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Multiple strategies association revealed
functional candidate FASN gene for fatty
acid composition in cattle
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Fatty acid composition (FA) is an important indicator of meat quality in beef cattle. We investigated
potential functional candidate genes for FA in beef cattle by integrating genomic and transcriptomic
dataset through multiple strategies. In this study, we observed 65 SNPs overlapping with five
candidate genes (CCDC57, FASN,HDAC11, ALG14, and ZMAT4) using two steps association based
on the imputed sequencing variants. Usingmultiple traits GWAS,we further identified three significant
SNPs located in the upstream of FASN and one SNP (chr19:50779529) was embedded in FASN. Of
those, two SNPs were further identified as the cis-eQTL based on transcriptomic analysis of muscle
tissues. Moreover, the knockdown of FASN yielded a significant reduction in intracellular triglyceride
content in preadipocytes and impeded lipid droplet accumulation in adipocytes. RNA-seq analysis of
preadipocytes with FASN interference revealed that the differentially expressed genes were enriched
in cell differentiation and lipid metabolic pathway. Our study underscored the indispensable role of
FASN in orchestrating adipocyte differentiation, and fatty acid metabolism. The integrative analysis
with multiple strategies may contribute to the understanding of the genetic architecture of FA in farm
animals.

Fatty acid composition (FA) is crucial for normal dailymetabolism and can
be obtained from a variety of foods1. FA in beef products can affect meat
taste andflavor,which are essential indicators ofmeat quality2. Considerable
emphasis has been placed on the nutritional value of meat products and
their implications for human health3. FA is generally known as lowly or
moderately heritable with complex genetic architecture in cattle4,5, thus it’s
feasible to enhance the selection of animals with benefit FA through the
identification of key candidate genes and genomic selection6–9. Genome-
wide association studies (GWAS) using single nucleotide polymorphisms
(SNP) arrays have explored the candidate variants for FA and identified
candidate genes in various cattle populations6,10–15. Simultaneously, several
studies evaluated the accuracies of genomic prediction of FA using SNP
arrays in different cattle populations16–19.

GWAS have benefited from the rapid development of next-generation
sequencing. Whole genome sequence analysis can help to elucidate genetic
mechanisms of important traits, as it includes either the causal variants that

underlie phenotypic variations or the polymorphisms with high linkage
disequilibrium (LD) with the causal variants20. Association studies using
whole genome sequence variants can provide more opportunities to pin-
point the causative mutations and improve the efficiency of genomic
selection20,21. Based on the imputed SNPs,many studies have been carried in
GWAS for important traits in dairy cattle, including mammary gland
morphology22, fertility, calving traits23–25, and milk related traits26–28.

Recently, numerous evidences suggest that SNPs linked with complex
traits in farm animals correspond to expression quantitative trait loci
(eQTL)29, and integrating eQTL information can helps refine putatively
causal variants30,31. Wang et al. integrated gene-based GWASs with cis-
expression quantitative trait locus data and identified two genes (PON3 and
PRIM2) for carcass yield32.Higgins et al. integrated the analysis of eQTL and
GWAS for average daily gain, residual feed intake, and feed intake traits, and
identified twenty-four potential functional cis-eQTL associated with these
traits33. Furthermore, a recent study performed a colocalization analysis of

1State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China. 2Northern
Agriculture and Livestock Husbandry Technology Innovation Center, Hohhot, China. 3USDA Agricultural Research Service, Fort Keogh Livestock and Range
Research Laboratory, Miles City, MT, USA. 4Institute of Animal Husbandry and Veterinary Research, Anhui Academy of Agricultural Sciences, Hefei, China. 5Key
laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, China. 6Jilin Academy of Agricultural Science,
Changchun, China. 7These authors contributed equally: Bo Zhu, Tianzhen Wang. e-mail: xulingyang@caas.cn; lijunya@caas.cn

Communications Biology |           (2025) 8:208 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-07604-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-07604-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-07604-z&domain=pdf
http://orcid.org/0000-0002-8463-6668
http://orcid.org/0000-0002-8463-6668
http://orcid.org/0000-0002-8463-6668
http://orcid.org/0000-0002-8463-6668
http://orcid.org/0000-0002-8463-6668
http://orcid.org/0000-0001-8051-050X
http://orcid.org/0000-0001-8051-050X
http://orcid.org/0000-0001-8051-050X
http://orcid.org/0000-0001-8051-050X
http://orcid.org/0000-0001-8051-050X
mailto:xulingyang@caas.cn
mailto:lijunya@caas.cn
www.nature.com/commsbio


cis-eQTL and GWAS loci using the Cattle Genotype Tissue Expression
(CattleGTEx) atlas, and they observed the top GWAS signals were mostly
enriched in the regulatory QTLs in their respective tissues34,35.

In ourprevious study,we identified 42 genomic regions associatedwith
FA in beef cattle, and several candidate genes including ELOVL5, FASN,
CASP2, and TG were also been implicated in fatty acid biosynthesis19.
However, the identificationof additional candidate variants using sequence-
level variants and their molecular regulation underlying FA is not fully
explored in cattle. In this study,we carriedoutmultiple strategies association
study using the imputed sequencing data in cattle, and identified three
candidate genes (FASN, CCDC57 and ZMAT4) for FAs by integrating
GWAS and eQTL analyses. Finally, the functional validation of candidate
gene FASN in preadipocytes suggest its potential role in regulation of FA
metabolism.

Results
Imputation reliability
In this study, approximately ten billion paired-end reads with 2952 Gbwere
obtained for the 44 animals based on IlluminaHiSeq 2500 instruments.We
observed similar imputation reliability using BEAGLE and Minimac for
genotype imputation. While the imputation reliability of BEAGLE was
more stable than Minimac with different minor allele frequency (MAF)
(Supplementary Fig. 1), therefor we select BEAGLE imputation results for
the subsequently GWAS analysis. We performed imputation based on
14,345,738 imputed variants from the 44 sequenced individuals using
BEAGLE v4.1. Imputation from SNP chip to sequence data was performed
across autosomes. We evaluated the imputation reliability using allelic R2,
which predicts the imputation reliability per SNP. We observed 9,318,254
(~65%) SNPs with average allelic R2 > 0.3, of which 5,902,681 SNPs
(~41.1%) were found with R2 > 0.8 from the Bovine HD to sequence data
(Supplementary Table 1). The average imputation reliabilities ranged from
0.87 forMAF (>0.05) to 0.93 forMAF(>0.45) (SupplementaryTable 2). The
reliability displays slight differences across bovine autosome chromosomes
(BTA), sugguesting the imputation reliability may be affected by the size of
chromosome and decreased by structural variation36,37 (Supplementary
Fig. 2). Next, we evaluated the impact of MAF on the reliability of impu-
tation. Our analysis revealed that the imputation reliability increased with
the MAF increase (Supplementary Table 3).

Annotation of whole genome sequence variants
We annotated a total of ~14million sequence variants into 20 functional
classes.Weobserved extremely largenumbers of variants in intron (42.18%)
and intergenic (48.79%) classes, while missense variant and synonymous
variant classes represented 0.43% and 0.44% of the total variants, respec-
tively.We also investigated the causal variants and their potential functional
impacts, in terms of variants with a direct impact on proteins (e.g., missense
or frame-shift mutations). We found 61,844 missense variants, while
87,300 synonymous variants were identified based on genomic variant
annotation and functional effect prediction tool (SNPeff).

Association of fatty acid traits
We carried out GWAS for FA using imputed WGS variants. After SNP
quality control and filtering based on imputation reliability allelic
R2 > 0.3, around 9.3 million SNPs remained for subsequent analyses. We
utilized genomic control approach to correct for possible population
stratification using GRAMMAR-GC approach. A total of 7515 significant
SNPs with imputation relatabilities >0.78 were identified for 14 FAs in
the step I association using the imputed sequence data (Supplementary
Data 1). Among them, 1864 SNPs located in BTA1-BTA6, BTA8-BTA22
and BTA24-BTA29 were identified for SFAs (C14:0, C20:0, C22:0 and
C24:0), 1750 SNPs (BTA1-BTA9, BTA11-BTA21, BTA24 and BTA26-
BTA29) for MFAs (C14:1, C16:1, C20:1), 3901 SNPs (BTA1-BTA21 and
BTA24-BTA29) for PFAs (C18:3 n-6, C20:2, C20:4, C22:5:n-3, C22:6:n-3,
C18:2 t-9c-11, and C18:2 t-12c-10). The manhattan plot of SFAs (C14:0
and C20:0), MFAs (C14:1, C20:1) and PFAs (C18:3 n-6, and C20:4) were

shown in Supplementary Fig. 3, Supplementary Fig. 4 and Supplemen-
tary Fig. 5, respectively. Also, the quantile-quantile (Q-Q) plot of GWAS
for these traits demonstrated the goodness of fit of the observed to
expected significance values for studied traits after applying possible
population stratification in GRAMMAR-GC approach. We then per-
formed gene annotation using 15 kb windows size around candidate
SNPs based on Ensembl release 110 databases (genome-build ARS-
UCD1.2). In total, 2723 SNPs were newly found and overlapped with 122
unique genes. We next conducted the step II GWAS analysis based on
the results from step I. Regions with a size of 0.5Mb on both sides of the
genome-wide significant SNPs were analyzed. In total, 462,376 SNPs
were used in step II GWAS.

For the step II analysis, we identified 93 candidate SNPs (P > 9.39E-8)
for 11 FAs includingC14:0, C14:1, C18:3 n-6, C18:2 t-9c-11,C18:2 t-12c-10,
C20:0, C20:1, C20:2, C20:4, C24:0, C22:6 n-3 (Supplementary Table 4).
Among these 122 unique genes identified in step I, we observed 65 SNPs
were overlapped with five candidate genes (CCDC57, FASN, HDAC11,
ALG14 and ZMAT4). Notably, we found two peaks overlapping with FASN
andZMAT4, one significant peakwith 6 SNPs located at 50.7MbonBTA19
associated with C14:0. Another peak with 24 SNPs at 35.8Mb on BTA27
were detected showing significant association with both C20:0 and C20:1
(Supplementary Table 4).

Multiple traits GWAS
We next conducted multiple traits GWAS analysis using MTAG for the
correlated fatty acid traits and obtained 85 significant SNPs for two group
fatty acid traits based on the computed summary statistics (Supplementary
Table 5). For the group of C14:0, C14:1, C18:1 and C18:2, 16 significant
SNPs (including 14 novel loci) were found associated with C14:0 (Fig. 1B),
which were located within or near genes CCDC57and FASN. Among these
16 SNPs, 2 SNPs were also identified significant with C14:0 in step I GWAS
(Fig. 1A). For the group of C20:0, C20:1, C24:0 and C24:0, 55 SNPs and 14
SNPs were identified significantly associated with C20:0 and C20:1,
respectively (SupplementaryFig. 6).Among these significant SNPs, 10 SNPs
were both found significantly associated with C20:0 and C20:1, and these
10 significant SNPs were located within genes ZNF514, PROM2, MFAP5,
GSTA5 and ACOX3.

Candidate common SNPs and missense variants
Among 65 significant SNPs in step II GWAS, we found that 49 SNPs
were associated with five genes including CCDC57, FASN, HDAC11,
ALG14 and ZMAT4 in fatty acid C14:0, C20:0, C20:1, C20:2, C18:2 t-9c-
11, C20:4 and C18:2 t-12c-10. Notably, we found one candidate region
located at 50.7Mb on BTA19 within the CCDC57 and FASN for C14:0
(Supplementary Fig. 7A). This region includes seven significant SNPs,
which contributes to around 6% of the phenotypic variance. In addition,
we identified 25 SNPs within the ZMAT4 for C20:0 (Supplementary
Fig. 7B), which collectively account for about 7% of phenotypic variance.
Moreover, we detected 12 candidate SNPs, which were annotated as
missense variants that cause amino acid changes in proteins. These SNPs
were found to overlap with several genes, including BCAS1, MYBL1,
TANGO6,MCMDC2, DCT, FSHB, CSF2RB and RRS1. For example, one
SNP (chr13:81410289) with effect of p.Ala414Thr/c.1240 G > A was
located in BCAS1, which was previously found to be related to dietary n-3
polyunsaturated fatty acids38. The BCAS1 gene also has been reported to
be associated with fertility and production traits39,40. Another SNP at
chr5:75336714 (p.Glu26Asp/c.78 G > T) was detected in CSF2RB, a gene
previously found to be associated with milk related traits, environmental
adaptation and acclimation41,42.

eQTL mapping
The distribution of cis-eQTL on autosomes and QQ plots are shown in
Fig. 2A, B. In total, we identified 27,644 cis-eQTL (Fig. 2A, B) associated
with 3639 ensembl genes (FDR < 0.05). For the intersection analysis of SNPs
between eQTL mapping analysis and fatty acid compositions association,
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we found8 shared cis-eQTLwith step I association study, 4 shared cis-eQTL
with step II association study, and 4 shared cis-eQTL with multiple traits
GWAS analysis (Fig. 2C). For the intersection analysis of genes regulating
the expression, we found 34 shared genes with step I association study and
7 shared genes with multiple traits GWAS analysis. We found two shared
genes (FASN and CCDC57) among three gene sets (Fig. 2D).

QTL and cis-eQTL analysis of C14:0
Using multiple strategy associations for C14:0 based on the imputed
sequencing data, we detected the top four significant SNPs including
chr19:50766239, chr19:50766772, chr19:50767356 and chr19:50779529.
Genotype-phenotype correlation among the four SNPs were plotted
(Fig. 3A–D). These four SNPs were highly significant with the corrected
phenotype using the Kruskal-Wallis (P < 0.01). Three SNPs (at
50,766,239 bp, 50,766,772 bp and 50,767,356) were located at upstream of
FASN, and one SNP (at 50,779,529) located in the intron region of FASN
(Fig. 3E). We founded three haplotype blocks among these four SNPs,
including two haplotype blocks in FASN, and one haplotype block upstream
of FASN. Notably, we founded that three SNPs (50,766,239 bp, 50,766,772 bp
and 50,767,356) were in the same haplotype block (Fig. 3F). To investigate
the relationship between four SNPs and the FASN gene expression level, we
plotted the genotype against gene expression. We found that two SNPs (at
50,766,239 bp and 50,779,529 bp) were significantly corrected with the gene
expression level (P= 0.019 and P= 0.018) (Fig. 4A and D).

Functional validation of FASN
To investigate the functional attributes of FASN, we discerned a substantial
upregulation in the mRNA expression levels of FASN during preadipocyte
differentiation, as illustrated in Fig. 5A. In this study, we strategically
designed three small interfering RNAs (siRNAs) targeting exons across
FASN transcript isoforms. Among these, si-FASN-1, distinguished by its
heightened efficiency (Fig. 5B), was selected for subsequent analysis.

We examined gene expression differences of DGAT2, AGPAT6,
ATGL, and PLIN2 between the interference FASN group and the control
group, which are related to lipid metabolism according to previous
researches. Remarkably, AGPAT6 exhibited a significant upregulation,
whereas ATGL and PLIN2 experienced marked downregulation in the
interference group (Fig. 5C). Concurrently, alterations in triglyceride
content within preadipocytes were notably diminished after FASN
interference (Fig. 5D).

Focusing on the fatty acid composition after the interference of FASN,
our analysis revealed a significant increase in SFAs (C13:0, C14:0, C15:0,
C16:0, C17:0, C20:0, and C24:0) and MFAs and PFAs (C14:1, C17:1, and
trans-C18:2) in the interference group,while PFAs (C20:2,C20:4, C20:5 and
C22:6) were significantly decreased (Fig. 5E, F). Additionally, Oil Red O
staining revealed a significant reduction in the number of lipid droplets for
the interference group (Supplementary Fig. 8A, B).

To comprehensively elucidate the metabolic pathways in which FASN
are implicated, we conducted transcriptome sequencing on preadipocyte
cells post FASN interference. The interference group exhibited distinct
separation from the control group, as depicted in Fig. 6A. The notable
upregulation after post-interference was observed in genes such as FEM1A,
ESRP2, PARVB, STX1A, and RGMA, while CCNE2, FXN, PDCD6, PLIN2,
FST and TSPAN12 were significantly downregulated (Fig. 6B). Enriched
GeneOntology (GO) terms encompassed positive regulation of response to
stimulus, cell differentiation, and lipid metabolic processes (Fig. 6C). We
further generated the pathway based on prior knowledge from Kyoto
Encyclopedia of Genes and Genomes (KEGG), the regulation of candidate
genes including FASN, SCD, CCDC57, ZMAT4 and ELOVL5 in fatty acid
metabolism were shown in Supplementary Fig. 9.

Discussion
Recent advances in the sequencing technologies have offered more oppor-
tunities to identify candidate variants in livestock, especially for cattle43–45.

Fig. 1 | Genome-wide manhattan plots for single trait GWAS and multiple
traits GWAS. AGenome-widemanhattan plots showing P-values of association for
saturated fatty acids (C14:0) using GRAMMAR-GC approach, expressed as
-log10(P-value). BManhattan plots of MTAG results for saturated fatty acids

(C14:0). The x axis shows chromosomal position, and the y axis shows significance
on a –log10 scale. The active line marks the threshold for genome-wide significance
(P = 5.37 × 10–9) for GWAS and MTAG results.
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Genomic variants can be imputed by leveraging shared haplotype blocks
between reference and target individuals, and then these imputed variants
can be used in association studies of economically important traits and to
predict the genetic potential based on a larger number of candidate variants20.

Several studies have suggested that increasing the number of
sequenced populations and individuals in the reference panel can
improve imputation accuracy36,42. We observed a higher imputation
accuracy compared with reports using different reference or admixed
populations, which could be due to the fact that the selected sequenced
individuals were representative from the same population with similar
LD pattern46. Further, several studies revealed that variants occurring in
splice site and synonymous classes are some of the most significant47,48.
Our study detected only 12 missense variants that may cause amino acid
changes in proteins. This finding may be explained by the potentially
imputation errors present in the missense classes47 and the current poorly
annotation state of the bovine genome49.

Among the 7515 significant SNPs associated with 14 fatty acids
identified in step I GWAS. Of those, 68 SNPs that can be found in the
Bovine HD panel, and 2723 SNPs were newly detected from the imputed

SNP dataset. As for step II GWAS, a total of 93 candidate SNPs were
identified, while 77 of them were found embedded within candidate genes.
Among them, we identified one SNP within ALG14 at 48.4Mb on
chr3 showing significant association with multiple traits (C20:0, C20:2,
C20:4, C18:2 t-9c-11 and C18:2 t-12c-10). We also detected one region
from 50.66 Mb to 50.77Mb for C14:0 overlapping with CCDC57 and
FASN. FASN has been identified to be associated with milk fatty acids in
Dutch Holstein-Friesian cows, Norwegian Red and Chinese Holstein
cattle50–53. Another region ranging from 35.54Mb to 35.93Mb was iden-
tified for both C20:0 and C21:0, this region was found that overlapping
with ZMAT4. In addition, two SNPs at chr19:50779529 and
chr22:58427069 were identified for C14:0 within FASN and HDAC11.
Moreover, many studies had detected candidate variants within FASN
that were related to fatty acid composition54–57 and milk fat content in
cattle58,59. Using the multiple trait GWAS, we further detected four sig-
nificant SNPs (BTA19:50766239, BTA19:50766772, BTA19:50767356 and
BTA19:50779529) associated with FASN, which have not been identified
before. Notably, we observed one candidate region with strong LD located
at 50.7Mb on BTA19 within FASN for C14:0.

Fig. 2 | Compare the results ofGWASand eQTLmapping.ATheCMplot of eQTL,
chromosomes are shown in different colors.BTheQQplot of cis-eQTL.CThe venn
plot among significant SNPs for step I GWAS, step II GWAS, multiple traits GWAS

using MTAG and cis-eQTL mapping. DThe venn plot among gene sets identified
from step I GWAS, multiple traits GWAS using mtag and cis-eQTL mapping.
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Previous studies also revealed that FASN was an important candidate
gene for fatty acids in various cattle breed including Japanese Black cattle60,
Fleckvieh61 and Qinchuan cattle62. FASN is a multifunctional enzyme that
plays a central role in mammalian lipid metabolism and de novo bio-
synthesis of long-chain fatty acids63,64. Our multiple strategies association
also provided sufficient evidence that FASN was an important candidate
gene for FAs.

Our subsequent analysis further validated the function of FASN on the
regulation of FA in our population.Notably, interferencewithFASN yielded
a significant reduction in intracellular triglyceride content in preadipocytes
and impeded lipid droplet accumulation in adipocytes, which was con-
sistent with previous study in pre-adipocytes of duck65, granulosa cells of

geese66, mammary epithelial cells of cattle67. Moreover, as fatty acids are the
building blocks of essential lipids, FASN has emerged as a unique oncologic
target in cancer treatment68,69. FASN inhibitors have been studied pre-
clinically and beginning to transition to human trials70. In our study, 7 genes
have been reported associated with lipid metabolism using differential
expression gene analysis in preadipocytes, including ESRP271, PARVB72,
CCNE273, PDCD674, PLIN275, FXN76 and FST77. The differential expression
genes implicated key pathways, particularly those associated with cellular
developmental processes, cell differentiation, and lipid metabolism. These
findings further suggest the indispensable role of FASN in orchestrating
cellular growth and development, with a specific emphasis on the intricate
realm of fatty acid metabolism.

Fig. 3 | The most significant four SNPs for C14:0. A The box plot displays the
correlation between genotype at the chr19:50766239 and the corrected saturated
fatty acids (C14:0). B The box plot displays the correlation between genotype at the
chr19:50766772 and the corrected saturated fatty acids (C14:0). C The box plot
displays the correlation between genotype at the chr19:50767356 and the saturated

fatty acids (C14:0).D The box plot displays the correlation between genotype at the
chr19:50779529 and the corrected Saturated fatty acids (C14:0). The Kruskal-Wallis
was used to test the significance. EAllelic information of sequence variants in FASN
and its upstream. F The haplotype block map for the significant SNPs upstream and
embedded in the FASN gene using the Haploview program.
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Methods
Animals and genotypes
A total of 723 animals were genotyped by Bovine HD Beadchip, and these
cattle (Huaxi cattle) were originated from Ulgai, Inner Mongolia of China,
and then moved to JinweifurenCo., Ltd for fattening after weaning. All these
cattle were raised with the same feeding and management conditions. More
detailed description of breeding and management has been described
previously19,78,79. We used liftover software to determine the physical coor-
dinates of the Illumina BovineHD BeadChip markers according to the ARS-
UCD1.2 genome assembly. Physical coordinates of 693,441 autosomes SNPs
were available for the ARS-UCD1.2 assembly. Then the quality control of
genotype data was conducted using PLINK (v1.9)19. SNPs were selected for
the analyses based on minor allele frequency > 0.05, proportion of missing
genotypes <0.05, Hardy-Weinberg equilibrium P < 10-6. Moreover, 38 indi-
viduals with >10% missing genotypes were excluded. After quality control,
the final data consisted of 685 individuals and 595,715 autosomal SNPs.

Fatty acid composition
All individuals were processed for market at around 20months of age. We
strictly follow the guidelines set forth by the institutional meat purchase

specifications for fresh beef, meticulously measuring key traits during the
slaughter process. The meat samples extraction and measurements of FA
have been described in our previous publication19. In the current study,
we analyzed a total of 21 individual FAs including six saturated fatty
acids (SFA), four monounsaturated fatty acids (MFA), and eleven
polyunsaturated fatty acids (PFA) in 685 animals. Each FA was quanti-
fied as a weight of percentage of total fatty acids according to our pre-
vious analysis19.

Sequencing
To avoid related individuals, 44 individuals were selected for whole genome
sequencing (WGS)with the lowest level of co-relationship (according to the
pedigree and identity by descent value estimated using PLINKv1.980). DNA
was isolated from blood specimens employing the TIANamp Blood DNA
Kit manufactured by Tiangen Biotech Company Limited. Subsequently,
DNA samples with an A260/280 ratio falling between 1.8 and 2.0 were
chosen for subsequent analyses. The high-quality DNA was utilized for
library construction. For each individual, two paired-end libraries were
created, with each library featuring a read length of 2×150 base pairs. WGS
was carried out using Illumina Hiseq 2500 instruments, manufactured by

Fig. 4 | The correlation between most significant four SNPs genotype and the
FASN gene expression. A The box plot displays the correlation between the FASN
gene expression and the genotype of chr19:50766239. B The box plot displays the
correlation between the FASN gene expression and the genotype of chr19:50766772.

C The box plot displays the correlation between the FASN gene expression and the
genotype of chr19:50767356. D The box plot displays the correlation between the
FASN gene expression and the genotype of chr19:50779529.
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Fig. 6 | The differentially expressed genes and GO enrichment of si-NC and si-FASN in preadipocytes. A Principal component analysis diagram of the two groups which
transfected with si-NC and si-FASN. B The volcano plot from si-NC and si-FASN. C GO enrichment of differentially expressed genes.

Fig. 5 | The expression of FASN gene during pre-
adipocyte differentiation and its effects on lipid
metabolism-related genes and FAs of pre-
adipocytes. A The induced differentiation of pre-
adipocyte into maturing adipocyte and the
expression level of FASN during the induced dif-
ferentiation of preadipocyte into maturing adipo-
cyte. B Interference efficiency of different siRNA for
bovine FASN. C The expression level of lipid meta-
bolism gene after transfected with si-NC or si-FASN.
D Preadipocytes triglyceride content alteration after
transfected with si-NC or si-FASN. E Preadipocytes
saturated fatty acid composition alteration after
transfected with si-NC or si-FASN. F Preadipocytes
unsaturated fatty acid composition alteration after
transfected with si-NC or si-FASN. The statistical
significance of differences was assessed using
Welch’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001.
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Illumina Inc. in San Diego, California, USA, achieving a coverage depth of
25X. The protocols provided by the manufacturer were strictly followed for
all procedures undertaken. In pursuit of high-quality data, we employed a
rigorous filtering approach on the raw sequence data. This entailed the
exclusion of readsmeeting any of the following criteria: (1) containing>10%
unknown bases, (2) displaying adapter sequences, and (3) exhibiting over
50% low-quality bases.

Mapping short reads and variant calling
Uponcompletionof datafiltering, sequencealignmentwasperformedusing
bwa-0.7.8 version, employing the parameters (mem -t 4 -k 32 -M). The
ARS-UCD1.2 genome assembly was sourced from the UCSC website
(http://genome.ucsc.edu/). To streamline subsequent analysis, SAM files
were transformed intoBAMfiles and subsequently sorted andmergedusing
SAMtools. We proceeded with variant calling by utilizing SAMtools81.
Variants failing to meet the thresholds of an overall quality (QUAL) score
below 20, amapping quality (MQ) score below 30, or a read depth below 10
were excluded. Moreover, we incorporated proximity filters, which entailed
removing variants with a lowerQUAL score if theywere within 3 base pairs
of another variant. For subsequent analysis, only biallelic SNPs were
included. Additionally, the SNPs were filtered using PLINK, employing
three specific criteria: --geno 0.05 --hwe 0.00001 --maf 0.005. After quality
control, the total number of sequence markers was 14,345,738 across
autosomes.

Imputation of sequence variants
We performed imputation from SNP array to sequence using
BEAGLE v4.182 with default parameter settings. The algorithm imple-
mented in BEAGLE v4.1 uses population-based information to infer hap-
lotypes and missing genotypes. Imputed sequence variant genotypes were
assigned numerical codes: 0 for homozygous, 1 for heterozygous, and 2 for
alternative homozygous animals. The reference data underwent pre-
phasing using BEAGLE v4.182. We also estimated imputation reliability
using Minimac with default settings83. SNPs with MAF > 0.05 and impu-
tation reliability (R2) > 0.3 were used in GWAS study, and the remain
markers was 9,318,254.

Evaluation of the imputation reliability
The overall reliability of imputation was measured by the mean correlation
between in silico imputed and true (sequenced) genotypes (rIMP,SEQ) across
the autosomes analyzed.TheallelicR2measureprovidedbyBEAGLEgivesa
good measurement of the imputation accuracy. Specifically, for each
chromosome, we calculated the correlation between the imputed and the
true genotype. These values were averaged to obtain the overall R2. In
addition, we grouped the imputed sequence variants into ten classes with
respect to their MAF (0.05–0.075, 0.075–0.1, 0.1–0.15, 0.15–0.2, 0.2–0.25,
0.25–0.3, 0.3–0.35, 0.35–0.4, 0.4–0.45 and 0.45–0.5) in the reference
population. The R2 for each MAF class were measured by their average
values across chromosomes.

Association analyses for FA using GRAMMAR
Step I: Association tests usingwhole-genome imputedSNP.We first
performed step I association tests between 9.3 million imputed sequence
variants and FA using GRAMMAR-GC method implemented in an R
packageGenABEL84,85. Themethod accounts for population stratification
and covariance structure of individuals inferred from all SNP. Bonferroni
corrected threshold of 5.37E-9 (P = 0.05/9318254) was adopted for the
top 5% genome-wide significance. Imputed variants with P-values
<5.37E-9 were considered as associated casual variants.

Step II: Association studies for the targeted genomic regions. We
next conducted step II association tests for the candidate genomic regions
detected in step I. These regions were defined as 0.5 Mb window sizes at
both sides of the genome-wide significant SNP for FA identified in step I,

which included 462,376 SNPs. The association between these SNPs and
FA was also assessed using GRAMMAR-GC method. The most sig-
nificant SNPs were identified based on a Bonferroni-corrected p-value
threshold of 1.08E-7.

In the current study, the proportion of phenotypic variance explained
by each significant SNP was estimated as follows86:

var %ð Þ ¼ 2pqβ2

varðPÞ

where, p andq are the allele frequencies,β is the estimated allele substitution
effect that was calculated by GenABEL package, and varðPÞ is the pheno-
typic variance.

Multi-trait analysis using summary statistics
To improve the statistical power of GWASs for medium and high genetic
correlation fatty acid traits, themulti-trait analysis ofGWAS (MTAG87) was
used to joint analysis of multiple traits with the imputedWGS data. Herein,
single trait GWAS summary statistics for fatty acids was considered as an
input, bivariate LD score regression was employed to compensate for an
overlap of the cohorts described by different summary statistics. In the
result,MTAGgenerated trait-specific effect estimates for eachSNPand took
about half an hour in TS860M5 with 8-socket mission critical server based
on Intel Xeon Platinum 8260 processors.

Variant annotation and analyses
We utilized the Variant Effect Predictor (VEP)88 to annotate all sequence
variants, offering detailed insights into their functional implications and
potential effects on genes or proteins. Moreover, VEP provided predictions
regarding the impact of the variant through SIFT. We estimated the fre-
quency of the sequence variants of interest within our cattle population.
Linkage disequilibrium between variants was assessed using the “--ld”
function in PLINK. Additionally, we conducted in silico prediction of the
impact of missense variants using SNPeff 89.

Cis-eQTL mapping and gene annotation
RNA extraction was carried out using frozen longissimus dorsi muscle
samples obtained from 120 individuals. The process of RNA preparation
and sequencing were followed byWang et al. 32. RNA-seq dataset were used
to detect cis-eQTL.We analyzed only those genes that exhibited expression
in muscle tissue for >25%. For each of the 16,472 genes meeting this cri-
terion, we tested the association of expression levels (measured in Tran-
scripts Per Million - TPM) with all 9.3million imputed sequence variants
located on the same chromosome as the respective gene, utilizing the R
packageMatrixEQTL90. The cis-eQTLwasmapped by considering variants
locatedwithin onemegabase (Mb) up- or downstream of the gene locus. To
assess whether a cis-eQTLwas enrichedwith significant SNPs fromGWAS,
we examined the overlap of cis-eQTL within a 50 kilobase (kb) interval
upstream and downstream of significant SNPs, with a false discovery rate
(FDR) < 0.0532.

Preadipocyte culture and differentiation
Preadipocytes culture andwere prepared according to previous study91, The
cells were plated into cell culture dishes filled with DMEM/F12 medium
(Gibco,Waltham,MA,USA), supplementedwith 10%FBS (Invitrogen, San
Diego, GA, USA), and 1% Penicillin-Streptomycin. Subsequently, the cells
were incubated in ahumidified atmospherewith 5%CO2at 37°C.When the
cell density reached 80%, preadipocyte differentiation medium I, com-
prising 5 µg/ml insulin, 0.5mM IBMX, 1 µM DEX, 1% Penicillin-Strepto-
mycin, 10% FBS, and DMEM/F-12, was utilized to initiate differentiation.
After 24 h, the induced differentiation II solution, containing 5 µg/ml
insulin, 1% Penicillin-Streptomycin, 10% FBS, and DMEM/F-12, was
replaced to sustain the induction of differentiation. The induced differ-
entiation II solution was changed every 2 days.
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Chemical synthesis siRNA, transfection
Three sets of complementary pairs of siRNAs (si-FASN-1, si-FASN-2 and
si-FASN-3) oligos, designed to suppress the expression of bovine FASN,
along with control siRNA (si-NC) oligos, were synthesized by Guangzhou
RiboBio Co., Ltd. The specific sequences of the siRNAs can be found in
Supplementary Table 6. When the cells reached 80–90% confluence,
transfection with siRNAs or si-NC (100 nM) was carried out using the
Lipofectin 3000 transfection kit (Invitrogen, SanDiego,GA,USA) forFASN
interference experiments.

RNA extraction and qRT-PCR analysis
The total RNA of preadipocyte was extracted using the Trizol Reagent
method (Invitrogen, Carlsbad, CA,USA). cDNAwas synthesized from1 μg
of total RNA using the PrimeScript RT Reagent Kit with gDNA Eraser
(Perfect Real Time) following the manufacturer’s instructions (TaKaRa
Biotech Co. Ltd, Tokyo, Japan). The primers for qPCR analysis were pro-
vided in Supplementary Table 7 and synthesized by Sangon Biotech
(Shanghai) Co.,Ltd. mRNA expression was assessed using the KAPA
SYBR® FAST qPCR Master Mix (2X) Kit in the QuantStudio 7 Flex Real-
Time PCR system (Life Technologies, Carlsbad, CA, USA). The 2-ΔΔCt

method was used to calculate the relative abundance of target mRNAs. To
assess the statistical significance of differences between the two groups, we
employed a two-tailed t-test assuming unequal variances (Welch’s t-test).

RNA sequencing
The raw RNA-seq data were sequenced by the Beijing Genomics Institute
(BGI, Shenzhen, PR China), with each group comprising three replicates
(Interference group and control group). Subsequently, clean RNA reads
were aligned to the ARS-UCD1.2 reference genome using TopHat92. Cuf-
flinks was employed to quantify both gene and transcript expression93.
Transcript and gene expression levels in each sample were estimated using
fragments per kilobase of transcript permillionmapped reads (FPKM). The
criteria for selecting Differentially Expressed Genes (DEG)were defined as
follows: an absolute log2(FPKM_interference/FPKM_control) > 1, with a
corresponding P-value < 0.05. Here, FPKM_interference/FPKM_control
represents the average ratio, and the P-value was calculated using a T-test.
Group differences were visualized through Principal Component Analysis
(PCA) packages. Volcano plots, implemented in the ggpubr package, were
employed to illustrate the distribution of DEGs. Finally, a functional Gene
Ontology term enrichment analysis of the DEGs was carried out using
g:Profile94.

Triglyceride assay and gas chromatography analysis of
fatty acids
The cells were culture in 60mm well, then transfected with si-FASN or si-
NC when the cells at 80–90% confluence. After 48 h, the cells were har-
vested, and the triglyceride content was quantified using an enzymatic tri-
glyceride assay kit following the manufacturer’s instructions provided by
Applygen Technologies Inc., China. Protein quantification was carried out
using the BCA assay protein quantification kit following themanufacturer’s
protocol provided by Applygen Technologies Inc., China. The final total
triglyceride content was calibrated in µg/mg protein concentration. Fatty
acid extraction and analysiswere performedbypreviousmethods95. Relative
proportions of fatty acids were determined as percentages of the total peak
area. The statistical significance of differences was assessed using Welch’s
t-test.

Oil red O staining
The cells were cultured in 12-well plates. When the cells reached 80%
confluence, they were transfected with si-FASN or si-NC, followed by
induction with differentiation medium for 6 days. Following the experi-
mental treatment, the cells were washed three times with 1×PBS and then
fixed for 30minwith 4%paraformaldehyde. Then cells were stained using a
Modified Oil Red O Staining Kit (Beyotime Institute of Biotechnology,
Jiangsu, China) according to the manufacturer’s instructions.

Computing environment
All computational analyses were conducted utilizing the National Center
of Beef Cattle Genetic Evaluation (NCBCGE) cluster, situated at the
Institute of Animal Science, Chinese Academy of Agricultural Sciences.
The Inspur Tiansuo Server was used for the computation, which included
8-core Intel® Xeon® processors rated at 2.2 GHz with 2.3 TB of random-
access memory.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data presented in the study are deposited in the NCBI repository
(https://www.ncbi.nlm.nih.gov/), accession number PRJNA721166, and
DRYAD repository (https://datadryad.org/stash), accession number
10.5061/dryad.4qc06.

Code availability
We used the following software in the analysis: R (v4.1.3), Plink (v 1.09),
GenABEL(v1.8-0), Samtools (v1.9), Beagle (v4.1), Minimac (v2.0.1), BWA
(v0.7.8), MTAG (v1.0.7), SnpEff (v4.3t), MatrixEQTL (v2.0.12), TopHat
(v2.1.1), g:profile, All codes can be available upon reasonable request.
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