Table 1 Parameters used for models when comparing to EBMs
From: StratoMod: predicting sequencing and variant calling errors with interpretable machine learning
Model | Implementation | Hyperparameter levels |
|---|---|---|
Decision tree | rpart (R) | Cost_complexity: 0.00001, 0.0001, 0.001, 0.01, 0.1 |
Logistic regression | glmnet (R) | Penalty: 0.000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10 Mixture: 0, 0.5, 1 |
Random forest | ranger (R) | mtry : 1, 4, 7 trees: 500, 1000, 2000 |
XGBoost | xbgoost (python/gpu accel) | max_depth : 3, 6, 9 n_estimators: 100, 500, 1000 gamma: 1, 10, 100 |