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Overcoming photon and spatiotemporal
sparsity in fluorescence lifetime imaging
with SparseFLIM
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Fluorescence lifetime imaging microscopy (FLIM) provides quantitative readouts of biochemical
microenvironments, holding great promise for biomedical imaging. However, conventional FLIM relies
on slow photon counting routines to accumulate sufficient photon statistics, restricting acquisition
speeds. Here we demonstrate SparseFLIM, an intelligent paradigm for achieving high-fidelity FLIM
reconstruction from sparse photon measurements. We develop a coupled bidirectional propagation
network that enriches photon counts and recovers hidden spatial-temporal information. Quantitative
analysis shows over tenfold photon enrichment, dramatically improving signal-to-noise ratio, lifetime
accuracy, and correlation compared to the original sparse data. SparseFLIM enables reconstructing
spatially and temporally undersampled FLIM at full resolution and channel count. The model exhibits
strong generalization across experimental modalities including multispectral FLIM and in vivo
endoscopic FLIM. This work establishes deep learning as a promising approach to enhance
fluorescence lifetime imaging and transcend limitations imposed by the inherent codependence
between measurement duration and information content.

Fluorescence lifetime imaging microscopy (FLIM) has emerged as a pow-
erful technique for biomedical imaging and sensing1–5. By resolving the
excited state lifetime of endogenous and exogenous fluorophores, FLIM
provides quantitative readouts of biochemical microenvironments related
to metabolism, bonding, ion concentration, and more4–6. This functional
imaging modality holds great promise for unraveling disease pathogenesis,
guiding interventions, and monitoring treatments. However, widespread
adoption of FLIM faces substantial barriers that have hindered clinical
translation and utility. Conventional FLIM relies on time-correlated single
photon counting (TCSPC) to construct fluorescence decay profiles with
picosecond resolution7–9. While highly informative, TCSPC-FLIM acquires
data sequentially pixel-by-pixel, imposing a trade-off between imaging
speed, resolution, and field of view (FOV). Typical frame rates of minutes
per megapixel restrict continuous observation of dynamic processes. Fur-
thermore, prolonged exposure (repeated raster scanning involved in
TCSPC) may increase photobleaching, phototoxicity, and susceptibility to
sample perturbation and motion artifacts, especially for photon-inefficient
two-photon FLIM. TCSPC also requires high peak power to achieve suffi-
cient photon counts, precluding non-invasive imaging of live tissues. This
codependencebetweenmeasurement durationandfidelity haspersistedas a
fundamental limitation in FLIM.

Recent advances in FLIM have aimed to address these weaknesses
through parallel detection schemes and gating methodologies. Wide-field
time-gated FLIM10,11 provides 2D imaging at video rate but lacks depth
sectioning. Light-sheet FLIM12,13 achieves fast optical sectioning yet requires
sample transparency. Frequency-domain FLIM14,15 boasts image speed and
superb sensitivity without temporal resolution and full decay information.
While promising, these emerging techniques still face challenges in balan-
cing field-of-view, resolution, depth sectioning, and acquisition speed.
Notably, all FLIMmodalities fundamentally suffer from trade-offs between
measurement time and information content. Short measurement times
yield sparse photon data, producing noisy fluorescence decay profiles that
corrupt precision and accuracy of lifetime determination. Longer acquisi-
tion times enhance photon counts and decay statistics at the cost of
observation latency. Modern FLIM systems sacrifice imaging speed to
maintain fidelity. Circumventing this codependence could transform FLIM
capabilities.

Recent years have witnessed remarkable advances in deep learning for
imaging applications. In microscopy, deep learning has enabled
denoising16,17, extended depth of field18, and super-resolution19,20. However,
deep learning remains relatively unexplored in FLIM thus far.Modern deep
learning strategies for FLIM analysis have predominantly focused on
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enhancing one-dimensional (1D) lifetime curves21–23 or two-dimensional
(2D)mean lifetimemaps24–26.While showing promising improvements, 1D
and 2Danalysis cannot fully leverage the rich spatial-temporal relationships
within time-resolved FLIM data. Capturing correlations across the 3D data
volume could enhance photon enrichment and denoising. The reported
methods operated on already fitted lifetime data, which precluded reco-
vering hidden information prior to fitting. Moreover, most networks have
been evaluated on only single cell types or microscopic modes, with limited
assessment in complex imaging environments. Rigorous validation across
diverse imaging modes is imperative.

Here, we demonstrate SparseFLIM, an intelligent paradigm to recon-
struct high-fidelity FLIM data from sparse photon measurements using
coupled bidirectional propagation network. SparseFLIM enables sig-
nificantly increasing photons and recovering hidden spatial-lifetime infor-
mation in FLIM data. Quantitative analysis shows over tenfold photon
enrichment, dramatically improving signal-to-noise ratio (SNR), lifetime
accuracy, and correlation compared to the original sparse data. SparseFLIM
also enables fast imaging by reconstructing spatially and temporally
undersampled FLIM. The model generalizes well across experimental
modalities including multispectral FLIM and in vivo endoscopic FLIM. By
learning hidden information, semantic relationships, and avoiding noise
overfitting, SparseFLIM circumvents conventional trade-offs to expand the
utility of FLIM across biomedicine.

Results
SparseFLIM via bidirectional information flow learning
FLIM measurements were performed using a synchronized system com-
prising a femtosecond laser (~100 fs, 80MHz, Chameleon Discovery,
Coherent), galvanometric scanner (LSKGG4, Thorlabs), and high-speed
time-resolved detectors (HPM-100-40, Becker & Hickl GmbH). The fem-
tosecond excitation beam was relayed, magnified, and corrected by scan
lenses (SL50-2P2, Thorlabs) and tube lenses (TTL200MP, Thorlabs) to
match theback aperture of a 20×objective (MRD70200, 0.75NA,Nikon), as
shown in Fig. 1a. Emitted fluorescence was collected by the objective and
separated from excitation using a long-pass dichroic (DMLP650R, Thor-
labs). The second long-pass dichroic (DMLP490R, Thorlabs) split fluores-
cence from SHG signals. Fluorescence was then detected by the time-
resolved detector connected to TCSPC electronics (SPC-150 andDCC-100,
Becker & Hickl GmbH), which was synchronized with the laser signal to
facilitate precise calibration of time delays. The data acquisition (DAQ)
system generated frame pulses, line pulses, and pixel pulses based on the XY
scanning signals using three counters, which were subsequently directed to
the TCSPC electronics. The synchronization of time signals with scan sig-
nals resulted in the creation of a lifetime image as seen in Fig. 1b, providing
information about the photon number distribution across spatial and
temporal dimensions, nðx; y; tÞ. We employed multi-field scanning to
acquire big amounts of data for deep learning. For a 512 × 512 image with
sufficient photon counts (around 1000 photons per pixel), the acquisition
time is nearly 150 s without exogenous fluorescent labeling. For the same
image size, but with sparse photon counts (around 100 photons per pixel),
the acquisition time is nearly 10 sec (Fig. 1c). The SparseFLIM method is
designed to process this sparse photon data and reconstruct it to match the
quality of the sufficient photon data, which traditionally demands a much
longer acquisition time. This suggests that SparseFLIM can achieve a
remarkable 15-fold improvement in imaging speed while enhancing image
quality and preserving critical information content.

Instead of reconstructing 1D time curves21–23 or 2Dmean lifetime (τm)
images that were fitted with a selected fitting algorithm24–26, our approach
involved the reconstruction of the underlying x-y-t data. We decomposed
the raw data into 3D stacks, each consisting ofNt frames with an interval of
48.9 ps and a time span of ~5 ns. This temporal range was sufficient to
reconstruct the autofluorescence lifetime accurately6,27,28, reducing non-
semantic information learning repetitions and graphics memory require-
ments (“Methods”). Data of sparse photons and data of sufficient photons
are sent to the network in pairs for training.

The basic principle of SparseFLIM is illustrated in Fig. 1e. This network
was adapted from a video super-resolution framework29 and primarily
consists of two branches: the forward branch (Ff ) and the backward branch
(Fb), which facilitate bidirectional information flow. The forward branch
processes frames sequentially from the start to the end of the sequence.
Each frame's features are computed from the current frameand theprevious
frames' propagated features. This allows accumulating information from
preceding frames. Conversely, the backward branch processes frame
recursively from the end to the start of the sequence. This allows incor-
porating future frame context. By leveraging correlations in both forward
and reverse directions, the bidirectional propagation enables effectively
accumulating long-term spatiotemporal information to maximize context
available for reconstruction.

The coupled propagations exchange information between the forward
andbackward propagation branches. Specifically, the backward-propagated
features are provided as additional inputs to the forward propagation
branch, allowing the forward branch to exploit relevant features from future
frames. Similarly, the forwards-propagated features are fused into the
backwardbranch, providing it access to contextual guidance frompreceding
frames. This interconnection enables each branch to integrate useful fea-
tures from the entire FLIM sequence, rather than just unidirectional seg-
ments. The feature exchange facilitatesmore holistic sequencemodeling for
high-fidelity photon enrichment and lifetime recovery.

The forward and backward propagation blocks concatenate into the
aggregation block. The concatenation in the network consolidates com-
plementary information from the bidirectional propagation branches via
and produces high-fidelity FLIM reconstructions by capitalizing on the
enriched features from both directions.

Additionally, the network incorporates a feature extractor from video
restoration with enhanced deformable convolutional networks (EDVR)30.
This approach can extract spatial and temporal features from the keyframes
and their neighboring frames (Fig. 1f). The features extracted by EDVR
include feature maps of different levels, which possess varying resolutions
and distinct feature information. In the pyramid structure of cascading and
deformable convolutions, the higher levels contain more structural infor-
mation, but their positional informationmay undergo slight changes due to
the blurring effect caused by repeated convolution and pooling operations.
Conversely, the lower levels harbor richer details such as edge textures with
more precise positional information. Therefore, performing deformable
convolution based on different feature maps can generate more complex
transformations, enabling the model to learn how to extract features from
reference frames within complex spatiotemporal patterns. This mechanism
is particularly beneficial for detailed regions where photon numbers are
scarce.We also used temporal and spatial attention30 to fuse complementary
features from the infrequent key frame extraction. This module aids the
network in disregarding irrelevant feature information while emphasizing
pertinent feature data for the reconstruction process.

An example reconstruction of a sparse photon lifetime image was
presented in Fig. 1g. The cumulative intensity (I) image depicts the tissue
structure clearly despite the limited photons. However, the mean fluores-
cence lifetime (τm) map31, derived from a bi-component fitting (Methods),
exhibits a significant deviation from the τm map obtained with sufficient
photons. After applying the network restoration, the τm map closely
resembles the sufficient photon τm, with underlying photon enrichment.
Thus, the resulting composite image (I × τm) parallels with that of sufficient
photons (Fig. 1g). Specifically, we find that fluorescence decay curve of
sparse photons (Fig. 1h) displays lower confidence compared to the results
following network reconstruction (Fig. 1i). A low value for chi-square (χ2)
value means there is little difference between what was observed and what
would be expected. The distribution of fluorescent photons in the sparse
input data appears irregular, with the fitted τm at 0.6 ns (Fig. 1h). This leads
to a 40% difference between the τm of network reconstruction and the
reference τm for the sufficient photon data (1 ns in Fig. 1i). In the sparse
input, the lack of photons and excessive noise prevents resolving the correct
lifetime. However, during training on the photon-rich data, the network
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learns the lifetime features of different lifetime populations/components.
When reconstructing from the sparse input, it can leverage this learned
knowledge to “unmix” the disordered lifetime distribution and recover the
underlying bifurcated ~1 ns components seen in the reference.

Moreover, the residual error of the SparseFLIM result is largely lower
than that of the sparse input and even smaller than that of the sufficient
photons as observed in the bottompanel of Fig. 1h, i. This smoothness arises
because the network cannot effectively learn or reconstruct independent
noise components with a zero mean present in the input data. As a result,
when reconstructing from the sparse input during inference, the network
can recover the high-SNR fluorescence decay patterns while inherently
filtering out the randomnoise components that were present in the original

sparse input. This noise suppression capability of the network leads to
smoother and cleaner fluorescence decay traces in the SparseFLIM recon-
struction compared to the high SNRreference,whichmay still contain some
residual noise.

We conducted a comparative analysis of the reconstruction effects
achieved by different models as presented in Supplementary Figs. 1–3. The
fluorescencedecay sequenceobtainedusing the 3DUNetmodel32 appears to
be less restorative andmore similar to the input data.On the other hand, the
self-supervised method16,33 shows promise in reducing noise; however, it
struggles to enrich the number of photons. This limitation arises because
neighboring frames, which serve as learning targets, are photon-sparse. The
τm maps and composite maps reconstructed by the 3D residual channel

Fig. 1 | General principle and validation of SparseFLIM. a FLIM setup and data
acquisition. b Photon distribution in the x-y plane. c Comparison of photon counts
between sparse and sufficient acquisition modes. d 2D mean lifetime (τm) images
(left) and 3D lifetime stacks (right). e Network architecture of SparseFLIM. ti
indicates the ith-frame time. Ff , forward propagation branch; Fb , backward pro-
pagation branch.A, aggregation blocks. Ff and Fb are coupled indicated by the cyan
arrow line. f Information refilling module. FE feature extractor; Conv convolution

operations; Res residual blocks. g Comparison of the sparse photon input, network
output, and sufficient photon reference. h Autofluorescence decay of the location
indicated by the cross in g for the sparse photon acquisition. iData restored from the
sparse photon recording using our network, which is consistent with the auto-
fluorescence decay of the sufficient photon recording. The bottom panels corre-
spond to the fitting residuals. Also, see Supplementary Movie 1. Scale bar, 100 μm.
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attention networks (3D RCAN)20 are closer to the results achieved with a
sufficient number of photons, yet there still exists a noticeable gap in
accuracy compared to ourmethod concerning the sufficient photon images.
Our approach leverages the correlation between time frames, considering
feature consistency and information flow.Despite small discrepancies in τm
values between SparseFLIM results and Photon-rich reference in Supple-
mentary Figs. 2 and S3, achieving perfect consistency is challenging due to
noise in raw input data, errors in fitting procedures used to create the
Photon-rich reference images, and fundamental limitations of sparse pho-
ton inputs and fluorescence emission. The network aims to balance noise
reduction, feature preservation, and adherence to learned patterns from the
training data.

Quantitative analysis of image enhancement and photon
enrichment
We show a comparison of large-field input sparse photon image (Fig. 2a),
network-enriched photon image (Fig. 2b), and photon-rich image (Fig. 2c)
of human skin pathology. A notable disparity exhibited between the the raw
input and the reference images. Although in zoom-in views with fewer
photons (Fig. 2d), it is possible to resolve details like sweat glands, blood
vessels, and dermis structure (upper panels). However, the τm map (bottom
panels) in these regions lacks differentiation, hovering around 0.7–0.8 ns,
which is significantly improved by the network restoration (Fig. 2e).
Notably, red blood cells (RBCs) with a lifetime of ~0.4 ns recovered by the
network exhibit substantial differences from the dermis (>1.4 ns). The
lifetime value of these tissue structures aligns well with the results obtained
with sufficient photons (Fig. 2f).

Following network enhancement, the 3D SNR demonstrates a sig-
nificant improvement over the original shot-limit stacks, with an average
increase of 16.6 dB (~12 dBover ~−4.6 dB), and the 3DSSIMalso exhibits a
substantial enhancement, with an average increase of 137% (from ~0.35 to
~0.84). The Pearson correlation comparison, the network reconstruction
results, and the sparse inputs also exhibit a substantial enhancement,with an
average increase of 24-fold (~0.63 over ~0.02). The low correlation likely
arises because, for most pixels, the noise in the sparse data is so severe that
the fitted lifetimes become essentially random, decorrelating from the true
lifetimes. Only a small subset may by chance produce lifetimes that weakly
correlate. With insufficient photons (<100/pixel), the raw decay curves in
the sparse data are extremely distorted by noise, decorrelating from the true
underlying decays.

Notably, our model achieves the most substantial SNR improvement
compared to other models16,20,32–35 as shown in Supplementary Fig. 4a.
Although the 3D RCAN model shows a competitive improvement, its
lifetime correlation remains lower than that of our model as observed in
Supplementary Fig. 4b. The superior performance of SparseFLIM benefits
from its unique strengths in capturing spatiotemporal correlations, lever-
aging feature extraction and fusion, and learning temporal dynamics. The
bidirectional approach allows the model to effectively capture and leverage
long-term spatiotemporal correlations and dependencies within the FLIM
data, both from past and future frames. In contrast, approaches like 3D
UNet and 3D RCAN primarily rely on non-propagating reconstruction,
which may limit their ability to capture and utilize the rich spatiotemporal
relationships present in the FLIM data. The feature fusion mechanism
allows SparseFLIM to capture and utilizemore comprehensive information
from the input data, leading to improved reconstruction of missing details
and suppression of artifacts. Other approaches may not explicitly incor-
porate such a feature extraction and fusionmechanism, potentially limiting
their ability to recover fine-grained spatial and temporal information.

Instead of determining lifetime values or decay components through
biexponential fitting, we leveraged a fit-free phasor technique to directly
transform time-resolved FLIM data into a graphical distribution, providing
intuitive readouts of protein-bound and free fluorophore fractions (Sup-
plementary Note 1 and Supplementary Fig. 5). Phasor plots were generated
from the Fourier transforms of the raw sparse FLIM input, deep learning
reconstructed output, and sufficient photon reference data. The phasor

distributions and their ability to resolve cell types based on component
makeup were compared using this fit-free technique without any biased or
non-linear fitting procedures. The phasor patterns following deep learning
reconstruction closely aligned with the phasor transforms of the sufficient
photon acquisition, highlighting the network’s capability to enhance cor-
relation and accuracy in an assumption-free manner.

In addition to SNR and lifetime correlation enhancement, the lifetime
distributionof before andafter thenetwork reconstruction and the reference
were quantitatively characterized in Fig. 2i–k. The network-enabled a ten-
fold improvement of photon count at all lifetime intervals on average across
over 7 million fluorescence decay traces. The photon distribution generally
reaches around 1000 at the network output compared to the ~100 of the
input. However, the <1 ns lifetime components were likely restored with
more photon counts than the 3–4 ns components. Shorter lifetimes mean
faster fluorescence decaywith sparser photons in fluorescence tail andmore
easily distorted when undersampled compared to longer lifetimes. The lack
of photons might cause the fitting to erroneously biased towards artificially
longer lifetimes. The network is able to correct for this artifact and recover
the true, prevalent shorter ~1 ns components seen in the photon-rich data.

While the photon number histograms in Fig. 2j and Fig. 2k exhibit a
high degree of overall similarity, there are subtle discrepancies between these
two distributions. This may arise due to imperfect network reconstruction
and errors in fitting methods. Nevertheless, these subtle differences have less
potential impact on the reliability and accuracy of the inference results of
SparseFLIMbecause the overall lifetime trends and shapes are closely aligned.

Visually, we presented x-t and y-t orthogonal views of the spatio-
temporal distribution of photons (Fig. 2l–n). The input images were nor-
malized, otherwise invisible, exhibit more noise and speckled photon decay,
particularly in the latter half (>2 ns) of the time range (Fig. 2l). In contrast, the
results obtained through the SparseFLIM network (Fig. 2m) are notably
distinct, and the clearer photon decay patterns agree well with the patterns
obtained with sufficient photons (Fig. 2n). Importantly, since independent
noise cannot be learned as its expected average is zero, the network recon-
struction results were even less noisy than the data with >1000 photons,
avoiding the generation of significant artifacts. This demonstrates the effec-
tiveness of the SparseFLIMmodel in improving data quality and relationships.

Overall, despite originally inconsistent and uncorrelated decay pat-
terns, SparseFLIM reconstruction establishes strong consistency between
sparse photon inputs and sufficient references in addition to photon
enrichment. This verifies precise recovery of underlying fluorescence
properties and lifetime characteristics from sparse measurements.

Spatial sparsity enhancement
To achieve faster FLIM, a practical approach is to reduce the pixel count in
the capturing images. For example, capturing 128 × 128 pixels is 16× faster
(>100× faster if considering photon sparsity) than 512 × 512 pixels, irre-
spective of angle step response of galvanometer and loss of spatial structure
information. To address this downgrading, we employed a spatial upsam-
pling (SU) module, realized by sub-pixel convolution (pixel shuffle)36 fol-
lowing the feature aggregation within the network of SparseFLIM, as
illustrated in Fig. 3a and described in detail in Methods. This approach is
applicable to both photon sparsity and spatial sparsity. We proceeded to
reconstruct images at 2×, 3×, and 4× pixel magnifications of fluorescent
beads and presented frames at specific time points for comparison (Fig. 3b).
In the input sparse data, the fluorescent beads remain vague due to the
limited photons and low spatial resolution. However, after network recon-
struction, the beads become clearly distinguishable with enriched photons
and suppressed noise. The zoom-in views (Fig. 3c) reveal the changes in the
contours of the beads. The outlines of the beads in the input data are irre-
gular, particularly for longer decay times (t = 976 ps) and fewer pixels
(128 × 128), resulting inmore blurred and distorted shapes. These distortions
and the loss of photons are effectively reconstructed by the SU SparseFLIM
method, resulting in outcomes consistent with the photon-rich reference.

Furthermore, we presented the results of reconstructing images with
bothphotonand spatial sparsity usinghumanskin tissue slices (Fig. 3d).The
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reconstructed images at 2×, 3×, and 4×, including intensity and lifetime,
closelymatch those of the 512 × 512 imageswith an adequate photon count.
To assess the quality of the reconstructions, we employed 3D SNR as a
quantifying measure (Fig. 3e). In the case of the 2×, 3×, and 4× bicubic
upsampled images of the original data, the mean SNR registers at a mere

−3.1 dB, −2.9 dB, and −2.2 dB, respectively. However, following the
reconstruction process, these values increase substantially to 11.4 dB,
10.2 dB, and 9.8 dB.We also computed the Fourier shell correlation (FSC)37

between the 3D input/output images and photon-rich images (Fig. 3f). At
lower spatial frequencies, the FSC values of the results approach 1. As the

Fig. 2 | Network enhance label-free FLIM data of human skin tissue. a Raw input
image (Iτm) with sparse photons (normalized). b Network-enriched photon image
by SparseFLIM. c Reference photon-rich image. d–f corresponds to magnified view
of the boxed regions in (a–c), showing gland (left), RBCs (middle), and dermis
(right). Black arrowheads indicate RBC. The τm maps presented in the bottom panel
offer an original look at the fluorescence lifetime characteristics in these regions.
gTukey box-and-whisker plot illustrating 3D SNR and 3D SSIM changes before and
after SparseFLIM reconstruction (n = 45 x-y-t stacks). h Violin plot showing the
Pearson correlations of fluorescence decay traces before and after network inference.
n = 500,000. Photon-rich traces were used as the reference for correlation

calculation. Histogram distribution of bi-component mean lifetime in sparse raw
input (i), network-enriched photon (j), and photon-rich (k) data, with the standard
deviation (SD). Black arrow indicates the photon enrichment. n = 7,772,430.
l–n correspond to close-up RBC images of normalized input, network enrichment,
and photon-rich reference. The x-t and y-t views of the RBCs visualizing fluores-
cence decay within a 5 ns window, with cumulative decay trace plotted in the bottom
right, which corresponds to the lifetime components within the white box region in
the y-t view. Two-tailed Wilcoxon matched-pairs signed rank tests were applied
between the input and output in g and h. Spatial scale bars, 100 μm in (a) and 50 μm
in (d, n). Temporal scale bar, 100 ps in (n).
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frequency increases, the SparseFLIM FSC values consistently exhibits a
stronger correlationwithhigh-SNR images compared to the inputdata.This
improved correlation underscores the high reliability of network recon-
struction. It is important to note that all improvements in quantitative
metrics are calculated based on reference sufficient photon data. In essence,
these metrics not only signify the enhancement in image quality but also
underscore the exceptionally high similarity between the reconstructed data
and the reference data.

Temporal sparsity enhancement
We assessed the feasibility of recovering time sparsity by removingmultiple
time frames (equivalent to reducing the 100 time channels). To address the

information loss, we employed a temporal upsampling (TU) module, rea-
lized by increasing the output channels of the network (Fig. 4a, see details in
Methods). In the absence of 2×, 3×, and 4× frame counts, the TU Sparse-
FLIM effectively compensated for these missing frames (Fig. 4b), enriching
photons tomeet the requirements for lifetime fitting. The orthogonal views
of an RBC revealed that previously invisible spatial and temporal details
were clearly recoveredby thenetwork (Fig. 4c).These resultswere consistent
with the photon-rich reference but with reduced noise. Notably, the SNRof
the network inference significantly improved by 36.7 dBwhen compared to
the shot-limit input.The reconstructed imagesof time sparsity at 2×, 3×, and
4×, including intensity and lifetime, closely matched those of images with
sufficient photons (Fig. 4d). Different biological structures, e.g., pore

Fig. 3 | Spatial and photon sparsity enhancement by SparseFLIM. a Network
architecture of SU SparseFLIM.Us , spatial upsampling module. CP collected pixels;
UnCP uncollected pixels. b Input images of fluorescent beads and the corresponding
network reconstruction results. Yellow dashed circles indicate invisible beads that
are clearly resolved by the network. c Close-up images showing a pair of beads. The
solid line in the images refers to the line of the shown cross-section. dComparison of

the input and output images of a skin tissue. The photon-rich image is presented as
reference. e Tukey box-and-whisker plot illustrating 3D SNR changes in skin data
between bicubic upsampling of the input and SU SparseFLIM result (n = 46 x-y-t
stacks). f FSC measure on bicubic upsampling of the input and SU SparseFLIM
result. Two-tailed Wilcoxon matched-pairs signed rank tests were applied between
the input and output in (e). Scale bars, 20 μm in (b, c), 100 μm in (d).
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networks, RBCs, and dermis were well resolved in lifetime at the three pixel
multiplication rates using TU SparseFLIM compared to the input lifetime
maps, which exhibit no lifetime difference between different structures and
significant biases concerning the reference. The reconstructions led to
remarkable improvements in lifetime correlation for the original 2×, 3×, and
4× frame-reduced images, with enhancements of 15 times, 24 times, and
12 times, respectively. These improvements align closely with the photon-
rich references (Fig. 4e). To illustrate, the autofluorescence decay patterns
resulting from the inference displayed a remarkable consistency with the

photon-rich decays, in stark contrast to the scattered patterns observed in
the input data (Fig. 4f).

Model generalization
We assessed the adaptability of our SparseFLIM model by applying it to
three other distinct imaging modes. One suchmode is single-photon FLIM
of livermetastasis. The distorted lifetimemaps obtained from sparse photon
acquisitions, which suffer from limited photon counts and noise,
were effectively restored by the pre-trained SparseFLIMmodel tomatch the

Fig. 4 | Temporal and photon sparsity enhancement by SparseFLIM. a Network
architecture of TU SparseFLIM. Ut , temporal upsampling module. Dark boxes
represent the collected frames, while white boxes represent the uncollected frames.
b Images of RBCs and dermis, with the temporally padded frames reconstructed by
the network outlined in green. cOrthogonal views of an RBC. Thewhite dashed lines
and arrows in the y-t views indicate selected x-y frames displayed at the ends. The
column graph at the bottom right illustrates the SNR improvement, withmean ± SD.

d Comparison of the input and output images of skin tissue, with the photon-rich
image serving as the reference. e Violin plot demonstrates changes in lifetime cor-
relation in skin data between the input (bicubic temporal upsampling) and TU
SparseFLIM reconstruction. n = 500,197-lifetime traces. f Fluorescence decay of the
location indicated by the cross in (d). Two-tailed Wilcoxon matched-pairs signed
rank tests were applied between the input and output in (e). Scale bars, 150 μmin (b),
100 μm in (d).
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high-quality FLIM images acquired with sufficient photon counts (Sup-
plementary Fig. 6a, c). We compared the fluorescence decay for the sparse
photon, the network-enriched output, and the sufficient photon reference
data (Supplementary Fig. 6b, d). The limited photon counts and noise
introduced irregularities anddistortions in the sparsephotondata, causing it
to deviate from the expected trend. However, after the network recon-
struction, the decay curve of the sparse photon data became highly con-
sistent with that of the sufficient photon reference, accurately capturing the
fluorescence decay dynamics. This highlights ability of the network to
recover the true fluorescence decay characteristics from single-photon
excitation sparse and noisy data, effectively mitigating the detrimental
effects of limited photon counts and noise.

We also assessed multispectral FLIM (Supplementary Fig. 7a), an
advanced imaging technique that combines spectral and lifetime informa-
tion for characterizing the tumor microenvironment38–40. This method is
prone to deviations in lifetime fitting due to low collect efficiency, particu-
larly when imaging spectral regions away from the fluorescence emission
peak. In Fig. 1h, the “sparse” condition refers to using a short photon
accumulation time during fast acquisition. In contrast, Supplementary
Fig. 7a shows adifferent scenario of spectral sparsity, where the 441–466 nm
and 466–491 nm channels had intrinsically low photon levels compared to
the more intense 541–566 nm channel at 920 nm excitation, due to the
spectral properties of the sample. To address this, we leveraged our pre-
trainedmodel to reconstruct data fromphoton-inefficient spectral segments
and compared it with a spectral segment characterized by high photon
counts. The results demonstrated remarkable consistency, with the lifetime
map exhibiting greater accuracy than the original data (Supplementary
Fig. 7b). The reconstruction process also effectively restored the parametric
second harmonic generation (SHG) process, represented by a lifetime of
zero,without anydeviations.Notably, thefluorescencedecay curve of sparse
photons exhibits lower confidence compared to the results obtained after
network reconstruction (Supplementary Fig. 7c). The SNR of the network-
enhanced data shows a significant improvement over the original subpar,
below shot-limit stacks, with an average increase of 21 dB. Additionally, the
lifetime trace correlation analysis comparing the network reconstruction
results with the sparse input data also demonstrates a high enhancement.

We finally tested the effectiveness of our SparseFLIMmodel for in vivo
endoscopic FLIM41,42. This two-photon fluorescence lifetime microendo-
scopy based on fiber-bundle43 may encounter several challenges. Fiber
dispersion and photon loss often lead to a reduced nonlinear excitation
efficiency. The limited numerical aperture (NA) of an individual fiber core
(0.35–0.39) and Grin lens (e.g., 0.5) could lead to a low fluorescence col-
lection efficiency. Moreover, differences in the optical path of the multicore
fiber can introduce variations in lifetime measurements. To address these
issues, we used a pre-trained model to reconstruct low-SNR endoscopy
imaging results. The outcome was a significant reduction in lifetime noise,
along with the recovery of both intensity and lifetime information. The
reconstructed images of the small intestine, liver, and tumor displayed clear
details, with the lifetime information well recovered. These results
demonstrate the noise reduction, photon enrichment, information recovery
capabilities, and overall robustness of our model.

Discussion
This work demonstrates SparseFLIM, a deep-learning approach for
reconstructing high-quality fluorescence lifetime images from sparse pho-
ton data. The method leverages bidirectional propagation and coupled
reconstruction to effectively enrich photon counts and recover spatial-
temporal information lost due to low fluence acquisitions. Notably, Spar-
seFLIM might not literally generate or insert new photons into the data.
Instead, it leveraged the spatial and temporal correlations learned from the
forward and backward data to predict the underlying true fluorescence
decay curve and photon distribution that would be observed with sufficient
photon counts. More specifically, during the training process, the network
learned a mapping between the sparse, noisy input data and the corre-
sponding high photon count reference data. It captured the relationships

between the sparse spatial-temporal patterns and the underlying fluores-
cence decays they represent. At inference time, when given a new sparse
FLIM input, the network used this learned mapping to reconstruct and
predict the full, enriched spatial-temporal distribution and decay curve that
aligned with the high photon count data distribution.

SparseFLIM enables dramatic improvements in photon counts, SNR,
and lifetime correlation for sparse FLIM data, reconstructing images com-
parable to sufficient photon acquisition. Quantitative analysis across mil-
lionsoffluorescence traces showedover 10×photonenrichmentonaverage.
The resulting lifetimemaps anddecaypatterns closelymatchedphoton-rich
references. The model also effectively addressed spatial and temporal
sparsity through upsampling modules. Sparsely sampled FLIM could be
reconstructed to full resolution, clearly resolving subcellular features.
Similarly, temporally downsampled data was restored via frame synthesis.
This could accelerate FLIM by reducing pixel counts and time channels.
Moreover, SparseFLIM exhibited strong generalization across experimental
modalities. The network reconstructed multispectral FLIM data, accurately
recovering lifetimes even for low-efficiency spectral bands. It also enhanced
in vivo endoscopic FLIM impaired by fiber dispersion and low NA. By
learning semantic relationships, this approach avoids fitting random noise
that still exists in higher fluence data, which demonstrates a denoising
capability beyond merely enriching photons.

Despite these advances, several limitations still need to be addressed.
First, although the current results suggest a degree of transferability of the
pre-trained weights for datasets sharing core characteristics, the general-
ization performance across broader datasets remains to be fully validated. In
cases involving significantly different optical setups (e.g., confocal micro-
scopy), parameters (e.g., much fewer time bins), and sample types (e.g.,
fluorescent proteins in cells), it may be necessary to retrain the network for
accurate reconstruction of lifetime decays. Second, the network restores the
temporal and spatial distribution of fluorescence independently of single or
double exponential fitting methods. While the bi-component nature of the
spontaneous fluorescence of FAD has been extensively discussed in prior
research6,27,28, practical applications should tailor the choice of model based
on the specificfluorescence distribution characteristics of the sample. Third,
while photon counts improved substantially, further optimization of the
network architecture may enable more extreme enrichment. For example,
hybrid networks leveraging physiological constraints and deep learning
could improve accuracy. Expanding network capacity with deeper archi-
tecture or gleaning insight from fluorescence decay models could aid
reconstruction. Optimizing training strategy, loss functions, and regular-
ization may produce superior solutions. Fourth, extension to 3D FLIM and
computation time/memory optimization would enhance practical utility.
Further analysis of internal feature representations could provide insight
into relationships captured by the network. Such knowledge may guide the
development of analytical models to accelerate fitting.

In summary, we established a deep learning approach to achieve high-
fidelityfluorescence lifetime imaging using sparse photon data. SparseFLIM
generalized well across experimental modalities including multispectral
FLIM and in vivo endoscopic FLIM with the pre-trained weights. The
technique exhibits photon enrichment and denoising capabilities, produ-
cing cleaner reconstructions than the raw data. Together this work estab-
lishes deep learning as a promising strategy to enhance fluorescence lifetime
imaging. By recovering hidden information, SparseFLIMmay provide new
biological insight from low-light imaging. Studying light-sensitive processes
like circadian rhythms, neural activity, and cell signaling could benefit. Our
approach could facilitate longitudinal FLIM studies by reducing photo-
damage. Enhanced imaging of endogenous fluorophores minimizes the
need for exogenous labels. While this work focuses on FLIM, the core
technique of learning from sparse datamay generalize. SparseFLIM enables
potential applications like rapid 3D FLIM, large-area sensing, and light-
sensitive imaging. More broadly, this approach represents a paradigm for
extracting latent information from sparse measurements that may gen-
eralize beyond FLIM. Future work should focus on advancing the network,
assessing more varied experimental scenarios, and clinical translation.
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Methods
Sample preparation
The procedures and protocols conducted in this study received approval
from the Medical Ethics Committee, Shenzhen University Medical School
(PN-202300128). Physicians and surgeons were responsible for patient
recruitment and obtaining informed consent. All ethical regulations rele-
vant to human research participants were followed. Utilizing de-identified
residual tissue specimens that were previously archived, we conducted our
experiments. Tissue samples, obtained through surgery, were promptly
snap-frozen in liquid nitrogen and subsequently preserved at –80 °C until
they were sectioned into 5 μm-thick slices for both unstained and stained
applications. The frozen tissue sections were directly covered with cover-
slips, imaged using ourmicroscope, and subsequently stored at –80 °C. The
adjacent sections underwent standard H&E staining procedures. Patholo-
gical analysis was carried out by two dermatologists with expertize in skin
cancer on the histological sections.

Network architecture
The network employs a recurrent neural network architecture with two key
components: (1) Forward and backward propagation branches to leverage
temporal correlations and accumulate long-term spatiotemporal informa-
tion from both past and future frames, and (2) Coupled propagation blocks
that exchange information between the forward and backward branches,
enabling each branch to incorporate context from the entire sequence. This
coupled bidirectional propagation mechanism, along with the recurrent
nature of the architecture, allows the model to effectively capture and pre-
serve long-term temporal dependencies at each pixel location. Thereby, the
extremely sparse photons (approaching zero) at the tail end of fluorescence
lifetime decay can be precisely reconstructed, relying on the photon dis-
tribution pattern learned by the network at high photon time points.
Additional elements of the network include aggregation blocks to con-
catenate the complementary bidirectional information, and high-level fea-
ture fusion to reconstructmissing details and reduce artifacts by refining the
propagation and aggregation processes.

Propagation branches. Bidirectional propagation is a core technique in
the network that enables temporally aggregating information across
the entire FLIM sequence. It involves separate forward and backward
branches that process frames in opposite directions. The forward branch
propagates frame features sequentially from the start to the end of
the sequence. Each frame’s features are computed by fusing information
from the current frame and the features propagated forward from
the prior frame. This allows accumulating contextual guidance from
preceding frames. Conversely, the backward branch propagates frame
features recursively from the end to the start of the sequence. Each
frame’s features are computed by fusing information from the current
frame and the features propagated backward from the next frame. This
maximizes the spatiotemporal information available to each frame for
reconstruction, surpassing unidirectional or localized propagation
schemes.

The bidirectional mechanism provides several advantages. First, it
prevents early frames from suffering due to lack of future context, and later
frames from deteriorating without past guidance, issues that plague uni-
directional propagation. Second, it reduces cumulative alignment errors by
allowing error correction from both directions. Occluded regions can be
recovered by fusing information from before and after the occlusion. Third,
it eases gradient flow during backpropagation for more effective optimi-
zation. Finally, bidirectional propagation facilitates modeling long-range
dependencies essential for FLIM reconstruction. By aggregating informa-
tion across hundreds of frames, the branches can capture subtle spatial-
lifetime patterns critical for photon enrichment.

Coupled propagation. The network employs coupled propagation
between the bidirectional branches to maximize information exchange.
The backward branch features are provided as additional inputs to the

forward propagation to better handle occlusion. Specifically, the coupled
propagation fuses the backward-propagated features into the forward
branch processing. This allows the forward branch to leverage features
from future frames during alignment and aggregation. For example,
during occlusion, the backward-propagated features contain contextual
guidance from after the occlusion not available in preceding frames.
Fusing this helps the forward branch reconstruct those regions.

Similarly, the backward-propagated features are useful for recon-
structing boundaries and detail regions by providing future frame context.
This facilitates handling noise and information loss. The expressions for
bidirectional and coupled propagations are:

h f
i ¼ Ff ðxi; xi�1; h

b
i ; h

f
i�1Þ

hbi ¼ Fbðxi; xiþ1; h
b
iþ1Þ

ð1Þ

where xi is the input ith frame at the time ti. Ff and Fb are the forward and
backward propagation branches, respectively. h f

i and hbi representing the
output featuremapswith two exits. h f

i , h
b
i ¼ 0 for the first frame.One is the

forward hidden state and backward hidden state as the next reference frame
respectively, and the other is directly output to aggregation and upsampling
for reconstruction.

Coupled propagation establishes interconnectivity between the bidir-
ectional branches. By leveraging correlations in both forward and reverse
directions, the full span of the FLIM sequence is covered. This mechanism
maximizes temporal context available during alignment and propagation,
improving occlusion, boundary, and detail handling without substantially
increasing model complexity or computational load. Before these output
features (h f

i and h
b
i ) were concatenated, we refilled the loss information due

to undersampling.

Information-refill. The network incorporates an information-refill
mechanism to reduce reconstruction errors during bidirectional propa-
gation. It leverages additional feature extraction on select keyframes to
refill missing information. Specifically, a separate feature extractor
module processes the keyframes and their temporal neighbors to extract
high-level and low-level representations. These complementary features
are fused into the propagation branches to fill in information potentially
lost due to inadequate photon collection.

For example, sparse photon and boundary regions often suffer from
noise. By extracting contextual features from the keyframes before and after
such events, the lost information can be refilled. Concretely, if the current
reference frame is in thekey frame set, the input to themodule consists of the
key frame and its two adjacent supporting frames. The feature extraction
module is realized with a relatively lightweight EDVR30, so the result of
feature extraction is actually the fusion result of EDVR taking these three
frames as input and finally output these three frames:

ei ¼Eðxi�1; xi; xiþ1Þ

ĥ
fb;f g
i ¼

C ei; h
fb;f g
i

� �
; i 2 Ikey

hfb;f gi ; i =2Ikey

8<
:

ð2Þ

where E is the feature extractor. C is the convolution. Ikey represents the
keyframe number. ĥ is the result after information-refill. Briefly, the feature
extractor E uses strided convolution filters to downsample the input
frames and generate multi-scale pyramid representations, transforming
the raw input frames into a set of feature maps that are suitable for
subsequent fusion operations. For feature extraction of keyframes, the
significance of the information contained within intra-frame regions
varies. Support key framesmay exhibit artifacts such as blur, noise, or loss of
signal photons. To address this issue, we also included the temporal and
spatial attention mechanism to disregard irrelevant feature information
while focusing on pertinent data for accurate reconstruction, which was
detailed in EDVR30. Briefly, the temporal attention map is computed
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between the extracted features ei of a neighboring frame and the aligned
features e0i of the reference frame:

hðe0i; eiÞ ¼ sigmoidðθðeiÞTφðe0iÞÞ ð3Þ

where θ and φ are embedding functions implemented by simple convolu-
tionfilters. In this context, the key andvalue are the embedded featuresφðe0iÞ
of the reference frame, while the query is the embedded features θðeiÞ of a
neighboring frame. The temporal attention map h serves as the weight for
the value, indicating how informative each neighboring frame’s features are
for reconstructing the reference frame.

After temporal attention is applied and features are fused, spatial
attention masks are computed from the fused features using a pyramid
design to increase the attention receptivefield. These spatial attentionmasks
are then used to modulate the fused features through element-wise multi-
plication and addition. For spatial attention, the query, key, and value are all
derived from the fused features that have already gone through temporal
attention.

Next, transfer the result of information-refill to the feature recon-
struction:

hfb; f gi ¼ Rb;jðxi; ĥ
fb; f g
i Þ ð4Þ

where Rb;f is the feature reconstruction module with eight residual blocks
for backward and forward and branches. The information-refill can provide
useful guidance to correct faulty lifetime decay reconstruction and enrich
feature learning.

Aggregation and output. Aggregation in the network refers to con-
solidating useful information from the forward and backward propaga-
tion branches to generate the final FLIM reconstructions. Specifically, the
output features from both branches are fused using concatenation:

Ai ¼ concatðxi; h f
i ; h

b
i Þ ð5Þ

This simple aggregation joins the enriched bidirectional features to
create an integrated representation encoding spatiotemporal relationships
identified across the entire FLIM sequence. The aggregation unlocks the
synergistic potential of the bidirectional branches.

The final modules include Leaky ReLU activation function and 2D
convolutions. Leaky ReLU improves the training dynamics of neural net-
works by allowing gradients to flow more freely, reducing the risk of dead
network neurons, and potentially enhancing the model’s ability to learn
complex representations. Additionally, a dedicated upsampling module
with transposed convolutions, pixel shuffling, and Leaky ReLU transforms
the aggregated low-resolution features into full-resolution FLIM
reconstructions.

The output frame yi is obtained by

yi ¼
Ff ðAiÞ for SparseFLIM

Us½Ff ðAiÞ� for SU SparseFLIM

Ut½Ff ðAiÞ� for TU SparseFLIM

8><
>: ð6Þ

where Us denotes the upsampling module, which comprises convolutional
layers for extracting features and a pixel shuffle layer for upsampling:

Us ¼ Leaky ReLUðPixelShuffleðconvðFf ðAiÞÞÞÞ ð7Þ
The convolutional layer extracts features from the input, which is the

result of the fusion of the feature maps. PixelShuffle performs the actual
spatial upsampling by rearranging the feature channels into a higher-
resolution output image. It effectively increases the spatial resolution by a
spatial upsampling factor (e.g., 2×, 3×, or 4×). These ultimately yield a high-
resolution image as output.

Ut represents a channel upsampling module that expands output
channels of the last convolutional layer to more temporal channel bins and
allocate adjacent ones:

Ut ¼ Leaky ReLUðconvðFf ðAiÞ; stÞÞ ð8Þ

where st is the number of output channels of the convolutional layer, which
match the desired temporal scale factor (e.g., 2×, 3×, or 4×). Then, these
adjacent output channels are allocated to the collected frames and the
missing frames that need to be reconstructed. For instance, the four output
channels of the convolutional layer (st ¼ 4), C1, C2, C3, and C4 can be
allocated to Iðx; y; t1Þ, Iðx; y; t2Þ, Iðx; y; t3Þ, and Iðx; y; t4Þ, respectively. By
expanding the output channels and assigning them appropriately, the TU
module enables the network to reconstruct and synthesize themissing time
frames, effectively recovering the temporal information lost due to temporal
sparsity or downsampling during acquisition.

Unlike traditional interpolation techniques that rely on mathematical
assumptions or predefined rules, our approach leverages expansion of the
output channels of thenetwork to reconstruct the temporal sparsity inFLIM
data. Through the bidirectional propagation architecture and the recurrent
nature of the network, the network can accurately recovermissing temporal
information by leveraging the knowledge gained from the high-SNR
reference data during training. Traditional interpolation methods, on the
other hand, may not capture these complex temporal patterns, potentially
leading to inaccuracies or artifacts in the recovered temporal information.
The coupled bidirectional propagation mechanism and the feature extrac-
tion and fusion components helps mitigate potential distortions or artifacts
that may arise from interpolation techniques.

In summary, by integrating the bidirectional and coupled propaga-
tions, high-level feature fusion, and aggregationmechanisms into a tailored
3D architecture, the network outperforms conventional methods for
reconstructing high-quality FLIM from sparse photon data and expands the
potential of deep learning for enhanced fluorescence lifetime imaging.

Training options
The training process of the network is conducted in an end-to-endmanner,
utilizingpaireddatasets that includeboth sparse and sufficientphotonFLIM
data. The images have dimensions of 512 (Nx) × 512 (Ny) × 100 (Nt). To
addressmemory constraints, we segmented the images into sub-stacks with
dimensions of 128 (Nx) × 128 (Ny) × 100 (Nt) andmaintained a batch size
of one during the training phase. Data augmentation was performed using
random flips and rotations. In total, we carried out 100,000 training itera-
tions. The feature correction in each branch involved eight residual blocks,
eachwith 64 channels. Comparative analysis of various keyframe selections,
as well as the original BasicVSR (with flow-based feature-wise alignment)29

and BasicVSR++ (with grid propagation)44 was given in Supplementary
Table 1. Reference keyframeswere selected from the [8, 10, 12, 16]th frames
with the highest attained SNR compared to other keyframe selections
(Supplementary Table 1). The network can effectively leverage the high
SNR, contrast, and lownoise levels in these frames for feature extraction and
training.

For the reconstruction module, we opted for the adaptive moment
estimation (Adam)45 optimizer for the generator, with β1 ¼ 0:9, β1 ¼ 0:99.
The training loss function is defined as the Charbonnier loss:

1 ¼ 1
N

XN
i¼0

ρðyi � ziÞ ð9Þ

where ρ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ϵ2

p
, ϵ ¼ 1× 10�8. zi is the high-SNR reference. N is

the number of sequences in a batch.
During the prediction phase, there is no need to crop the input images,

which are of the full size,measuring 512 (x) × 512 (y) × 100 (t). It is essential
to note that there was no data overlap between training and testing. In other
words, the test images presented in this article were generated by the deep
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network in a blind manner, ensuring the reliability and objectivity of the
results.

Benchmarks
We conducted comparative evaluations between our network architecture
and several other representative techniques for sparse data reconstruction
including 3D-UNet32,34, Self-supervised learning16,33, and 3D-RCAN20,35. 3D
UNet represents a standard deep learning approach for volumetric image-
to-image translation tasks. We implemented a 3D version of the popular
UNet architecture using convolutional and transpose convolutional layers
optimized for our photon-limited FLIM reconstruction application. Self-
supervised learning provides a way to train deep networks without labeled
data by using intrinsic structureswithin the data itself as supervisory signals.
We adapted a recent noise2noise self-supervised learning technique to train
a model for reconstructing sparse FLIM inputs using only the sparsity
degraded data itself without sufficient photon references. 3D RCAN
demonstrates good performance for various volumetric image restoration
tasks. We customized this network containing stacked 3D residual channel
attention blocks to translate our sparse FLIM data into photon-enriched
outputs.

Through quantitative metrics and qualitative visualizations, we
demonstrated that our proposed architecture achieves superior perfor-
mance compared to these alternative techniques for reconstructing high-
fidelity FLIM from sparse photon data. This is because our network
leverages strengths of bidirectional propagation, interconnected recon-
struction, and high-level feature fusion tailored for sparse FLIM inputs. In
contrast, the othermethods are not specialized for handling fluence-limited
fluorescence decays. Our experiments highlight the advantages of Sparse-
FLIM unique design components and training strategy for this application.

Data processing
The raw data captured and processed by the SPCImage (Becker & Hickl
GmbH)wereproduced in 8-bitTIFFfiles using a customMATLABscript to
reduce storage requirements and speed up data read, write, and transfer21.
We utilized an approximately 5 ns temporal range, corresponding to 100-
time channels, for autofluorescence lifetime estimation. This range was
chosen because the typical lifetimes observed for endogenous fluorophores
present in the biological tissue samples under study, such as NADH and
FAD, generally exhibit fluorescence lifetimes within a few nanoseconds
(typically <5 ns)6,27,28. Nevertheless, comparative analysis revealed little dif-
ferences in fluorescence lifetime estimates between 5 ns and 10 ns time
windows (Supplementary Fig. 8). Our choice of a 5 ns window represents a
careful compromise between capturing sufficient decay information and
minimizing the influence of noise in the low-photon tail region. In sparse
photon conditions, the tail end of the decay curve often suffers from
increased noise due to low photon counts. We aim to capture the most
informative portion of the decay curve while reducing the impact of noise-
induced artifacts. By constraining the temporal range to the relevant
timescale for the fluorescence decays of interest, the network circumvented
the need to learn redundant or irrelevant information beyond that range.
This approach enhances the learning efficiency and mitigates overfitting to
noise or artifacts outside the region of interest despite impact for longer
lifetime reconstructions. Additionally, the chosen temporal offset (i.e., the
delay before the fluorescence begins to decay after excitation) of approxi-
mately 0.5 ns allows forpreserving thefluorescent rising edgewhile ensuring
a sufficient subsequent time range to capture the effective fluorescence
decay. Moving forward, we will explore adaptive windowing techniques to
potentially extend the analyzable decay range without compromising the
robustness of our approach in low-photon conditions. These refinements
will help to broaden the applicability of SparseFLIM while maintaining its
advantages in processing speed and photon efficiency.

The invisible input imageswith a relatively low contrast were regulated
by adjusting the dynamic ranges (brightness/contrast) in ImageJ to better
display the indiscernible morphological features4. We use the conventional
Levenberg–Marquardt algorithm (LMA) fitting routine, based on a

minimization of the sum of the squared differences between the data points
and the points of themodel function, andworks well for high photon count
fitting. However, LMA is not very suitable for sparsely sampled data, which
were thereby fitted using the Maximum Likelihood Estimation (MLE),
based on calculating the probability that the values of the model function
correctly represent the data points of the decay function.

Performance metrics
The quality metrics, including correlation and 3D SNR were calculated
between the input or output lifetime trace It and the photon-rich reference
trace, I0t . Pearson correlation coefficient ρ is formulated as

ρ ¼
P

tðIt � �ItÞðI0t � �I0tÞ
ðNt � 1Þσtσ’t

ð10Þ

where�It areσt are themeanandSDof It , respectively.�I
0
t andσ

0
t are themean

and SD of I0t , respectively. Nt is the time channel number.
SNRis obtainedbycomputing the ratioof summedsquaredmagnitude

of the input or output x-y-t stacks, ISIG to that of the noise:

SNR ¼ 20log10
RSSðISIGÞ

RSSðISIG � IPRÞ
ð11Þ

where IPR is the photon-rich reference. RSS is the root-sum-of-squares:

RSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x;y;t
jIj2

r
ð12Þ

FSC (normalized cross-correlation dependent on spatial frequency)
measurements37 were calculated according to

FSCðrjÞ ¼
P

r2rj F1ðrÞ � F2ðrÞ*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r2rj F

2
1ðrÞ �

P
r2rj F

2
2ðrÞ

q ð13Þ

whereF1 andF2 are the 3DFourier transforms of the two x-y-t stacks and rj
is the jth frequency bin. Correlations were computed on the Fourier shells,
and were restricted that are fully contained within the image. The value of
FSC(rj) for each spatial frequency rj ranges from +1 to −1. When these
values are close to 1, it signifies that the consistency of the two reconstructed
structures is good, indicating a high level of reliability in the obtained
structures.

Statistics and reproducibility
The sample sizes, as well as the statistical analyses encompassingmean, SD,
and significant differences, were outlined in both figure legends and the
accompanying text for each experiment.Within the Tukey box andwhisker
plots, the boxes denoted the upper and lower quartiles, with the line inside
the box indicating the median. The lower whisker extended to the first data
point greater than the lower quartileminus 1.5 times the interquartile range,
while the upper whisker extended to the last data point less than the upper
quartile plus 1.5 times the interquartile range. In the violin plots, three black
lines denoted quartile positions, with the solid line representing themedian.
Additionally, p values indicating statistical differences were positioned
above the data, and representative frameswere thoughtfully presented in the
figures, bearing similar conclusions to other frames.

Code availability
The deepnetworkmodel used in this work is adapted fromBasicVSR29 with
the modifications and customized parameters described in Methods. The
repository including Python codes for creating sub-stacks for network
training is publicly available at https://github.com/shenblin/SparseFLIM.
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Data availability
Themain data supporting the findings of this study are available within the
paper and its Supplementary Information. The training and testing data for
reproduction are publicly available at https://doi.org/10.5281/zenodo.
10800599. All data used in this study are available from the correspond-
ing author upon reasonable request.
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