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The chromatin landscape of high-grade
serous ovarian cancer metastasis
identifies regulatory drivers in post-
chemotherapy residual tumour cells

Check for updates

W. Croft 1,9 , R. Pounds2,3,9, D. Jeevan2, K. Singh3, J. Balega3, S. Sundar2,3, A. Williams4, R. Ganesan2,4,
S. Kehoe5,10, S. Ott 6, J. Zuo1,10, J. Yap2,3,10 & P. Moss 1,7,8,10

Disease recurrence following chemotherapy is a major clinical challenge in ovarian cancer (OC), but
little is known regarding how the tumour epigenome regulates transcriptional programs underpinning
chemoresistance. We determine the single cell chromatin accessibility landscape of omental OC
metastasis from treatment-naïve and neoadjuvant chemotherapy-treated patients and define the
chromatin accessibility profiles of epithelial, fibroblast, myeloid and lymphoid cells. Epithelial tumour
cells display open chromatin regions enrichedwithmotifs for the oncogenic transcription factorsMEIS
andPBX. Post chemotherapymicroenvironments showprofound tumour heterogeneity and selection
for cells with accessible chromatin enriched for TP53, TP63, TWIST1 and resistance-pathway-
activating transcription factor binding motifs. An OC chemoresistant tumour subpopulation known to
be present prior to treatment, and characterised by stress-associated gene expression, is enriched
post chemotherapy. Nuclear receptors RORa, NR2F6 and HNF4G are uncovered as candidate
transcriptional drivers of these cells whilst closure of binding sites for E2F2 and E2F4 indicate post-
treated tumour having low proliferative capacity. Delineation of the gene regulatory landscape of
ovarian cancer cells surviving chemotherapy treatment therefore reveals potential core transcriptional
regulators of chemoresistance, suggesting novel therapeutic targets for improving clinical outcome.

High Grade Serous Ovarian Cancer (HGSOC) is the most common and
lethal subtype of ovarian cancer, affecting 239,000 women worldwide each
year, andhas adismal 5-year survival rate of 25%.The vastmajority (80%)of
patients are diagnosed with advanced FIGO stage III or IV disease with
evidence ofmetastatic progression1,2. Patients oftenpresentwithwidespread
dissemination throughout the peritoneal cavity with the most frequent site
of metastasis being the omentum3.

Treatment options for advanced HGSOC include chemotherapy with
platinum-based compounds and cytoreductive debulking surgery. Despite
initial clinical responses in most cases, chemoresistance is extremely

common and 70–95% of patients suffer disease recurrence within 2 years2.
Mechanisms of chemoresistance have been intensely studied over the past
30 years, largely focussing on resistance-signalling pathway perturbations
and gene expression profiles. Mechanisms include dysregulation of plati-
numcompound influx/effluxpumps,DNAdamage repair (DDR)pathways
and cell death response4 but the number and complexity of resistance
mechanisms to chemotherapy treatment surpass those of more targeted
therapies5.

The somatic mutation profile of HGSOC is complex with extreme
copy-number variation, near total prevalence of TP53 mutation6,7 and
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exceptionally high intratumor heterogeneity. Detailed transcriptional
characterisation in metastatic ovarian cancer has identified cell type con-
textures of tumour, stromal and infiltrating immune populations8–10. Che-
motherapy has been shown to modulate the transcriptional programs
within tumourmicroenvironments11–14 andan IL6-associated inflammatory
network and immediate early stress response genes have been associated
with poor treatment response and accelerated disease recurrence12. Fur-
thermore, a recent longitudinal single cell transcriptome study identified
and validated a stress-associated tumour cell expression profile to be asso-
ciated with relapse and reduced progression-free survival10.

Less well understood are the gene regulatory mechanisms orchestrat-
ing transcriptional programs for stress, DNAdamage response or cell death
signalling that confer chemoresistance. Chromatin accessibility is an
important gene regulatory control mechanism and chromatin modifying
histone methyltransferase and deacetylase enzymes that modulate chro-
matin compactness are often altered ormutated in ovarian cancer15. Indeed,
epigenetic therapies delivered either as single agents or in combination with
chemotherapy present a potential option to combat resistance and are now
under clinical evaluation16.

Multi-omic molecular landscape studies have focussed on ovarian
samples from normal17 and primary HGSOC tissue6,18 but have not studied
omentum, which is the dominant site of metastasis. Furthermore, features
were not examined in relation to disease stage and as such the clinical
importance of chemotherapy-induced modulation of epigenetic profile in
the metastatic microenvironment remains undetermined. The omentum
also serves as a clinical marker for measuring disease response to
chemotherapy19 which allows comparison of the epigenetic landscape
according to chemotherapy response.

Single-cell ATAC-seq measurement of chromatin accessibility is a pow-
erful approach for assessing cellular regulatory features in relation to treatment
status. Here we present the first scATAC-seq comparison of HGSOC meta-
static omental tumour from treatment-naïve patients compared to tumour
followingneoadjuvant chemotherapy (NACT).Wecharacterise the chromatin
accessibility landscape and transcription factor binding motif enrichments of
heterogeneous tumour cells in the metastatic microenvironment and identify
shifts in key regulatory patterns following NACT.

Results
Chromatinaccessibilityprofiling identifiesmajor lineagecell type
composition and tumour heterogeneity within omental
metastasis
Tissue from HGSOC omental metastatic deposits were profiled for single
cell chromatin accessibility by scATAC sequencing. In total, ten omental
tissue samples were collected from nine HGSOC patients (A-I), consisting
of five treatment-naïve samples and five biopsies taken following NACT at
the time of interval debulking surgery, performed 3–4 weeks after the last
cycle ofNACT (Fig. 1A). Samples pre_A and post_Awerematched pre and
post chemotherapy samples from the same patient. After filtering, the
average number of cells analysed per sample was 2709 (range 568–7254)
(Table S1). Quality checks on these data and read density profiles at the
ubiquitously open housekeeping gene TBP genomic loci confirmed con-
sistent transcription start site (TSS) peak enrichment profiles with strong
peak signals (Figs. S1 and S2). Independent unsupervised clustering iden-
tified a mean of 7.9 clusters per sample (range 4–11) (Fig. S3).

Unsupervised clustering on all-sample integrated data from a total of
27,089 single cells identified 7 clusters (Fig. 1B). Gene activity scores, pre-
dicted from chromatin accessibility profile at cell lineage marker gene loci,
assigned clusters into 4major lineage cell types in the treatment-naïve (pre)
and post-chemotherapy (post) tumour microenvironment (Figs. 1C and
S4A).Gene activity (Fig. 1D), copynumber alterations (CNAs) (Fig. 1E)and
aggregated chromatin accessibility at gene loci (Fig. 1F) of canonical cell type
marker genes of interest were consistent with cell type annotation. The
epithelial populationwasmarkedbyEPCAMgeneactivitywhilst expression
of theUSFDA-approvedHGSOCbiomarkersMUC16andWFDC220,21 and
HGSOC-specific LAPTM4B18 confirmed tumour origin. Epithelial tumour

cells hadmarkedly increasedDNACNAs compared to non-malignant cells
and copy number loss and gain profiles displayed inter-tumoral differences.
Fibroblast, lymphocyte and myeloid populations were identifiable with
PDPN/COL1A2, IKZF1/PTPRC and CD14/TREM1 gene activity/accessi-
bility profiles respectively. Inter-tumour heterogeneity of the chromatin
landscape was high, with notable patient-specific clusters within the epi-
thelial population (Figs. 1B and S4B, C). Within-sample cell type con-
textures determined epithelial cells to be the dominant cell lineage in the
omental metastasis tumour microenvironment. Whilst all patient samples
contribute to the epithelial cell pool, treatment-naïve cells dominate pro-
viding 73% of the pool (Fig. 1G and Table S1). Samples with increased
epithelial proportion had concurrently reduced myeloid and fibroblast
fraction and trended towards shorter survival times (Fig. S5).

Binding motifs for ovarian cancer oncogenes MEIS and PBX are
enriched in accessible chromatin sites of omental metastasis
epithelial cells
Regions of accessible chromatin (peaks) were identified that were markers for
major lineage cell type and were consistent between samples (Fig. 2A). Motif-
level activity was next calculated with chromVar22 and differential analysis
applied to discern the transcription factor (TF)DNA-bindingmotifs that were
differentially enrichedwithin these cell-type defining peaks. This highlights the
key transcriptional regulators influencing cell-type specific gene activity within
the tumourmicroenvironment (Fig. 2B).Epithelial cell peaksweredifferentially
enriched for MEIS binding motifs, a TF family that has been shown to be
upregulated in HGSOC tumours and associated with growth, invasion,
stemness, epithelial-mesenchymal transition, chemoresistance and poor
prognosis23. PBX2 forms DNA-binding complexes with MEIS and motifs for
PBX2 also displayed epithelial cell enrichment. Of note, MEIS and PBX have
beenpreviously associatedwithpromoting chemotherapy resistance inovarian
cancer (OC)24. Furthermore, binding motifs for the OC stem and platinum
tolerant tumour cell marker TP6325 are substantially enriched, suggesting
ongoing activity within TP63-driven gene programs.

Motifs enriched within fibroblast-defining peaks included ATOH7,
FOS, TCF7L2 and TCF7, the latter two TFs having key roles in the Wnt
signalling pathway26. Tumour infiltrating lymphocyte and myeloid popu-
lations were enriched for motifs including ETS family transcription factors
(ETV5/6 and EHF) and MEF2B, as well as NFKB1 which is a central
activator of pro-inflammatory genes.

The chromatin landscape of residual tumour cells following
chemotherapy display increased accessibility enriched for
stemness-driving motifs
We next sought to identify how the chromatin landscape of major lineage
cell types is modulated following chemotherapy treatment (Fig. 3).

Of note, the relative proportion of cell lineages was broadly stable post
chemotherapywith only a trend towardsmodest reduction in the lymphoid
pool (Fig. 3A). However, the chromatin accessibility landscape was sub-
stantially different (Fig. 3B, C) and this was most evident within epithelial
cells which showed 1428 differentially accessible chromatin sites (DACs)
between pre- and post-treatment tissue. In contrast, this value was 110, 152
and 146 for fibroblast, lymphocyte and myeloid cells respectively. Chro-
matin regions showed substantially more accessibility following che-
motherapy, with 1268 sites being ‘open’ post treatment compared to
160 sites ‘closed’ in epithelial cells (Fig. 3C). This is noteworthy given the
consensus that stem cells and poorly differentiated cancer cells harbour
more open ‘poised’ chromatin relative to well-differentiated cells27.

Some of themost divergent DACswere notable for peaks representing
chromatin that was closed in treatment-naïve samples but open following
chemotherapy, including those at theTPK1, FAM135BandTRAPPC9gene
loci. TPK1 is of particular note as it catalyses the conversion of thiamine to
thiamine-pyrophosphate and upregulates thiaminemetabolism to promote
tumour cell progressionduringhypoxic stress28.A smallernumberofDACs,
such as those at the Ryanodine receptor RYR1 loci, become closed following
treatment (Fig. 3D).
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Fig. 1 | Chromatin landscape defined major cell types in HGSOC omental
metastasis. A Methods and cohort summary. CRS chemotherapy response score
(1 = poor; 2 = moderate); Cytoreduction (R0 = removed all macroscopically visible
disease; R2 = disease ofmin 1 cm remains following surgery); BloodCA-125 level (u/
ml). Createdwith BioRender.BUMAP embedding of all patient-integrated scATAC
data overlaid with patient label (top) and unsupervised clustering label (bottom),
CUMAP embeddings overlaid withmajor cell lineage annotation and neo-adjuvant

chemotherapy treatment (NACT).DGene activity scores of major cell type defining
genes. E Profile of copy number alterations (CNAs) detected across all cell types.
F Major cell lineage aggregated chromatin accessibility profile at major cell lineage
defining gene loci. G (left-to-right) Cluster composition of each sample; Sample
composition, NACT treatment composition and total number of cells for eachmajor
lineage cell type.
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Differential motif level analysis was next used to identify transcription
factor binding motifs that were differentially enriched in treatment-naïve vs.
post chemotherapy epithelial tumour cell accessible chromatin loci (Fig. 3E),
aiming to identify transcription-factor-driven gene expression programs most
affected by chemotherapy. Bindingmotifs for the developmental regulator and
emerging cancer gene MEF2 family TFs29 are enriched in treatment-naïve
epithelial cells. Post chemotherapy, the binding motifs of many transcription
factors with strong links to stemness and platinum resistance are differentially
enriched inopenchromatin sites. These include the tumour suppressorprotein
TP53, oncogenic factorTP63and theWnt signallingactivatorTCF7.TheTP53
protein (p53) is almost ubiquitously mutated in HGSOC and all tumour
samples regardless of treatment status had consistent TP53 mutations with
aberrant p53 expression (Fig. S10). The divergence of motif enrichment was
much less distinctive for fibroblasts and infiltrating immune cells. Despite this,
some motifs of note include the angiogenesis and EMT-linked TF FOXC230

enriched in post NACT fibroblasts as well as ZBTB7B (ThPOK) showing
enrichment in treatment-naïve myeloid cells (Fig. S6).

To home in on the likely ‘active’ master tumour cell regulators, we
identified the transcription factors that, along with binding motif enrich-
ments, also had concurrent increased gene activity in post/pre-treatment
cells (Fig. 3F). This highlighted 12 candidate transcriptional regulators in
pre-treated metastatic cells which included MEF2B, KLF12 and STAT2. In
the tumour cells that reside post treatment, 40 candidates were found to
have increased expression alongside enriched accessible binding motifs,
including TP63, TCF4 and the well-defined regulator of OC cancer stem-
cell differentiation, TWIST131. Expression of these TFs in tumour cells is
supported by accessibility in the gene body/promoter (Fig. 3G) and they
represent candidate important factors shaping the post-chemotherapy
transcriptional landscape of tumour cells.

To assess the relevance of such divergent regulation of transcriptional
programson tumour cell functionality following chemotherapy,we assessed
the gene activity scores of selectedhallmark genemodules of interest (Fig. 4).
Residual tumour cells post NACT were enhanced for several relevant
pathways including DNA damage, Apoptosis, IL6-Jak-Stat3, Hedgehog,
Wnt beta catenin signalling, and inflammatory response whilst a mitosis
gene set was reduced (Fig. 4). Interestingly, bile acid metabolism was also
increased, with bile-acids thought to play largely protective roles and
implicated as a novel modality in the chemotherapy of ovarian cancer32.

Transcriptional drivers of stress-associated chemoresistance
are identified in tumour cells
The chromatin landscape specifically of 19,122 epithelial tumour cells was
next examined in further detail (Fig. 5). UMAP embeddings overlaid with

sample label and unsupervised clustering (Fig. 5A), HGSOC tumour and
DNA damage marker gene activity, and hierarchical clustering on CNAs
(Fig. S7) are suggestive of a high degree of intra and inter-tumoral hetero-
geneity. Profiling clustered sub-populations highlights heterogeneity of
gene, peak and motif activity within tumour sub-populations (Fig. S8) All
samples had prominent EPCAM, LAPTM4B, KRT7, PAX8 gene activity
plus MEIS1 motif enrichment, supporting epithelial cell type, but other
tumour markers including MUC16 showed more sample-wise variation
(Fig. 5B). Selected motifs of interest identified as having differential
enrichment following chemotherapy included MEF2 family, TP53 and
TP63. In all but one of the treatment-naïve samples, MEF2A/B enrichment
was observable in >60% of the pre-treated cells whilst TP53/63 enrichment
was prominent in 40–60% of the post-treatment populations (Fig. 5B).

HGSOC chemoresistance within omental metastasis has been shown
to be promoted by a defined stress-associated gene signature (Table S2)
detectable in a subset of pre-treated tumour cells10 and as such it was
important to examine this tumour-stress gene activity score in these data
(Fig. 5A). In concurrence with previous findings, both the per-cell and per-
sample mean tumour stress scores were significantly increased following
chemotherapy, indicating possible selection for chemoresistant stress-
associated tumour cells (Fig. 5B, C). Of note, the two patients in the cohort
who suffered disease recurrence (post_F and post_G) were also those with
the highest tumour stress scores.

To investigate master transcriptional regulators driving this stressed/
chemoresistant tumour cell state, we identified per-sample chromVarmotif
score correlates with stress signature score (Fig. 5D). This identified binding
motif activity thatwas significantly correlatedwith stress score and included
the transcription factors RORA, GATA, NR2F6 andHNF4G. Interestingly,
motifswith the strongest inverse correlation includedE2F2andE2F4,which
are activating regulators of DNA replication and cell cycle. These imply
chemoresistant stress-associated tumour cells to have low proliferative rate
and aligns with prior evidence of enhanced chemotherapy escape in slow-
cycling tumour cells33.

Chromatin landscape of tumour sub-populations in a pre/post
NACTmatched case with long survival outcome
Intriguingly, the patient with substantially lowest post-chemotherapy tumour
stress score (patient A) had the longest overall survival with no evidence of
disease recurrence at just under 5 years following diagnosis. As such, we next
directly compared the chromatin landscape in epithelial tumour cells before
and after neo-adjuvant chemotherapy from this individual (Fig. 6).

In total, 4063 tumour cells were studied of which 3365 were from pre-
treatment samples (83%) whilst 698 cells (17%) were from post-treated

Fig. 2 | Chromatin accessibility profile: peaks and enriched motif markers of
major cell types in HGSOC omental metastasis. A Single-cell chromatin accessi-
bility profile at major lineage defining marker peaks (shown are top 20 differential

peaks by cell type having adjusted p < 0.001). B Patient-cell-type average chromVar
transcription factor motif activity score profile of differentially enriched cell type
marker motifs (shown are top 10 motifs by cell type having adjusted p < 0.001).
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Fig. 3 | Modulation of the chromatin accessibility landscape and transcription
factor binding motif enrichments following chemotherapy. A Proportion of total
stratified by chemotherapy. Points represent the within-sample cluster fraction and
p value determined by Mann–Whitney test. B Summary counts of differentially
accessible chromatin (DAC) sites open/closed post chemotherapy. C Differential
accessibility of chromatin sites between treatment-naïve (pre) and post che-
motherapy (post) samples. Coloured points indicate DACs (adjusted p < 0.01 and
absolute log2FC > 0.25). Motif sequence logos presented for the top 3 motifs

enriched within open/closed peak sites.DAggregated accessibility profile of selected
DACs stratified by treatment. Tracks Y scale represents normalised fragment count.
E Within patient-cell-type average transcription factor motif chromVar activity
score profile of motifs identified as differentially enriched (adjusted p < 0.01).
F Intersections of differentially increased gene activity (expression) with enriched
motifs in pre NACT treated tumour cells (top) and post NACT-treated tumour cells
(bottom). G Aggregated accessibility profile of selected transcription factors.
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tissue (Table S1), indicating broadly successful clearance of the initial
tumour population (Fig. 6A). Reduced tumour burden was also supported
by blood ca125 measures which were 86% reduced post-chemotherapy
(Fig. 1A). Unsupervised clustering of chromatin accessibility profiles
identified 5 tumour sub-clusters in both pre and post treatment populations
(Fig. 5A). Of note, the proportion of cells in cluster 1 increased markedly
from 18% pre-NACT to 50% after treatment (Fig. 6B).

Differential analysis of gene activity andmotif enrichment identified 5114
genes and 286 motifs to be divergent between pre- and post-NACT tumour
cells (Fig. 6C). CNA profiles identified a range of genetic lesions in pre-
treatment tumour cells, most notably gains in chromosomes 3, 19 and 20,
whilst fewer CNAs were seen in tumour cells following chemotherapy
(Fig. 6D). To highlight the likely transcriptional regulators marking the largely
chemosensitive (pre-treatment) and chemoresistant (post-treatment) tumour
cells, we next determined the intersection of genes and TF motifs that had
differential activity following chemotherapy (Fig. 6E). This allowed identifi-
cation ofTFswith concurrent high gene activity plus enriched bindingmotif in
chemosensitive and chemoresistant cells respectively. KLF15, MEF2B, NRF1
and CUX2 were identified as four candidate master regulators of chemo-
sensitivity whilst an additional 37 transcription factors were highlighted as
having potential importance in chemoresistance (Fig. 6E).

Discussion
The relative resistance to chemotherapy in sub-populations of HGSOC
tumour cells leads to high rates of disease relapse and is arguably the greatest
current challenge inovarian cancer.Metastatic omental tumours arepresent
in the majority of advanced HGSOC cases3 and associate with poor clinical
outcomes.Our scATAC-seq analysis of omentalmetastatic tissue provides a
range of insights into the fundamental biology and therapeutic targeting of
this cancer of unmet need.

Tumour cells displayed a heterogeneous profile of chromatin accessi-
bility, a finding compatible with prior observations and interrogation of
scRNA-seq datasets8,34. This is likely to be a key facilitator of drug resistance,
and subsequent tumour progression, and may underpin the high rate of
clinical recurrence and metastasis in ovarian cancer35. A range of open
chromatin genomic loci were identified as markers of epithelial tumour
cells, depicting regions of the tumour genome that are accessible to tran-
scriptional regulation bymaster transcription factors (MTFs). MTFs can be
subverted to control oncogenic transcriptional programs during tumor-
igenesis and many MTFs have been predicted from pan-cancer expression
datasets36. ATAC-seq allows interrogation of binding site motif enrichment
within open chromatinDNAregions, thus allowing identification ofmaster
regulators with high confidence. MEIS homeobox proteins have been
associated with tumorigenesis, metastasis and invasion in ovarian cancer23

and MEIS1/MEIS2 transcription factors were significantly enriched in
accessible tumour regions. MEIS forms complexes with PBX, another
transcription factor commonly dysregulated in cancer37, and PBX2 motifs
were also enriched, substantiating a primary role for MEIS-PBX in the

transcriptional regulation of HGSOC. The central importance of MEIS-
PBX is further indicated by high levels of mRNA and protein content in
ovarian cancer24 whilst overexpression of PBX can lead to platinum-based
chemotherapy resistance38. These findings extend understanding of the
mechanistic role of MEIS1/2 and PBX2 in the evolution of HGSOC
metastasis and warrants further investigation.

Comparison of the chromatin accessibility landscape in treatment-
naïve and post- chemotherapy tumours identified multiple genomic loci as
differentially accessible in epithelial tumour cells. Strikingly, the chromatin
was comparably more open in tumour cells that survived initial che-
motherapy treatment. Stem cells and early differentiated cancer cells have
more open ‘poised’ chromatin27 and chemotherapy may provide a selective
pressure that favours such less-differentiated cells. Of particular interest
were several open regions at the TPK1 gene locus, spanning both the gene
and regions upstream of the promotor. Tumour cells adaptively increase
vitamin B1/thiamine intake during hypoxic stress and in response to che-
motherapeutic agents and TPK1 is a key enzyme facilitating rapid thiamine
metabolism28. TPK1 has itself been shown to modulate drug and radio-
sensitivity of cancer cells39,40 and therefore presents a plausible target in the
context of ovarian cancer chemoresistance.

Motif-level analysis identified enrichment for the MEF2 family tran-
scription factor binding motifs MEF2A/B/C/D in treatment-naïve tumour
cells, implicating these TFs as major drivers of ovarian tumour transcriptional
programs. MEF2 promotes survival in a range of cell types and abnormal
regulation has been linked to oncogenicity in several tumours29. MEF2D is
known to be overexpressed in ovarian cancer and is believed to contribute
directly to chemotherapeutic resistance41.Of note, class IIa histone deacetylases
can bind MEF2 and modulate its activity from a transcriptional activator to a
repressor. Indeed, HDAC inhibitors have emerged as new therapies to target
platinum resistant epithelial ovarian cancer42 and thismay in part be acting via
the modulation of MEF2 transcriptional programs.

Following chemotherapy, tumour cells shifted towards regions of open
chromatin at binding sites for transcriptional regulators of drug resistance,
stemness andWnt signalling. Two of themost intriguing sites in this regard
that also showed concurrent increased gene activity were the oncogenic
factor TP63 and stemness regulator TWIST1. TP63, a homologue of the
ubiquitouslymutatedTP53, is expressed in epithelial ovarian tumours43, has
key roles in embryonic development, stemness and suppression of tumor-
igenesis/metastasis, and can interact with mutated TP5344. Via activation of
theWnt signalling receptor, subsequent TP63 activation has been identified
to upregulate glutathione pathways to protect against chemotherapy-
induced oxidative stress25. Nutlin-3a, which inhibits the interaction between
mdm2andTP53, has shownactivity against TP63 andmaybe of interest for
future assessment in HGSOC45. TWIST1 has been implicated in stemness
and chemoresistance in many other cancer types46, drives cisplatin resis-
tance in an OC model47 and induces degradation of β-catenin during the
differentiation of OC stem-like cells31. Our data points to TWIST1 as a key
master regulator in metastatic HGSOC warranting further exploration.

Fig. 4 | Epithelial cell hallmark gene activitymodule scores following chemotherapy.Meanmodule scores for selectedMSigDBHallmark gene sets calculated on epithelial
tumour cells for each sample and stratified by neoadjuvant chemotherapy treatment. Wilcoxon rank sum test **p < 0.01, *p < 0.05.
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Wnt/β-catenin signalling has a critical role in driving ovarian cancer
chemoresistance48 and binding motifs for TCF7, one of its downstream
transcriptional targets, were also enriched within tumour after che-
motherapy. Wnt signalling pathways have been intensely studied due to
their role in promoting cancer stemness and drug resistance49,50, and the
potential co-occurrence of pathway activation with enhanced chromatin
accessibility of motifs for downstream signalling targets TCF7 and TP63
could be an important modality to explore.

Ovarian tumour cells with stress-associated transcriptional response
have also been shown to expand following chemotherapy.We corroborated
these findings and also identified the likely transcriptional drivers. Of note,
cell cycle promoting TFs, including E2F2 and E2F4, showed decreased
enrichment with increasing stress score highlighting low proliferative
turnover in chemoresistant cells, a factor that may contribute towards
relative resistance to cisplatin-based chemotherapy. Three TFs with strong
positive correlations with stress response were RORa, HNF4G and NR2F6,

Fig. 5 | Transcriptional drivers of chemotherapy enriched stress-associated
tumour cells. A UMAP embedding of epithelial cells overlaid with sample label
(upper) and cluster (lower). B Dot plot gene and motif activity profile of selected
tumour genes/motifs of interest. Dot size indicates the percentage of the population
showing gene/motif activity.CUMAP embedding of epithelial cells stratified by pre/
post chemotherapy treatment overlaid with tumour stress signature gene activity

score. D Distribution of per-cell stress score stratified by chemotherapy.
E Distribution of per-sample mean stress score stratified by chemotherapy.
F Significant Spearman rank correlation of per sample chromVarmotif activity score
with tumour stress signature gene activity score (top 6 significant +ve and −ve
correlations are shown).
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allmembers of the nuclear receptor (NR) superfamily.Nuclear receptors are
master regulators of tumorigenic processes and are considered as highly
druggable cancer targets51. These included the retinoid orphan nuclear
receptor alpha (RORa), a critical regulator of malignant phenotype. RORa
can inhibit tumour cell proliferation and epithelial-mesenchymal transition
(EMT)52 and has been identified as a negative regulator of the Wnt/β-
catenin pathway and potential tumour suppressor in multiple cancers53,54.
Furthermore, NR2F6 expression has been identified to confer cisplatin
resistance in epithelial ovarian cancer cells55. These data indicate that
chromatin accessibility limiting tumour cell proliferationmay be important
in enabling tumour sub-populations to escape chemotherapy killing.

Focussing solely on matched pre- and post-chemotherapy samples
offered insight into the impact ofNACTon the gene regulatory landscape of
tumour cells in a patient with long-term disease-free survival. In addition to
changes in chromatin profile it was also notable that genomic copy number
alterations were less frequent following chemotherapy, perhaps indicating
residual tumour as less differentiated cells having accumulated fewer

genomic lesions in this case. It was notable that retinoic acid (RA) signalling
TFs, including RA nuclear receptors RXRA, RXRG, and RXR-interacting
partner ZNF42356, all had increased activity in these residual tumour cells.

A limitation of our study due to tissue availability meant that pre vs.
post NACT comparisons were largely unpaired with one matched sample
pair included in the analysis. Contribution of inter-patient tumour het-
erogeneity makes it difficult to determine if all/some of the residual tumour
cells were pre-existing and inherently chemoresistant prior to treatment, or
if resistance emerges in some cells following chemotherapy challenge. Data
presented here highlightsmultiple transcription factorswith high likelihood
to be of importance in shaping tumour cell resistance but further work to
functionally evaluate these factors is required.

In conclusion, analysis of the chromatin landscape of metastatic
ovarian tumour cells reveals considerable heterogeneity with accessible
chromatin enrichment of bindingmotifs for the TF cancer oncogenesMEIS
and PBX. The post-chemotherapy tumour cells have increased chromatin
accessibility, including regions accessible to regulation by stemness and

Fig. 6 | Matched pre vs. post chemotherapy tumour cell chromatin profile in a
patient with comparably long progression free survival. A UMAP embedding of
all epithelial tumour cells from patient A overlaid with unsupervised clustering and
pre/post chemotherapy sample label. B Cluster proportions stratified by che-
motherapy treatment. C Differentially active genes and differentially enriched
transcription factor binding motifs between pre vs. post chemotherapy-treated

tumour cells. Differential genes (adjusted p value < 0.001 and absolute log2FC > 1);
differential motifs (adjusted p value < 0.001); Top 10 significant (ranked by fold
change) up/downregulated are labelled. D Hierarchical clustering of copy number
alteration profile. E Intersections of differentially increased genes with differentially
enriched motifs present in pre NACT treated tumour cells (left) and post NACT-
treated tumour cells (right).
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resistance-driving factors such as TP63, TP53, TCF7 andTWIST1. Residual
epithelial cells also display enhanced tumour stress signatures with asso-
ciated candidate TF regulation. These data provide insights into the gene
regulatory mechanisms of transcriptional programs in metastatic ovarian
cancer following chemotherapy and identify a range of potential therapeutic
targets warranting further exploration to combat chemoresistance and
improve outcomes in HGSOC patients.

Methods
Ethical statement
Participants provided written informed consent to participate in the study.
The study was approved by IRAS ID: 225991 and was conducted in
accordance with the local legislation and institutional requirements. All
ethical regulations relevant to human research participants were followed.

Tissue processing
Tumour biopsies were obtained following the surgical resection of omental
tissue. Macroscopic epithelial tumour cell rich tissue regions were isolated
and immediately snap frozen in liquid nitrogen. Biopsies were examined by
an Ovarian Cancer expert histopathologist to confirm diagnosis of meta-
static HGSOC. Expert also confirmed the presence of neoplastic structures
with no evidence of other non-neoplastic epithelial structures within the
samples (Fig. S9). All tumours were confirmed as harbouring p53mutation
and advanced stage (FIGO stage III and IV). All patients were negative for
BRCA mutation. p53 expression was aberrant overexpression for all
tumours apart from patient Dwho showed a p53 null phenotype (Fig. S10).
For NACT-treated patients, treatment consisted of carboplatin or carbo-
platin + taxol with 3–6 cycles at normal dosage and tissue samples were
taken at delayed debulking surgery approximately 4 weeks post treatment.
Patient A also received maintenance treatment with the parp inhibitor
Rucaparib. Sample preparation involved extracting nuclei from the snap
frozen tumour biopsies to generate a single-nuclei solution.A 1X lysis buffer
was prepared using 433 µl nuclease-free water (Thermo Fisher Scientific;
AM9932), 5 µl Tris-HCl (pH 7.4; Sigma-Aldrich; 77-86-1), 1 µl NaCl
(Sigma-Aldrich; S8776), 1.5 µl MgCl2 (Sigma-Aldrich; 63069), 5 µl of
Tween-20 (Sigma-Aldrich; P1379), 5 µl Nonidet P40 substitute (Sigma-
Aldrich; 74385), 1 µl of Digitonin (Thermo Fisher Scientific; 407560050)
and 50 µl of BSA (Miltenyi Biotec; 10-091-376). This was added to 4.5ml of
lysis dilution buffer, consisting of 3.98ml nuclease-free water, 45 µl of Tris-
HCl (pH7.4), 9 µl ofNaCl, 13.5 µl ofMgCl2 and450 µl ofBSA, to give a 0.1X
lysis buffer solution.

Each tissue specimenwasmincedusing a scalpel into 1–2mmsections.
These were transferredwith 1ml of the 0.1X lysis buffer solution into a 7ml
Dounce tissue homogeniser on ice. The tissue was pushed to the base of the
homogeniser and compressed with the larger pestle A for 50 strokes. This
was then repeatedwith pestle B and the sample was transferred into a sterile
15ml Conical tube. Following incubation on ice for 20min, the sample was
centrifuged at 4 °C for 5min at 500 × g. The pellet was resuspended in 2ml
of new 0.1X lysis buffer solution and incubated on ice for a further 20min.
The sample was filtered using a 40-micron cell strainer and was centrifuged
again at 4 °C for 5min at 500 × g. A wash buffer was formulated by com-
bining 3.5 ml of nuclease-free water, 40 µl of Tris-HCl, 8 µl of NaCl, 12 µl of
MgCl2, 400 µl of BSA and 40 µl of Tween-20. The cell pellet was resus-
pended in 1ml of this wash buffer, before being filtering with a 40-micron
cell strainer and transferred into a sterile 1.5ml Eppendorf tube. Individual
nuclei within the solution were counted and viability assessed using the
Countess II FL automated cell counter (Thermo Fisher Scientific). Diluted
nuclei buffer (10X Genomics Single-Cell ATAC Library and Gel Bead Kit;
1000175) was added to achieve a concentration of 2000 nuclei per µl, with a
targeted nuclei recovery of 4000 nuclei.

scATAC library preparation
Following nuclei extraction, single-nuclei solutions were processed by the
10X Genomics Sequencing laboratory at Genomics Birmingham. The
Chromium Single-Cell ATAC Solution and the Chromium Next GEM

Single-Cell ATAC Library and Gel Bead Kit (10X Genomics) were utilised
according to the manufacturer’s instructions. Briefly, diluted nuclei were
added to a transposition solution, where transposase entered nuclei and
fragmented the DNA in open chromatin regions, while adaptor sequences
were merged onto the DNA fragments. Individual transposed nuclei were
joinedwith a barcoded gel bead and partitioning oil to create a Gel Bead-in-
Emulsion (GEM). By dissolving gel beads, primers and 10x barcodes were
added to single-stranded DNA, and the GEM’s fragmented to collect the
DNA. All transposed DNA fractions from the same nucleus were tagged
with individual barcodes to identify thenucleus of origin afterDNApooling.

The sampleswere cleanedusing SolidPhaseReversible Immobilization
(SPRI) and silane magnetic beads. DNAwas then amplified using PCR and
the quality assessed with Agilent TapeStation High Sensitivity D1000
ScreenTape. Sequencing was performedwith IlluminaNextSeq 500, aiming
for 4000 nuclei at a depth of 25,000 read pairs per nucleus.

scATAC data pre-processing and integration
Reads were processed into FASTQ format and peak-barcode counts using
Cell Ranger ATAC v2.0.0, aligning to the prebuilt Cell Ranger human
reference genome GRCh38-2020-A-2.0.0. The counts matrix for each
samplewas read intoR and stored as Seurat objects for downstreamanalysis
with Seurat v4.1 andSignacv1.6.0 Rpackages. For integrationof samplewise
data, a common peak set was created from overlapping peaks across all
samples and filtered to remove those with peak width <20 or >10,000. For
each sample, per-cell fragments aligned to this common peak set were
calculated using FeatureMatrix() and stored in a new chromatin assay with
CreateChromatinAssay().Normalisation anddimensionality reductionwas
performedusing Signacwith latent semantic indexing (LSI)whichconsisted
of running functions RunTFIDF; FindTopFeatures; RunSVD and RunU-
MAP. This normalises using term frequency-inverse document frequency
(TF-IDF) and singular value decomposition followed by UMAP on the top
50% of peaks in terms of their sample variation. LSI components 2:30 were
used in UMAP dimensionality reduction. Sample integration was per-
formed using Harmony R package taking the merged sample data using
reduction = ‘lsi’ and the combined peaks assay as input parameters. Sample
identifiers were used as the covariate upon harmony integration. Harmony
integration aligned cell type across samples as visualised on UMAP
dimensionality reduction (Fig. S11). Gene activity scores are calculated for
each gene in the genome by summing the fragments intersecting the gene
body and promotor region. Gene co-ordinates are extracted and extended
2kbp upstream to include the promotor region.

Unsupervised clustering and major cell lineage annotation
Harmony-adjusted cell embeddings were used for unsupervised clustering
using Seurat functions FindNeighbours() on harmony dimensions 2:30 to
generate the shared neighbour graph and FindClusters() to identify clusters,
optimising the modularity with the Louvain algorithm. Resolution para-
meter was set to 0.2 for coarse-grained clustering. To estimate per-cell gene
activity from peaks data, the Signac function GeneActivity() was used, and
cluster marker peaks and genes were identified using FindAllMarkers() on
the combined peaks and gene activity assays respectively. Clusters were
annotatedwithmajor cell type lineage Lymphocyte,Myeloid, Fibroblast and
Epithelial based on canonical cell type marker gene activity profile and
chromatin accessibility profile at known major cell type defining genes.

Differential peak and gene activity analysis
Peak-level differential analysis identified peak sites with differential chro-
matin accessibility between major cell lineages and between treatment-
exposed and treatment naïve tissue using FindMarkers() on the combined
peaks assay. The statistical test used a logistic regression framework to
determinedifferentially accessible peaksby constructing a logistic regression
model predicting groupmembership based on each feature individually and
compares this to a null model with a likelihood ratio test. Latent variables
were set to the peak region fragments. Peaks were considered differentially
accessible if absolute log2FC > 0.25 and Benjamini–Hochberg adjusted p
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value < 0.01. For gene activity differential analysis FindMarkers() was used
with a minimum percentage of cells set to 0.1 and logFC threshold of 0.2.
Gene activitywas regarded as differential if Benjamini–Hochberg adjusted p
value < 0.001 and absolute log2FC > 1.

Differential transcription factor motif enrichment
Transcription factormotif position frequencymatrices were obtained using
the R package JASPAR2020 and motif information added to the Signac
object using AddMotifs(). Per cell motif activity scores were calculated with
RunChromVar() from the R package chromVar22 on BSgenome.Hsa-
piens.hg38 and the combined peaks assay. Differential activity ofmotifs was
assessed between major lineage cell types and between treatment-naive vs.
post-chemotherapy tissues using FindMarkers() on the ‘chromvar’ motif
activities with fold change calculation computing the average difference in
z-score between groups.

Copy number alterations
Genome-wide copy number alterations (CNAs) for individual cells were
calculated using the epiAneufinder algorithm57. This uses the read counts
from scATAC-seq data as a proxy for the number of DNA copies in seg-
mented genomic regions. To overcome sparsity, lowly covered cells were
filtered out and the genomic bin size was set at 100,000 bp. To avoid bias,
ENCODEblacklisted regions andgenomic binswith zero counts in >85%of
cells were removed.

Signature scoring
Cells were scored for signature gene sets of interest using Seurat AddModu-
leScore() on gene activity. This score is calculated as the average activity of the
gene set per single cell minus background expression from randomly selected
control features with positive scores indicating that the gene module is
expressedmorehighly than expected given the averagepopulation expression.
Published gene sets of interest were retrieved from MSigDB. The HGSOC
tumour stress signature gene set was retrieved from previous study10.

Immunohistochemistry staining
Sections of formalin fixed paraffin embedded tissue were stained using a
Leica Bond 3 automated immunostainer (Leica, Bannockburn, IL) using
antibodies obtained fromLeica (catalogue ref. NCL-L-p53-D07). Ahigh pH
epitope retrieval buffer was used before the application of primary anti-
bodies.Detectionwas performedusing Leica Bond-detection kits (catalogue
ref. D59800), followed by hematoxylin counterstains.

Statistics and reproducibility
Wilcoxon rank sum testwas applied to compare thedistributions of cell type
proportions and signature scores stratified by conditions of interest. All
correlation analysis were conducted using Spearman Rank test. Sample size
(n = 10) consisted of 5 treatment-naive and 5 NACT-treated samples with
one matched pre/post treatment pair being derived from the same patient
(patient A).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited in Gene Accession Omnibus with
accession number GSE247982.
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