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Enzymes play a pivotal role in orchestrating complex cellular responses to external stimuli and
environmental changes through signal transduction pathways. Despite their crucial roles, measuring
enzyme activities is typically indirect and performed on a smaller scale, unlike protein abundance
measured by high-throughput proteomics.Moreover, it is challenging to derive the activity of enzymes
from proteome-wide post-translational modification (PTM) profiling data. To address this challenge,
we introduce enzyme activity inference with structural equation modeling under the JUMP umbrella
(JUMPsem), a novel computational tool designed to infer enzyme activity usingPTMprofiling data.We
demonstrate that the JUMPsem program enables estimating kinase activities using
phosphoproteome data, ubiquitin E3 ligase activities from the ubiquitinome, and histone
acetyltransferase (HAT) activities based on the acetylome. In addition, JUMPsem is capable of
establishing novel enzyme-substrate relationships through searching motif sequences. JUMPsem
outperforms widely used kinase activity tools, such as IKAP and KSEA, in terms of the number of
kinases and the computational speed. The JUMPsemprogram is scalable and publicly available as an
open-source R package and user-friendly web-based R/Shiny app. Collectively, JUMPsem provides
an improved tool for inferring protein enzyme activities, potentially facilitating targeted drug
development.

Protein enzymes are crucial in regulating cellular function, orchestrating
activities through intricate signal transduction pathways1. Dysregulation in
enzyme activity has been implicated in numerous complex human diseases,
such as cancer, diabetes, and neurodegeneration2–4. Given their central role
in disease pathways, several groups of enzymes, including protein kinases,
have emerged as the primary targets for cancer drugs5–7.However, responses
to the drugs can vary significantly among individual patients, underscoring
the necessity for accurate measurement of enzyme activities. Traditionally,
enzyme activities have been primarily characterized through substrate
events and assessed via small-scale in vitro experiments8,9. With advance-
ments in high-throughput mass spectrometry (MS)-based proteomics,
large-scale proteome profiling has become a powerful tool for measuring
post-translational modification (PTM) events and understanding signal
transduction pathways in diseases10,11. For instance, these studies identified
19,947 relationships of kinase-phosphorylated substrates in human,mouse,

and rat12, 3556 relationships of ligase-ubiquitinated substrates in human,
mouse, and rat13, and 503 human relationships of histone acetyltransferases
(HAT)-acetylated substrate14 on a large scale. Despite these advancements,
the analysis of PTM profiling data remains challenging due to the lack of
effective tools for inferring the activities of enzymes, such as protein kinases,
E3 ubiquitin ligases, and HATs.

To address the challenges, several tools have been developed to derive
activities for protein kinases using phosphoproteomics data. However, no
tools are currently available for E3 ubiquitin ligases and HATs. These tools
can be broadly categorized into three main types based on their underlying
algorithms: enrichment-based methods, clustering algorithms, and
machine-learningmethods. Enrichment-basedmethods, includingGSEA15,
KSEA16, KEA17, and VIPER18, predict kinase activity by leveraging kinase-
substrate interactions obtained from public databases (e.g., PhosphoSite-
Plus). While a major limitation of these methods is their reliance on prior
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knowledge of kinase-substrate relationships in databases, some extensions
have been developed that use unbiased, fully data-driven approaches. These
include the reverse-engineering of regulatory models from experimental
proteomics data19 and even from expression profiles using ARACNe and
VIPER18,20.However, amajor limitation of thesemethods is their reliance on
prior knowledge of kinase-substrate relationships in databases. Clustering
algorithms (e.g., CLUE) group phosphoproteomics data into clusters based
on similar spatio-temporal kinetics of the phosphosites followed by an
enrichment test. However, these methods often incorporate potential
‘noise’, such as low-abundance phosphopeptides and weak correlation
between kinase-substrate relationships. Machine-learning methods (e.g.,
IKAP) attempt to globally fit a model of kinase activity and affinity to the
phosphoproteomics data. However, these methods may face challenges in
achieving a global optimum solution, and the derived activities from the
model can vary with each computation.

Structural equation modeling (SEM) has proven to be a powerful
method and is extensively employed for analyzing biological networks in
genomics21. However, its application in proteomics, particularly for enzyme
activity inference, remains largely unexplored. In contrast to existing tools
for inferring protein enzyme activities, SEM offers several advantages.
Firstly, it enables the inference of latent variables, such as protein enzyme
activities, which cannot be directly measured. Secondly, SEM accounts for
the interactions among enzymes, aligning closely with the inherent com-
plexity of biological systems. Lastly, it incorporates measurement errors in
all observed variables, such as an abundance of phosphopeptides in phos-
phoproteome experiments. This is especially true in MS-based PTM
profiling data, where measurements inherently include errors and imper-
fections arising from biological and experimental variations.

In this study, we aim to develop a computational tool of JUMPsem for
inferring the activities of protein enzymes. The program infers enzyme
activities based on enzyme-substrate relations and PTM profiling data. We
then apply the JUMPsem tool to analyze kinase activities using phospho-
proteome data, E3 ligase activities using the ubiquitinome, and HAT
activities using the acetylome. To assess its performance, we compare
JUMPsem with two widely used programs, IKAP and KSEA, for protein
kinase activity. Another feature of the JUMPsem program is its ability to
incorporate sequence motifs, significantly enhancing the identification of
enzyme-substrate relationships. The JUMPsem program is made publicly

available as an open-sourceRpackage, alongwith a user-friendlyweb-based
R/Shiny application.

Results
Design and implementation of the JUMPsem program
We developed JUMPsem, a software tool specifically designed to infer
protein enzyme activity using MS-based PTM profiling data (Fig. 1). The
JUMPsemprogram comprises three major components: (i) construction of
enzyme-substrate relationships, (ii) inference of enzyme activity through a
structural equationmodeling algorithm, and (iii) output and comparison of
enzymeactivity. Theprogram takes aquantitative table ofmodifiedpeptides
from PTM profiling studies as input, which can include analyses of phos-
phoproteome, ubiquitinome, or acetylome.Outputs fromJUMPsemconsist
of a table containing inferred enzyme activities and a second table con-
taining the affinities between protein enzymes and their substrates (Sup-
plementary Fig. S1).

The quantitative table of PTMpeptides can be generated by identifying
peptides via database search, filtering PTMpeptides at a user-specified false
discovery rate (FDR), and quantifying PTM peptides from either labeled or
label-free PTM profiling data. If the corresponding whole proteome data is
available, JUMPsem provides an option for normalizing the measured
expression levels of PTM peptides relative to the corresponding changes in
protein abundance. This normalization allows the determination of changes
in PTM state independent of variations at the protein level (Supplementary
Fig. S2). In the case of phosphoproteome analysis, the JUMPsem program
initiates the process by extracting kinase-substrate relationship tables from
public databases, such as the PhosphoSitePlus (PSP) database12. Subse-
quently, the program constructs an adjacency matrix for those kinase-
substrate relationships with detected phosphopeptides identified in the
quantitative phosphoproteomics data. The adjacency matrix can be
expanded to include kinase-substrate relationships derived from motif
searches, which increases the depth of analyzed kinases (Supplemen-
tary Fig. S3).

The JUMPsem program uses the SEM algorithm to calculate enzyme
activity, implemented through the lavaan R package22. The core of its
computation lies in the “sem” function, which fits the model by applying
maximum likelihood estimation to determine the parameters. Both
the adjacencymatrix and PTMabundance table are used for the estimation.
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Fig. 1 | Schematic diagram of the JUMPsem pipeline. a Construction of enzyme-
substrate relationships and discovery of novel enzyme-substrate relationships through
motif search. Two approaches are employed: (1) generation of enzyme-substrate rela-
tionships froman existing database, indicated by solid lines in thediagram, and (2)motif

searches to predict new enzyme-substrate interactions, denoted by dashed lines. The
adjacency matrix and quantitative proteomic data are used to infer kinase activity.
b Inferring enzymeactivityusinga structural equationmodeling (SEM)algorithm. cThe
output of enzyme activities generated by the JUMPsem pipeline.
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The outputs generated by the JUMPsem include the enzyme activity and
the affinity coefficient (or connection strength) of each PTM site,
representing the estimated effective connectivity with the corresponding
enzyme.

Applications of JUMPsem to estimate kinase activity using
mouse phosphoproteomic data
We first applied the JUMPsem program to estimate protein kinase activity
using the phosphoproteomic data derived from two mouse high-grade
glioma (HGG)xenograftmodels drivenbymutated receptor tyrosine kinase
(RTK) oncogenes, platelet-derived growth factor receptor alpha (PDGFRA)
and fusion genes of theneurotrophic tyrosine receptor kinase 1 (NTRK1), as
well as from normal controls (CTRL)23. Using 45,574 unique phospho-
peptides quantified at the peptide FDR of <1%, the JUMPsem program
detected a total of 324 substrates with phosphosites that can be found in the
PSP database. The JUMPsem program estimated the activity of 67 protein
kinases using 177 substrates. By comparing kinase-substrate relationships
withoutmotif-assisted prediction, themotif prediction strategy, on average,
increases 14.7% (572/3896) kinase-substrate relationships (Fig. 2a). For
example, SIK1 kinase has two substrates (CRTC3 and PDE4D) with three
sites being found in the phsophositePlus database. With the motif-assisted
function, we found two additional substrates (HMGA2 and NEFL). As
expected, these two additional substrates showed a consistent trend, indi-
cating thatmotif-assisted function selects biologicallymeaningful substrates
instead of random assignment (Fig. 2b).

Our analysis revealed significant alterations in the activity of 33 protein
kinases between PDGFRAmice andCTRL are shared both from JUMPsem
withoutmotif assisted and IKAP, and 23 kinases betweenNTRK1mice and
CTRL are shared from these two tools (Fig. 2c). JUMPsem with motif
assisted can alternatively infer 28 kinases compared with IKAP (Fig. 2d).
These altered kinases were significantly enriched (FDR < 0.01) in cancer-
related pathways (Supplementary Data S1a–d), including pathways asso-
ciated with the checkpoint, and pathways in cancer and glioma. Compared
to our previous analysis conducted using the IKAP program, we found a
high degree of consistency in the majority of identified pathways between
the IKAP and JUMPsem. Motif-assisted strategy allows for the uncovering
of previously unknown kinase-substrate relationships, thereby enabling the
estimation of the activity of additional kinases. By applying this strategy to
the HGG phosphoproteomic data, we further revealed several kinases, such
asMAPK7, STK4,DAPK1, CAMK4,MYLK, PAK2, PAK3, and ILK, which
were not identified in the previous IKAP analysis. Many of these kinases
were implicated in cancer-related pathways, including MAPK and ErbB
pathways (Fig. 2e), exhibiting activity alterations without corresponding
changes at the protein level (Fig. 2f). This motif-assisted prediction strategy
enhances the scope of kinase activity analysis.

Comparisonof JUMPsemwith other programsapplied tohuman
phosphoproteomic data
To assess the performance of JUMPsem, we compared the performance of
JUMPsem with IKAP and KSEA, two widely used programs developed for
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Fig. 2 | Kinase motif-assisted enhancement of kinase-substrate relationship
identification. a Heatmaps display the kinase activity profiles derived from
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high-grade glioma (HGG) xenograftmodels, PDGFRA andNTRK1, contrastedwith
normal cortex controls. b Heatmap illustrating the example SIK1 substrate abun-
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kinase activity estimation, using a human phosphoproteomic dataset. The
phosphoproteomic data were generated from the P31/Fuj and Kasumi-1
acute myeloid leukemia (AML) cell lines24. P31/Fuj cells are deficient in
PTEN (phosphatase and tensin homolog), whereas Kasumi-1 cells have
wild-type PTEN, which is resistant to multiple drugs25. The dataset was
originally used to estimate the activity of protein kinases using the KSEA
program.Utilizing a total of 4129phosphorylatedpeptides quantified across
the cell lines, we estimated the activity of protein kinases using JUMPsem,
IKAP, and KSEA (Fig. 3a). When comparing the results from IKAP,
JUMPsem revealed a cluster that shows a similar kinase activity pattern
observed between P31/Fuj and Kasumi-1 cell lines. In addition, JUMPsem
identified two unique clusters of kinase activity (Clusters 1 and 2). With a
significance threshold set at a p-value < 0.05 and an absolute fold change
greater than 1,we identified 75up-regulated and 31 down-regulated kinases
in activity between the P31/Fuj and Kasumi-1 cells (Fig. 3b; Supplementary
Data S2). For instance, PRKCA exhibited a notable 7.9-fold decrease in
activity in Kasumi-1 compared to P31/Fuj cells. These kinases with differ-
ential activity were enriched in the pathways, such as glioma (e.g.,

MAP2K2), Toll-like receptor signaling (e.g.,MAP2K2 andMAP2K4), acute
myeloid (e.g., MAP2K2) (Fig. 3c, d and Supplementary Data S3a, b).

Performance evaluation of JUMPsem using phosphoproteomic
benchmark datasets
To evaluate the performance of JUMPsem, we conducted a comprehensive
analysis using benchmark data from two previously published studies26,27,
which included 16 phosphoproteomic datasets covering a total of 31 con-
ditions (Supplementary Data S4). We assessed the performance by com-
paring the precision of JUMPsem and IKAP across various threshold
cutoffs. Briefly, for each dataset and condition, we first processed the
phosphoproteome, generated a kinase-substrate relationship table, and
identified the target kinase (Supplementary Fig. S5a). The average kinase
activity was then calculated across all replicates, and the rank of the target
kinase was recorded among all inferred kinases for each dataset (Supple-
mentary Fig. S5b). A true positive was defined as a target kinase whose rank
was below the threshold cutoff. Precision was finally calculated for perfor-
mance comparison, which was defined as the ratio of true positives to the
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total number of true and false positives. Overall, our analysis demonstrated
that JUMPsem slightly outperformed IKAP in terms of precision (Supple-
mentary Fig. S5c).

Inference of activities of E3 ubiquitin ligases and histone
acetyltransferases
We next sought to infer the activities of E3 ubiquitin ligases from ubiquiti-
nomic data using the JUMPsem program. The ubiquitinomic data were
previously generated from cells under various conditions: unstressed, heat-
stressed, or arsenite-stressed, in the presence or absence of 0.5 μM bortezo-
mib, a proteasome inhibitor28. The ubiquitinomic data were generated by the
tandemmass tag (TMT) strategy from samples in response to a 60-min heat
stress and following 2 h of recovery, quantifying 16,525 unique ubiquitin-
modified peptides, corresponding to 4892 ubiquitinated proteins. The Ubi-
Browser database29, which contains a total of 1599 ubiquitinated substrate
proteins, corresponding to 408humanE3 enzymes,was used to construct the
relationship table of E3 ubiquitin ligases and substrates. The JUMPsem
programfound161E3ubiquitin ligases and4892unique substrateproteins in
the database (Fig. 4a). Our findings revealed that 124 unique ubiquitin ligases
exhibited significant alterations in their activity between the heat-shock
conditions (HS) and the control condition (Ctrl), as determinedby a t-test (p-

value < 0.05), with 80 showing differences betweenHS andCtrl, 105 between
HS andCtrl with bortezomib treated (SupplementaryData S5). For example,
three ligases (i.e., TRIM28, TRIM13, and TRIP12) were among the ligases
upregulated in both HS and Recovery stress conditions compared to the
control with bortezomib treated (Fig. 4b). In contrast, two ligases, MKRN1
and TRIM25, displayed a decrease in activity in heat shock with proteasome
inhibitor bortezomib (i.e., HS_Bortezomib and Recovery_Bortezomib)
compared the control, respectively (Fig. 4b). The ligase activity showed
consistency with substrate abundance. For example, TRIP12, especially after
bortezomib treatment, a consistent increase in both substrate abundance and
ligase activity in the HS and Recovery_Bortezomib groups compared to the
control condition (Fig. 4c). To estimate the activity of histone acetyl-
transferases (HATs), TMT10 quantification techniques for global acetylation
profiling, luminal and basal subtype breast cancer xenograft tissue samples
were homogenized, lysed, and digested30. A total of 4180 Kac peptides cor-
respond to 3653 Kac sites, and 1804 Kac proteins were quantified. These
acetylated proteins were mapped to 6 HATs in the compendium of protein
lysine acetylation (CPLA) database, curated for lysine-acetylated substrates
with their sites14 (Fig. 4d). The JUMPsem detected three HATs, including
KAT2A, GTF3C4, and MGEA5, showed activities as inhibitors between
luminal and basal xenograft samples.
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of E3 ubiquitin ligases across cells subjected to no stress, heat stress, or arsenite stress,
with and without proteasome inhibition (0.5 μM bortezomib), as indicated by

previously generated ubiquitinomic data. b Heatmap of five E3 ligases exhibiting
altered activities across five stress conditions. c Heatmap depicting consistent
expression level changes in three substrates of the TRIP12 ligase. d Heatmap
representing the activities of histone acetyltransferases in various conditions.
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Modular and scalable R package with shiny web application
JUMPsem is a modular and scalable package, consisting of distinct compo-
nents designed to process specific types of PTM profiling data. This modular
design allows for the future expansionof JUMPsem to incorporate otherPTM
data, such asmethylation profiles. To streamline analysis and visualize results,
we have developed a companion R/Shiny application (Fig. 5) that integrates
seamlessly with the JUMPsemRpackage. This web-based JUMPsemR/shiny
application can be broadly categorized into three primary steps: loading the
raw files, optionally configuring group parameters, and exploring and visua-
lizing kinase analysis. For more comprehensive information and step-by-step
guidance, the package vignettes and documentation are available online at the
application website (https://jumpsem.shinyapps.io/JUMPsem/).

Discussion
Recent advancements inmass spectrometry-based proteomics technologies
have enabled us to profile large-scale PTM data. The resulting PTM pro-
filing data are instrumental in unraveling complex signal transduction
processes and enzyme activities. Despite the wealth of PTMdata generated,
the interpretation remains challenging due to a dearth of tools specifically
designed to handle and make sense of this complexity. Addressing this
critical gap, our study introduces JUMPsem, an innovative computational
tool that is capable of analyzing large-scale PTM datasets by facilitating the
inference of enzyme activity. The JUMPsem program outperforms existing
widely used tools, such as IKAP and KSEA, in terms of the number of
enzymes it can analyze and its computational speed. JUMPsem is an
effective tool for enzyme activity inference, available as an open-source R
package and as an R shiny webtool.

One significant advantageof the JUMPsemprogramoverexisting tools
for predicting enzyme activity is its integrated motif search strategy. This
strategy substantially broadens the potential kinase-substrate interactions
that can be identified, going beyond the recorded entries in the PSP data-
base. Despite the fact that proteomics technology is able to detect thousands
of modified peptides in a single experiment, a mere fraction of themodified

peptides is cataloged in the public database. For example, less than 10% of
the quantifiedphosphopeptides in anMS-based experiment are represented
in the PSP database. Consequently, a vast portion of the data remains
underutilized for activity estimation. The JUMPsem program tackles this
limitation by augmenting its motif search strategy, thereby extending the
detectable range of kinase-substrate relationships beyond the confines of
existing databases. This enhanced strategy permits JUMPsem to leverage a
more significant segment of the phosphoproteomics data, thus facilitating a
more comprehensive analysis of cellular signaling pathways.

Another advantage of the JUMPsem program lies in its utilization of
the SEM algorithm, which handles potential measurement errors present in
all observed variables. This is particularly important in MS-based phos-
phoproteomics, where the measurement of modified peptides from large-
scale PTM profiling data contains inherent uncertainties and is susceptible
to various errors, including quantification measuring errors. In addition, a
modifiedpeptide could be incorrectly assigned to a spectrumandamodified
site can bemisassigned to an adjacent site due tomissing informative ions in
the spectrum. By accounting for these uncertainties, JUMPsem provides a
more robust and reliable estimation of enzyme activities, reflecting the
complex reality of biological data.

One limitationof thecurrent JUMPsemprogramis itsdesign for inferring
theactivityof individualkinaseswithoutconsidering the interactionofdifferent
enzymes within complex signaling networks. These interactions could be
incorporated into the SEM model. Most existing computational tools,
including the current versionof JUMPsem, are tailored to single kinases,which
can introduce biases in activity estimation. This bias arises because changes in
substrate abundancemaybe due to the influence of co-active enzymepartners.
For instance,fluctuations in the substrate levelsof akinasemightbe the resultof
actionsbyotherkinases.Furthermore, thePTMlandscapecanbe influencedby
avarietyof factors, includingkinases relocatingwithin thecell, interactionswith
other proteins, or competition with de-activation enzymes (e.g., the dynamic
between phosphatases and kinases). Such complexities could lead to incorrect
estimation of the enzyme activity.

Fig. 5 | JUMPsem R/Shiny web-based platform. The JUMPsem platform workflow encompasses three primary steps: importing data and configuring group parameters,
performing JUMPsem analysis, and visualizing enzyme activities.
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In summary, we introduce the JUMPsem program, an innovative tool
designed for inferringprotein enzymeactivity fromPTMprofiling data.The
modular and scalable JUMPsempackage, coupledwith its user-friendlyweb
application, makes it a valuable tool for inferring enzyme activity. We have
successfully demonstrated the application of JUMPsem to three types of
proteomic data—phosphoproteomic, ubiquitomic, and acetylomic—iden-
tifying and quantifying enzyme activities, as well as substrate affinities. The
utility of JUMPsem in estimating enzyme activity and elucidating cellular
signaling pathways marks it as an indispensable tool in the field.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
We processed various public proteomics datasets for our tool-developing
analysis,with theexampledatasets compiled in the software.These include: the
mouse phosphoproteomics dataset from GSE114331; the human phospho-
proteomics dataset from Casado et al., available at https://www.mcponline.
org/cms/10.1074/mcp.M110.003079/attachment/0541070f-4c56-4031-b0d7-
4df51630e974/mmc1.zip; ubiquitinomic data available from the https://www.
science.org/doi/suppl/10.1126/science.abc3593/suppl_file/abc3593_tables8.
xlsx; acetylome data available from https://www.mcponline.org/cms/10.1074/
mcp.O114.047555/attachment/3b37fd01-8309-488a-a143-162ab83b68f2/
mmc1.zip.Additionally,weutilizedproteomics enzyme-substrate relationship
libraries downloaded from PhosphoSitePlus at https://www.phosphosite.org/
staticDownloads, UbiBrowser 2.0 at http://ubibrowser.bio-it.cn/ubibrowser_
v3/home/download and CPLA 1.0 at http://cpla.biocuckoo.org. All the pro-
cessed datasets generated in our study aremade available and can be accessed
at https://github.com/Wanglab-UTHSC/JUMPsem/tree/main/data. Source
data are provided with this paper.

Code availability
The source code of JUMPsem can be accessed at https://github.com/
Wanglab-UTHSC/JUMPsem. The RShiny version code can be accessed at
https://github.com/Wanglab-UTHSC/JUMPsem_web. All main figures
with related tables and codes are also publicly available in the Zenodo
repository at https://doi.org/10.5281/zenodo.1461084931.
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