0.45

GX 144 2.24 (0.43) 43.81 (30.02-89.63) 0.66 (3) 0.99

GD 144 2.15 (0.28) 69.4 (52.59-103.41) 1.08 (4) 1.57

HB 144 2.06 (0.24) 18.28 (13.81-21.04) 2.94 (4) 0.41

ZJ 144 2.36 (0.40) 30.84 (22.97-48.80) 1.78 (3) 0.70

SS 252 2.94 (0.35) 44.14 (37.60-52.68) 4.88 (4) 1.00

LR 168 3.51 (0.50) 475.56 (396.05-597.9) 1.83 (4) 10.77

NN 144 2.07 (0.38) 18.28 (10.26-25.72) 2.71 (3) 0.41

Indoxacarb AH 144 2.68 (0.40) 8.26 (6.46-10.61) 4.62 (3) 48.59

GX 144 2.08 (0.37) 16.09 (11.64-27.05) 4.72 (3) 95.82

GD 144 1.81 (0.22) 20.39 (14.66-27.03) 3.99 (3) 119.76

HB 144 1.81 (0.22) 18.59 (13.72-23.92) 3.05 (4) 109.35

ZJ 144 2.15 (0.38) 16.24 (11.81-27.15) 5.37 (3) 95.53

SS 168 2.54 (0.36) 0.17 (0.13-0.22) 1.71 (4) 1.00

IR 168 2.40 (0.33) 19.31 (15.03-26.03) 1.74 (4) 113.59

NN 144 1.76 (0.33) 14.10 (10.02-23.74) 1.12 (4) 82.94

RR indicated Resistance ratio compared to SS.
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(WT) strains was notably higher than that of the antibiotic-treated strain,
resulting in increased resistance levels inWTstrains compared to antibiotic-
treated strains (Fig. 5b and Table S5). The high heritability of resistance in
WT strains, compared to that in antibiotic-treated strains, indicates that
more generations are needed to evolve the same level of resistance in
antibiotic-treated strains under the same selection pressure. For instance, at
a screeningmortality rate of 50%, it only takes 23.1 generations to evolve 100
times resistance inWT strains whereas it takes at least 62.2 generations for
antibiotic-treated strains (Fig. 5c). We observed that only the first few
generations (1-3 generations) of insecticide exposure had a greater impact
on the fall armyworm microbiome compared to generation 0 of the WT
strain, especially after pre-exposure to antibiotics (Fig. 5d). However, there
was no difference in microbiome composition between antibiotic-treated
and control strain fall armyworm (Fig. 5d, PERMANOVA: P > 0.05). The
variation in the relative importance of the microbiota assembly process
differed between the antibiotic-treated strain and the control strain of fall
armyworm, and also varied between short-term and long-term insecticide
exposure (Fig. 5e). InWT strains, insecticide exposure reduced the relative
importance of random processes in the host microbiota assembly, while it
increased the relative contribution of deterministic processes extent of
insecticide exposure. In contrast, the intervention of antibiotics disrupts the
gut microbiota assembly process of WT strains, making the assembly pat-
terns of microbiota unpredictable (Fig. 5e). These results indicate that dis-
rupting the homeostasis of the symbiont alters the assembly process of the
host symbiont community, further influencing the response of the symbiont
community to insecticide exposure, thereby impacting the host’s resistance
phenotype to insecticides (Fig. 6).

Discussion
The insect host and its symbionts usually face the selection pressure of toxic
substances, such as insecticides and plant secondary metabolites26. In this
study, we investigated the response of insect symbionts to long- and short-
term insecticide stress in a global invasive insect pest, the fall armyworm,
and explored the consequences of this response for the insect’s insecticide
resistance. We found that both long-term and short-term insecticide
exposure reshaped the microbiota assembly process of the symbiont.
Notably, antibiotic-dependent disruption of the gut microbiota alters the
host’s response and evolution to insecticides. This suggests that the long-
term selective pressure of insecticides on the host and symbionts reshapes
the symbiotic community and ultimately feedback into the host’s resistance
phenotype. The results highlight the significant contribution of gut sym-
bionts to insecticide stress adaptation in an invasive agricultural insect pest.

We demonstrated that microbiota interactions contribute muchmore
to the host’s insecticide resistance phenotype than individual microbes in
the field fall armyworm. The correlation between individual bacterial
abundances and the host’s LC50 values is very weak. Although some studies
have identified a number of bacterial isolates that contribute to host
resistance12, it is still important not to ignore the role of microbial interac-
tions in symbiotic function. Such interactions may significantly amplify the

contribution of themicrobiome to host phenotypic plasticity, thus having a
far greater than additive effect on insecticide resistance of insects27,28.
Interestingly, a previous study demonstrated that the genetic fidelity of the
microbiome is a crucial predictor of host phenotypic variation.High genetic
fidelity indicates low phenotypic variation29. Therefore, simpler symbiotic
interactions may enhance the genetic fidelity of the host microbiome,
thereby delaying host phenotypic variation. This finding supports the
ecological view that high diversity is more stable16. Coincidentally, we also
observed an increase in microbiota diversity after insecticide exposure,
suggesting the positive evolution of the microbiome under insecticide
pressure selection. While we cannot definitively say that the changes in
species composition are beneficial, we are observing an increase in potential
functional differences following prolonged pesticide exposure, suggesting a
transformation in microbial function. However, we recognize the con-
straints of predicting species functions usingPICRUST230. To confirm these
functional variations, it would be beneficial to utilize more sophisticated
third-generation sequencing or metagenomic methods.

Based on the observed differences in the microbiota of insecticide-
resistant versus susceptible insect populations, some studies have targeted
many insecticide-resistance-associated symbionts, including Burkholderia,
Wolbachia,Citrobacter sp., andEnterococcus casseliflavus13,31,32. However, these
studies tend to focus on the consequences of insecticide resistance evolution,
ignoring the change in the microbiome and its community assembly process
during resistance development. Insecticide exposure significantly reshaped the
gut microbiome of fall armyworms, causing a chain reaction of changes in
community diversity, assembly patterns, as well as bacterial abundance. It is
speculated that the microbiota may be subject to co-selection processes of the
host and insecticide basedon thedifferences in the face of long- and short-term
exposure. Homogeneous selection process was strengthened with insecticide
resistance rising, indicating that increased resistance may lead to greater host
selection of the microbiota, whereas short-term insecticide exposure increases
the role of drift in microbiota assembly. This finding suggests that insecticide
stress disrupts the balanced selection of the host and their gut microbiota,
thereby promoting the randomization of the microbiome. Based on this clar-
ification, the evolution of host-microbiome co-resistance may be a process of
breaking, reshaping, and breaking again, until the host andmicrobiomefit into
higher concentrations of insecticides.

Determining the factors that impact the rate of insect pest insecticide
resistance evolution is a fascinating question. Elucidating this mechanism is
expected toaddress the long-term implications of green insect pest control33.
We have demonstrated from aunique perspective thatmicrobiota assembly
in the insect host can be an effective influencing factor in the evolution of
insecticide resistance. The intervention of antibiotics disrupts the host-
microbiome balance, leading to the breaking-reshaping and breaking-again
process, thus altering the insect’s insecticide resistance phenotype variation.
However, due to the bacterial resistance to antibiotics is evolving much
faster than the host’s insecticide resistance, the microbiome variation we
observed at a later stagewasnot significant34,35. In fact,weobservedvery little
microbiome variation in subsequent generations except in the first one. The

Fig. 6 | Insecticide exposure influenced the
microbiota assembly and their insect host, shift-
ing from susceptibility to resistance. The sche-
matic diagram was generated by Biorender (https://
app.biorender.com/).
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relative importance of the microbiota assembly process strongly supports
the continued effects of antibiotic perturbations on bacterial symbionts.
These results imply that a combinationof antibiotics and insecticidesused in
the field may help delay insecticide resistance of insect pests36.

Based on the microbiome and the interactions within it contribute
significantly to insecticide resistance in insects, making it possible to reduce
pests’ tolerance to insecticides by regulating the abundance of key micro-
organisms and their interactions. Various biological and physical methods,
such as phage-targeted cleavage of insect probiotics, using nanotransducer-
basedprecise control of engineeredbacteria to suppress the pathogens in the
useful insect gut, and other genetic techniques, can modify the assembly of
the insect microbiota to make it toward human-friendly with beneficial or
harmful phenotypes they mediated of their insect hosts32,37. However, the
practical application of these approaches in agricultural settings dealing
with insect pests remains need further clarification. While previous
studies have reported how symbiosis in some insects may influence the
evolution of host insecticide resistance, the role of microbial interactions
has not received much research attention and can be further exploited32.
In particular, there is still a lack of in-depth mechanistic understanding of
how microbial interactions impact the insect host’s phenotypic char-
acteristics such as regulation of host signaling pathways by cross-feeding
products produced by microbial cooperation. Future research utilizing
meta-omics approaches, such as metagenomics, metatranscriptomics,
andmetabolomics, to comprehensively analyze the microbial community
taxonomy, functional potential, and metabolic activities should greatly
offer novel insights into these intestinal microbial interaction traits
underlying host stress resistance.

In summary, we found that the time-dependent response to insecticide
by the symbionts of an important invasive insect pest as awhole, rather than
some individual symbiosis,maybe apotential driving force for the evolution
of insecticide resistance in both laboratory and field strains of fall army-
worm. Breaking the rule of this response reduces the heritability of host
insecticide evolution. Future research should focus on the interactions
between those symbionts that play more critical roles in the insecticide
resistance evolution of fall armyworms. This study will help to understand
the variation mechanism of insecticide resistance evolution and provide a
theoretical basis for symbionts-targeted insect pest control.

Data availability
The sequencing raw data generated in this study are deposited in the China
National GeneBank DataBase under the accession numbers of
CNP0004265 (short-term exposure experiments) and CNP0005629 (field
strains, long-term exposure and insecticide evolution experiments).

Received: 26 April 2024; Accepted: 12 September 2024;

References
1. Zhou, J. & Ning, D. Stochastic community assembly: does it matter in

microbial ecology?Microbiol. Mol. Biol. Rev. 81, https://doi.org/10.
1128/MMBR.00002-17 (2017).

2. Nemergut, D. R. et al. Patterns andprocessesofmicrobial community
assembly.Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

3. Vályi, K., Mardhiah, U., Rillig, M. C. & Hempel, S. Community
assembly and coexistence in communities of arbuscular mycorrhizal
fungi. ISME J. 10, 2341–2351 (2016).

4. Vellend,M.etal.Assessing therelative importanceofneutral stochasticity
in ecological communities.Oikos 123, 1420–1430 (2014).

5. Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic
and deterministic assembly processes in subsurface microbial
communities. ISME J. 6, 1653–1664 (2012).

6. Ning, D. et al. A quantitative framework reveals ecological drivers of
grassland microbial community assembly in response to warming.
Nat. Commun. 11, 4717 (2020).

7. Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in
activated sludge of a full-scalemunicipal wastewater treatment plant.
ISME J. 9, 683–695 (2015).

8. Zhu, Y. et al. Gut microbiota composition in the sympatric and diet‐
sharing Drosophila simulans and Dicranocephalus wallichii bowringi
shaped largely by community assembly processes rather than
regional species pool. iMeta 1, https://doi.org/10.1002/imt2.
57 (2022).

9. Ge, Y., Jing, Z., Diao, Q., He, J.-Z. & Liu, Y.-J. Host species and
geography differentiate honeybee gut bacterial communities by
changing the relative contributionof community assembly processes.
mBio 12, e0075121 (2021).

10. Zhang, Z. et al. Diversity and distribution of biosynthetic gene clusters
in agricultural soil microbiomes.mSystems https://doi.org/10.1128/
msystems.01263-23 (2024).

11. Cai, T. et al.Wolbachia enhances expression of NlCYP4CE1 in
Nilaparvata lugens in response to imidacloprid stress. Insect Sci. 28,
355–362 (2021).

12. Lv, N. et al. The gut symbiont Sphingomonas mediates imidacloprid
resistance in the important agricultural insect pest Aphis gossypii
Glover. BMC Biol. 21, 86 (2023).

13. Cheng, D. et al. Gut symbiont enhances insecticide resistance in a
significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel).
Microbiome 5, 13 (2017).

14. Kikuchi, Y. et al. Symbiont-mediated insecticide resistance.Proc.Natl
Acad. Sci. 109, 8618–8622 (2012).

15. Itoh, H. et al. Infection dynamics of insecticide-degrading symbionts
from soil to insects in response to insecticide spraying. ISME J. 12,
909–920 (2018).

16. Wagg, C. et al. Biodiversity–stability relationships strengthen over time
in a long-term grassland experiment. Nat. Commun. 13, 7752 (2022).

17. Bolzan, A. et al. Selection and characterization of the inheritance of
resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to
chlorantraniliprole and cross‐resistance to other diamide
insecticides. Pest Manag. Sci. 75, 2682–2689 (2019).

18. Guo, Z. et al. Insecticide susceptibility andmechanismofSpodoptera
frugiperda on different host plants. J. Agric Food Chem. 70,
11367–11376 (2022).

19. Bolyen, E. et al. Reproducible, interactive, scalable and extensible
microbiome data science using QIIME 2. Nat. Biotechnol. 37,
852–857 (2019).

20. Zhao, Z. et al. Hydrodynamic and anthropogenic disturbances co-
shape microbiota rhythmicity and community assembly within
intertidal groundwater-surface water continuum.Water Res. 242,
120236 (2023).

21. Zhou, J. et al. Functional Molecular Ecological Networks. mBio 1,
e00169–10 (2010).

22. Deng, Y. et al. Molecular ecological network analyses. BMC
Bioinform. 13, 113 (2012).

23. Tabashnik, B. E. Resistance risk assessment: realized heritability of
resistance to bacillus thuringiensis in diamondback moth
(Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera:
Noctuidae), andColoradopotatobeetle (Coleoptera: Chrysomelidae).
J. Econ. Entomol. 85, 1551–1559 (1992).

24. Lai, T. & Su, J. Assessment of resistance risk in Spodoptera exigua
(Hübner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Manag.
Sci. 67, 1468–1472 (2011).

25. Walker, J. Figshare empowers ASABE on two key fronts: Author
Experience & Discoverability. Online resource https://doi.org/10.
6084/m9.figshare.16895680.v1 (2021).

26. Tago, K., Kikuchi, Y., Nakaoka, S., Katsuyama, C. & Hayatsu, M.
Insecticide applications to soil contribute to the development of
Burkholderiamediating insecticide resistance in stinkbugs.Mol. Ecol.
24, 3766–3778 (2015).

https://doi.org/10.1038/s42003-024-06892-1 Article

Communications Biology |          (2024) 7:1194 11

https://doi.org/10.1128/MMBR.00002-17
https://doi.org/10.1128/MMBR.00002-17
https://doi.org/10.1128/MMBR.00002-17
https://doi.org/10.1002/imt2.57
https://doi.org/10.1002/imt2.57
https://doi.org/10.1002/imt2.57
https://doi.org/10.1128/msystems.01263-23
https://doi.org/10.1128/msystems.01263-23
https://doi.org/10.1128/msystems.01263-23
https://doi.org/10.6084/m9.figshare.16895680.v1
https://doi.org/10.6084/m9.figshare.16895680.v1
https://doi.org/10.6084/m9.figshare.16895680.v1
www.nature.com/commsbio


27. Zeng, B. et al. Symbiotic bacteria confer insecticide resistance by
metabolizing buprofezin in the brown planthopper,Nilaparvata lugens
(Stål). PLoS Pathog. 19, e1011828 (2023).

28. Zhang, Y. et al. Decline in symbiont-dependent host
detoxification metabolism contributes to increased insecticide
susceptibility of insects under high temperature. ISME J. 15,
3693–3703 (2021).

29. Bruijning, M., Henry, L. P., Forsberg, S. K. G., Metcalf, C. J. E. &
Ayroles, J. F. Natural selection for imprecise vertical transmission in
host–microbiota systems. Nat. Ecol. Evol. 6, 77–87 (2021).

30. Matchado, M. S. et al. On the limits of 16S rRNA gene-based
metagenome prediction and functional profiling.Micro. Genom. 10,
001203 (2024).

31. Itoh, H., Tago, K., Hayatsu, M. & Kikuchi, Y. Detoxifying symbiosis:
microbe-mediated detoxification of phytotoxins and pesticides in
insects. Nat. Prod. Rep. 35, 434–454 (2018).

32. Zhang, Y. & Ju, F. Uninheritable but widespread bacterial symbiont
Enterococcus casseliflavusmediates detoxification of the insecticide
chlorantraniliprole in the agricultural invasive pest Spodoptera
frugiperda. J. Agric. Food Chem. 72, 18365–18377 (2024).

33. Zhang, Y. & Ju, F. Fighting caterpillar pests andmanaging agricultural
insecticide resistance with Lepidoptera-associated Enterococcus
casseliflavus. Innov. Life 1, 100042 (2023).

34. Larsson, D. G. J. & Flach, C.-F. Antibiotic resistance in the
environment. Nat. Rev. Microbiol 20, 257–269 (2022).

35. Walsh, T. K. et al. Determinants of insecticide resistance evolution:
comparative analysis among heliothines. Annu. Rev. Entomol. 67,
387–406 (2022).

36. Beckie, H. J., Busi, R., Lopez‐Ruiz, F. J. & Umina, P. A. Herbicide
resistance management strategies: how do they compare with those
for insecticides, fungicides and antibiotics? Pest Manag. Sci. 77,
3049–3056 (2021).

37. Cheng, X. et al. Nanotransducer‐enabledwireless spatiotemporal tuning
of engineered bacteria in bumblebee. Small 19, e2301064 (2023).

Acknowledgements
The authors thankMs. Jiajing Guo for laboratorymanagement support. The
authors thank theWestlakeUniversityHPCCenter for computation support.
This work was supported by the National Natural Science Foundation of
China under Grant No. 32302393, the China Postdoctoral Science
Foundation (Certificate Number: 2023M733188), the HRHI program
202309010 of Westlake Laboratory of Life Sciences and Biomedicine, the
Research Center for Industries of the Future (Grant No. WU2022C030) and
the Westlake Center for Synthetic Biology and Integrated Bioengineering
(WU2022A008) at Westlake University.

Author contributions
Conceptualization: Y. Zhang, F. Ju. Methodology: Y. Zhang, K, Mao, Z.
Zhao, F. Ju. Investigation: Y. Zhang, K, Mao, K. Chen. Visualization: Y.
Zhang. Supervision & funding: F. Ju. Writing—original draft: Y. Zhang.
Writing—review & editing: F. Ju, Y. Zhang, K, Mao, Z. Zhao, K. Chen.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06892-1.

Correspondence and requests for materials should be addressed to
Feng Ju.

Peer review informationCommunications Biology thanks Durgesh Kumar
Jaiswal and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Primary Handling Editors: Nicolas Desneux and
Tobias Goris. [A peer review file is available.]

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-06892-1 Article

Communications Biology |          (2024) 7:1194 12

https://doi.org/10.1038/s42003-024-06892-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsbio

	Symbiont community assembly shaped by insecticide exposure and feedback on insecticide resistance of Spodoptera frugiperda
	Materials and methods
	Field sampling and laboratory experimentation of insects
	Short- and long-term insecticide exposure of S. frugiperda
	DNA extraction, 16S rRNA gene amplicon sequencing and bioinformatics analysis
	Analysis of community assembly processes of S. frugiperda symbionts under insecticide exposure
	Evolution risk assessment of insecticide resistance and estimation of realized heritability
	Statistics and reproducibility

	Results
	The entire microbiome collectively shapes the field insecticide resistance of S. frugiperda
	long-term and short-term insecticide exposure altered the diversity of symbionts and the processes of community assembly
	Different responses of insect gut microbiota in long-term and short-term insecticide exposure
	Antibiotics enhance the deterministic process of symbiont community assembly and thereupon delayed the evolution of host resistance to insecticides

	Discussion
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




