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Peptide-based drugs often fail in clinical trials due to their toxicity or hemolytic activity against red
blood cells (RBCs). Existing methods predict hemolytic peptides but not the concentration (HC50)
required to lyse50%ofRBCs. This studydevelops classificationand regressionmodels to identify and
quantify hemolytic activity. Thesemodels train on 1926peptideswith experimentally determinedHC50

against mammalian RBCs. Analysis indicates that hydrophobic and positively charged residues were
associated with higher hemolytic activity. Among classification models, including machine learning
(ML), quantumML, and protein languagemodels, a hybrid model combining random forest (RF) and a
motif-based approach achieves the highest area under the receiver operating characteristic curve
(AUROC) of 0.921. Regression models achieve a Pearson correlation coefficient (R) of 0.739 and a
coefficient of determination (R²) of 0.543. These models outperform existing methods and are
implemented in HemoPI2, aweb-based platform and standalone software for designing peptideswith
desired HC50 values (http://webs.iiitd.edu.in/raghava/hemopi2/).

The process of developing and testing drugs is intricate, expensive, time-
intensive, and laden with risks. Drug development encompasses several
stages, which can be categorized into various phases, including disease-
related genomics, identification and validation of targets, lead discovery
and optimization, preclinical testing, and clinical trials1. In the past few
decades, peptide-based drugs have boomed in drug discovery and
development because of their advantages over traditional drugs,
including greater efficacy, specificity, high tissue penetration ability, low
immunogenicity, ease of modification, reduced risk of drug-drug inter-
actions as their degradation product is amino acids, and low cost2–5. This
trend is evidenced by the approval of 31 peptides as drugs by the Food
and Drug Administration (FDA) between 2016 and 2023, alongside 370
new drugs approved during the same period, accounting for more than
8% of the total6–8. Additionally, there are over 200 peptides currently in
clinical development and approximately 600 peptides undergoing pre-
clinical studies, further highlighting the growing importance and utili-
zation of peptides in pharmaceutical research and development9,10. The
primary causes of failure of peptide-based drugs during preclinical trials
are due to unacceptable safety and efficacy, which are mainly caused by
absorption, distribution, metabolism, excretion, and toxicity (ADMET)
profiles11. Thus, there is a need to effectively screen and enhance the
ADMET properties of drugs at an early stage. Many pharmaceutical
companies have adopted a “fail early, fail cheap” strategy to address these
challenges12. Adopting an in-silico strategy for predicting ADMET
properties has gained considerable traction due to its cost-saving

advantages and ability to provide high-throughput alternatives to tradi-
tional experimental measurement methods13.

Toxicity, a major obstacle in designing peptide-based therapeutics,
encompasses three primary categories: cytotoxicity, hemotoxicity respon-
sible for lysing RBCs, and immunotoxicity allergenicity14–21. Hemolytic
concentration (HC50) serves as a common indicator of peptide toxicity,
representing the concentration at which 50% lysis of normal human ery-
throcytes occurs under physiological conditions22. Peptides rich in positively
charged amino acids can bind to the erythrocyte’s negatively charged lipid
bilayer, leading to membrane disintegration and allowing water and solute
molecules to enter the cell. This influx increases the osmotic gradient inside
the erythrocyte, resulting in cell swelling and ultimately bursting23. Several
computational methods have been developed for predicting hemolytic
peptides in recent years24–26. Most of these methods were trained and tested
ondatasets derived fromadedicateddatabase of hemolytic peptides referred
as Hemolytik17. In 2016, Chaudhary et al. attempted to develop a machine
learning (ML)-based model and motif-based tool for predicting hemolytic
peptides called HemoPI24. Sung et al. utilized HemoPI, in conjunction with
other computational methods, to effectively filter out hemolytic anti-cancer
drugs27. Similarly, Catania et al.28 employed HemoPI to assess the hemo-
toxicity of anticancer peptides derived fromMediterranean Seagrass. These
studies highlight the critical importance of HemoPI, demonstrating its
utility from computational predictions to practical laboratory applications.
A method called HemoPred25, based on the RF model, was developed uti-
lizing the identical dataset employed in HemoPI. It incorporates a linear
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combination of amino acid composition (AAC) and dipeptide composition
(DPC) as features. HLPpred-Fuse29 proposed a two-layer prediction fra-
mework. They share the same positive dataset developed by Chaudhary
et al., while the negative dataset is sourced from the PEPred-SUITE
method30. By using the HemoPI dataset, Plisson et al.31 developed another
ML-based method that predicts the hemolytic nature of peptide sequences
using gradient-boosting classifiers. Their multivariate outlier detection
models led to the discovery of high-confidence non-hemolytic natural
antimicrobial peptides (AMPs), facilitated the de novo design of non-
hemolytic peptides, and provided guidelines for designing non-hemolytic
peptides. HemoPImod18 is a prediction model for chemically modified
hemolytic peptides. It utilizes a Random Forest (RF) model that integrates
various peptide features, including atom and diatom compositions, 2D and
3Ddescriptors, aswell asfingerprints.HAPPENN26 andHemoNet32 are two
neural network-based classifier models using the DBAASP and Hemolytik
databases for dataset construction. HAPPENN represents a state-of-the-art
model for predicting hemolytic activity, leveraging features selected via an
ensemble of RF model and support vector machines (SVMs). In the
HemoNet tool, SMILES-basedfingerprints are used as a feature so that it can
capture N/C terminal modification. Plisson et al.31 explored 14 binary
classifiers to predict hemolytic activity across three datasets developed by
Chaudhary et al. They utilized 56 sequence-based physicochemical
descriptors and employed an ML model called Extreme Gradient Boosting
Classifier (XGBC) to discover and design non-hemolytic peptides. In 2021,
Capecchi et al.33 introduced a recurrent neural network classifier to identify
membrane-disruptive amphiphilic antimicrobial peptides. Additionally,
they developed a model for designing short non-hemolytic antimicrobial
peptides, leveraging data sourced fromDBAASP. Ansari et al.34 developed a
recurrent neural network (Bi-LSTM) with concatenated amino acid fre-
quencies to predict whether a peptide is hemolytic. They utilized the
DBAASPv3 database to create their dataset, comprising 9316 positive
sequences (length range: 1–77) and negative sequences (length range:
1–190) in the training data. Salemet al.35 utilized transfer learning to address
the issue of small data and employed a protein language model (PLMs)
based on LLM (Large Language Model), employing a tool named AMP-
Deep. Perveen et al.36 introduced anML approach named Hemolytic-pred,
designed for predicting hemolytic proteins. The dataset used in thismethod
was collected from UniProtKB-SwissProt37, and it employs position and
composition-based features. Castillo-Mendieta et al.38 utilize network sci-
ence and data mining to analyze hemolytic peptides, creating scaffolds to
represent their chemical space and uncovering putative hemolytic motifs.
Zhuang et al.39 developed a tool employing the quantum support vector
machine (QSVM) to classify peptides as hemolytic or non-hemolytic, uti-
lizing the dataset from the HemoPI tool. A recently developed
PeptideBERT40 based approach for hemolytic peptide identification utilizes
the ProtBERT pre-trained transformer model featuring 12 attention heads
and 12 hidden layers. Several other computational tools have been devel-
oped for different types of toxicity. In Supplementary Table S1, we present a
comprehensive list of hemotoxicity predictionmethods.While themethods
mentioned above have contributed to advancing the discovery of potential
hemolytic peptides, further improvement remains necessary. This is pri-
marily because the datasets utilized in these methods are overly generalized
to all vertebrates. Moreover, none of these methods have the capability to
predict the HC50 value of peptides. It is important for drug development to
identify the peptide concentration at which any peptide exhibits significant
hemolytic activity.

To address challenges faced by the scientific community, we proposed
a method for predicting hemolytic peptides as well as HC50 value against
mammalian RBCs. The proposed method, HemoPI2, is trained and eval-
uated on experimentally validated 1926 hemolytic peptides. We have
developed various classificationmodels and regressionmodels usingML, as
well as PLMs. We have also developed ML-based models using word
embeddings extracted from LLMs. These models have undergone rigorous
benchmarking against independent dataset. OurHemoPI2 proposed in this
study is an improved version of HemoPI, which has been widely utilized by

the scientific community. Figure 1 provides a visual representation of the
algorithm and processes undertaken in the study.

Results
The dataset included peptide sequences with experimentally validated
hemolytic activity levels. We performed comprehensive analyses, including
compositional, positional, andmotif analyses, along with feature extraction
using the Pfeature tool. Feature vectors are utilized to study their correlation
withHC50 values and develop diverseMLmodels encompassing regression
and classification. In addition to traditional ML models, protein language
models (PLMs) were also implemented. Embeddings were extracted from
large language models (LLMs) and utilized as feature vectors in the ML
models. The predictive performance of thesemodels was evaluated using an
independent or unseen dataset, providing insights into their efficacy in
predicting peptide hemolytic activity.

Analysis of hemolytic peptides
Amino acid composition analysis. The investigation into the amino
acid composition of hemolytic and non-hemolytic peptides revealed
distinct patterns that underscore their functional differences. In the
comparative analysis shown in Fig. 2A, specific amino acid residues
Cysteine, Phenylalanine, Glycine, and Serine were identified as sig-
nificantly more abundant (p < 0.001) in hemolytic peptides, high-
lighting their dominant presence. These residues exhibited
significantly higher proportions within hemolytic peptides compared
to their non-hemolytic counterparts. Furthermore, the study noted
the presence of other residues, such as Lysine, Methionine, Aspar-
agine, and Tryptophan, albeit in lesser quantities, further distin-
guishing hemolytic peptides. Interestingly, the comparison extended
to the termini composition, where the N and C termini exhibited
almost identical overall compositions to the entire peptide shown in
Fig. 2B. However, disparities surfaced in the distribution of Pheny-
lalanine and Glycine, with elevated concentrations observed exclu-
sively at the N-terminal end. Conversely, the C-terminal region
exhibited an increased abundance of Asparagine, Glutamine,
Cysteine, and Tyrosine in hemolytic peptides. These findings high-
light the amino acid profiles that contribute to the hemolytic prop-
erties of peptides, offering insights into their molecular mechanisms
and potential applications in various biomedical contexts.

Positional analysis
During our analysis, we aimed to identify any potential preferences for spe-
cific amino acid residues at particular positions within the peptide sequence.
We constructed TSL for both hemolytic and non-hemolytic peptides, as
illustrated in Fig. 3. The TSL provides valuable insights into the relative
abundance of amino acid residues and their significancewithin the sequence.
Enriched residues are more prevalent at a given position in hemolytic pep-
tides compared to the non-hemolytic class, while depleted residues are more
prevalent at a given position in non-hemolytic peptides. Upon initial
examination of the TSL, we observed findings consistent with the amino acid
composition analysis: hemolytic peptides exhibited enrichment in hydro-
phobic residues and were predominantly depleted in positively charged
residues. Further scrutiny revealed position-specific enrichments. In the
N-terminal 15 residues (Fig. 3A), hemolytic peptides were enriched in
hydrophobic residues like Phenylalanine in position 1; Leucine in positions 2,
6, 8, and 12; Glycine in position 3; Isoleucine in position 5, and Proline in
position 15, while in non-hemolytic peptides Lysine is preferred at most
positions. Similarly, in the C-terminal 15 residues (Fig. 3B), amino acids such
asAlanine atposition1,Proline atposition5,Lysineat positions6and14, and
Arginine at positions 12 and 15 were more prevalent in hemolytic peptides,
while Lysine is preferred inmost positions but at positions 6 and14Alanine is
preferred in non-hemolytic peptides. These observations highlight the dif-
ferential distribution of amino acids along the peptide sequence and provide
valuable insights into the structural and functional characteristics of hemo-
lytic as well as non-hemolytic peptides.
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Fig. 2 | Representation of the average percentage composition of amino acid
residues in various parts of experimentally validated peptides. A Comparison of
average amino acid composition between hemolytic and non-hemolytic peptides.

B Comparison of average amino acid composition between N-terminal 15 residues,
and C-terminal 15 residues of hemolytic peptides.

Fig. 1 | Illustration of the comprehensive workflow adopted throughout this study.
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Motif analysis
Motif analysis was conducted to identify motifs present exclusively in
either hemolytic or non-hemolytic peptides. This analysis identifies
specific segments or patterns within peptides that contribute to their
hemolytic activity. Consequently, motif analysis not only enhances
prediction accuracy but also aids in identifying the precise motif or
region responsible for hemolysis. We selected only exclusive
motifs that appeared with a minimum frequency of 12. The top ten
motifs unique to hemolytic peptides include “CGET”, “CGETC”,
“HHIIGG”, “SAGKA”, “RLIR”, “GETC”, “TLLKKVLKA”, “GGLFS”,
“IGGLF” and “HRLIRR”. Conversely, the top ten motifs exclusive to
non-hemolytic peptides consist of “AKD”, “SKIK”, “DLA”, “LKHII”,
“HVQ”, “NKL”, “HRK”, “INKQ”, “KDLA” and “KINKQ”. Supple-
mentary Table S2 contains the full list of motifs. In addition, we
explored classification schemes like Koolman-Röhm and Betts-Russell,
which categorize amino acids based on their physicochemical prop-
erties, providing unique frameworks for amino acid classification.
The Koolman-Röhm41 scheme groups amino acids into categories such
as aliphatic, sulfur-containing, aromatic, neutral, acidic, basic, and
proline. In contrast, the Betts-Russell classification, developed by
Betts and Russell42, organizes amino acids into three main groups:
Polar (charged: positive and negative), Hydrophobic (aromatic and
aliphatic), and Small (tiny). By incorporating theseMERCI approaches
with the classification techniques, we enhanced the predictive
capabilities of our model. A detailed discussion of this hybrid classi-
fication model is provided under the heading “Hybrid Model for
Classification”.

Correlation analysis
Past research shows correlation analysis is crucial in predicting protein
functions, understanding disease mechanisms, and discovering drugs43. It
quantifies the strength and direction of relationships between variables,
highlighting key influencers and potential patterns. In Table 1, we have
highlighted the top features of AAC, DPC, and physico-chemical properties
that exhibit a correlation with the HC50 concentration of hemolytic peptides.
Features that exhibit a positive correlation with HC50 concentration of
hemolytic peptides indicate that as specific attributes (e.g., composition of
positively charged residues) increase, the HC50 value of hemolytic peptides
also rises, suggesting a reduction in hemolytic potency. On the other hand, a
negative correlation (e.g., the composition of neutral and hydrophobic resi-
dues) indicates that an increase in a feature’s value leads to a decrease in the
HC50 value, implying an increase in hemolytic potency. A comprehensive list
of correlation analyses of each feature is provided in Supplementary Table S3.

Classification models
Wedeveloped various classifiers using a combination ofML techniques and
PLMs. In order to develop a classification model, we employed a dataset
comprising 1926 distinct experimentally validated hemolytic peptides. We
assigned binary labels to differentiate between strong hemolytic (positive)
and weak hemolytic (negative) peptides. Our classification criteria cate-
gorized peptides with an HC50 of ≤100 μM as hemolytic.

Machine learning models
We developed various classifiers to classify high hemolytic peptides and
weak hemolytic peptides, including ET, SVM, XGBC, RF, MLPC, GB, DT,

Fig. 3 | This illustration presents TLS that depicts the residue preferences in hemolytic and non-hemolytic peptides. Logo A represents the first 15 residues of the N-
terminal, while Logo B represents the last 15 residues of the C-terminal.

Table 1 | Top single amino acid composition, di-peptide composition, and physico-chemical features correlated to the HC50
value of hemolytic peptides

Single amino acid composition Correlation Di-peptide composition Correlation Physico-chemical Features Correlation

Lysine (AAC_K) 0.214 Lysine-Lysine (DPC1_KK) 0.207 Positively charged residues 0.236

Arginine (AAC_R) 0.043 Isoleucine-Lysine DPC1_IK 0.191 Basic residues 0.236

Tryptophan (AAC_W) 0.018 Alanine-Lysine DPC1_AK 0.165 Hydrophilic residues 0.220

Alanine (AAC_A) 0.011 Leucine-Tyrosine DPC1_LY 0.143 Exposed 0.166

Tyrosine (AAC_Y) 0.010 Tyrosine-Lysine DPC1_YR 0.101 Helix 0.157

Proline (AAC_P) −0.075 Phenylalanine-Leucine DPC1_FL −0.088 Hydrophobic residues −0.154

Cysteine (AAC_C) −0.075 Valine-Leucine DPC1_VL −0.091 Buried residue −0.167

Serine (AAC_S) −0.092 Glycine-Glycine DPC1_GG −0.094 PCP_Z3 −0.204

Phenylalanine (AAC_F) −0.093 Leucine-Phenylalanine DPC1_LF −0.102 Neutral charged residues −0.233

Glycine (AAC_G) −0.102 Isoleucine-Glycine DPC1_IG −0.132 Neutral residues based on pH −0.233
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and LR. Initially, we calculated the features of the hemolytic peptides uti-
lizing the compositional-basedmodule of Pfeature. Additionally, molecular
weight and peptide lengthwere included as feature vector components. This
procedure yielded a comprehensive set of 1192 feature vectors for each
peptide.Once again, the tree-based classifiers outperformedother classifiers,
particularly RF. In Table 2, the performance was compared based on the
AUC using different features and evaluated on an independent dataset. RF
classifier achieved the best performance on the ALLCOMP excluding SOC
(1190 descriptors) with an AUC of 0.888, which is very close to the per-
formance on combined featuresAAC+DPC+ PCP (450descriptors)with
anAUCof 0.881,AAC+DPC (420 descriptors) with anAUCof 0.875, and
CeTD(189descriptors)with anAUCscore of 0.856.Thedetailed evaluation
metrics are provided in Supplementary Table S4.

Protein language models
Our study evaluated the performance of various PLMs in classifying
hemolytic peptides,measuredby the evaluationmetric. The resultshighlight
the effectiveness of different PLMs in accurately classifying hemolytic
peptides, with ProtBERT exhibiting particularly strong performance with
AUC 0.875. The varied AUC values provide insights into the relative
strengths of each model in our classification task, allowing for informed
model selection and optimization in future studies. Table 3 shows the
detailed performance of each model.

MLmodels based on word embeddings
Over the past decade, the application of language models in the field of
bioinformatics has seen a significant surge. A multitude of protein and
nucleotide languagemodels have been developedwith the aim of predicting
the function of biological macromolecules44–46. In this study, we employed
PLMs such as ESM-2 (with checkpoints: esm2_t36_3B_UR50D,
esm2_t33_650M_UR50D, and esm2_t6_8M_UR50D), ProtBERT, and

BioBERT to predict the hemolytic and non-hemolytic peptides. Given that
these models are not specifically tuned for any particular property of pep-
tides, we optimized the hyperparameters of these models on our dataset of
hemolytic peptides for classification tasks. Subsequently, these tunedmodels
were utilized to extract embeddings from hemolytic peptides. These
embeddings were then used as input for ML classification models.

We generated 2560, 1280, 320, 1024, and 767 embeddings fromESM2-
t36, ESM2-t33, ESM2-t6, ProtBERT, and BioBERT, respectively, for each
peptide. In the case of ProtBERT,we also employed a combination of afine-
tuned ProtBERT model with BiLSTM to extract high-quality embeddings.
These embeddings were used as features for developing ML models to
predict the hemolytic peptides. The ML classifiers, including ET, SVM,
XGB, RF,MLPC,GB, andDT,were trained to predict the hemolytic activity
of peptides. MLPC with ProtBERT embedding achieved maximum per-
formance with AUC 0.882 (see Table 4).

Quantum support vector machine
In this study, we utilize the Quantum Support Vector Machine (QSVM)
on features extracted using the pfeature method. To facilitate a com-
parison between the QSVM and classical SVMmodels, we also developed
various classical SVM models incorporating different kernels, including
linear, radial basis function, polynomial, and sigmoid. Among the var-
ious kernels used in QSVM, the linear kernel showed better performance.
Using AAC features, the QSVM achieved a peak AUC of 0.782, out-
performing most classical SVM models except for the RBF kernel (AUC
0.797). However, with DPC features, the classical SVM model demon-
strated superior performance. Similarly, for AAC+DPC and ALL-
COMP features, the QSVM’s performance fell below that of the classical
SVM models. These results suggest that QSVM performs better than
classical SVM when the feature count is low. The detailed performance
metrics from both quantum and classical kernels across different feature
sets on cross-validation and independent datasets are available in Sup-
plementary Table S5.

Hybrid model for classification
In order to boost the predictive power of our top-performing models, we
developed a hybrid strategy for classifying hemolytic peptides. Table 5
shows the best hybrid model’s performance on an independent dataset.
When combined with MERCI, traditional ML models outperformed fine-
tuned PLMs. Among the ML models, the RF model using ALLCOMP-ex
SOC features achieved the highest AUC at 0.921. For embedding-based
approaches, the Extra Trees (ET) model performed best with ESM2-t33
embeddings, reaching an AUC of 0.905. In the case of PLMs, the ESM2-t6
model achieved anAUCof 0.919, the highest among PLMs. Supplementary
Table S6 provides detailed metrics for these models.

Threshold optimization for model performance
Adjusting the threshold in a classification model is crucial for achieving
the desired balance between sensitivity (true positive rate) and specificity

Table 3 | Comprehensive performance analysis of PLMs on an
independent dataset

PLM Sp (%) Sn (%) Acc (%) MCC AUC

ESM2-t33 86.1 70.0 79.1 0.573 0.870

ESM2-t30 84.2 78.0 81.3 0.599 0.851

ESM2-t12 70.0 79.0 74.2 0.490 0.831

ESM2-t6 76.1 84.0 79.5 0.591 0.870

ProtBERT 84.9 73.7 80.0 0.602 0.875

BioBERT 63.7 80.5 71.5 0.474 0.800

Sn sensitivity,Sp specificity,Acc accuracy,MCCMatthews correlation coefficient,AUC area under
receiver operating characteristic, Bold values indicate the best-performing model.

Table 4 | Evaluation of ML classifiers’ performance utilizing
various PLM embedding sources on an independent dataset

Embedding
source

ML
classifier

Sp
(%)

Sn
(%)

Acc
(%)

MCC AUC

ESM2-t36 XGBC 86.0 74.9 80.8 0.614 0.869

ESM2-t33 ET 85.5 73.2 79.8 0.604 0.873

ESM2-t6 ET 73.2 84.5 79.3 0.583 0.857

ProtBERT MLPC 83.9 84.0 83.9 0.677 0.882

BioBERT MLPC 81.5 68.5 75.6 0.507 0.792

ProtBERT
+BiLSTM

ET 82.8 71.4 77.4 0.547 0.859

Sn sensitivity,Sp specificity,Acc accuracy,MCCMatthews correlation coefficient,AUC area under
receiver operating characteristic, Bold values indicate the best-performing model.

Table 2 | Evaluation performance metrics of RF classifier
model on independent dataset using various features derived
from Pfeature

Features Sp (%) Sn (%) Acc (%) MCC AUC

AAC 83.9 66.3 75.9 0.512 0.831

DPC 87.7 65.1 77.5 0.547 0.837

PCP 84.8 67.4 76.9 0.534 0.854

CeTD 86.7 72.0 80.1 0.597 0.856

AAC+DPC 74.9 85.5 80.6 0.609 0.875

AAC+DPC+CeTD 76.2 78.8 77.5 0.598 0.841

AAC+DPC+ PCP 73.7 85.0 79.8 0.623 0.881

ALLCOMP 74.9 83.9 80.1 0.610 0.878

ALLCOMP-ex SOC 76.5 86.9 82.1 0.640 0.888

Sn sensitivity,Sp specificity,Acc accuracy,MCCMatthews correlation coefficient,AUC area under
receiver operating characteristic, Bold values indicate the best-performing model.
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(false positive rate avoidance). The threshold represents the cutoff value for
the probability at which the model categorizes an instance as positive or
negative. As presented in SupplementaryTable S7, optimizing the threshold
for our best-performing RF model (ALLCOMP-ex SOC), with an AUC of
0.888, enables a tailored balance between high coverage and precise pre-
diction. Lower thresholds (e.g., 0.1) result in a higher rate of negative pre-
dictions, meaning the model captures all possible true positives (high
sensitivity) but sacrifices precision or positive predictive value. This
approach broadens coverage, identifyingmost cases but also allowingmore
falsepositives.Ontheotherhand, setting the thresholdhigh, close to1, raises
the rate of correctly predicted positives (high specificity and positive pre-
dictive value), but coverage narrows as fewer instances are classified as
positive. This trade-off means that for applications requiring higher sensi-
tivity (e.g., screening tests), lower thresholds are often preferred,
while applications needing high specificity might benefit from a higher
threshold.

Regression models
Initial investigations have suggested the feasibility of distinguishing hemo-
lytic peptides fromnon-hemolytic ones based on factors such as amino acid
composition, binary profiles, motifs, and physicochemical properties. Our
studyutilized several popularMLregressors to predict thehemolytic activity
of peptides using features derived from their primary sequences. The pre-
dictive models underwent training and testing via fivefold cross-validation
on the training dataset (80%),with thefinalmodels being evaluated using an

independent dataset (20%). We reported key statistical parameters,
including R, R2, MAE, and MSE.

ML regressors using Pfeature
In this study, we developed prediction models using a range of regressors,
including XGBR, RFR, GBR, ETR, DTR, ADBR, SVR, KNNR, and LR. The
various featuresweused for the regressionmodels are the sameas thoseused
for the classification models. This comprehensive approach ensures the
robustness and accuracy of our hemolytic activity prediction model. While
experimentingwith various categories of features and feature combinations,
tree-based regressors such as RFR and ETR consistently emerged as the top
performers among the various ML algorithms we evaluated. Detailed per-
formance of each model is provided in Supplementary Table S8. Although
the performanceof RFR slightly outshoneETR, the differencewasmarginal.
The performance of the RFR with different sets of features on an inde-
pendent dataset. The RFR demonstrated its superior performance when
employing the ALLCOMP excluding SPC (1167 descriptors), achieving a R
of 0.739 and an R2 value of 0.543.

MLmodels based on word embeddings
Word embeddings were generated using various checkpoints of ESM2
(ESM2-t36, ESM2-t33, ESM2-t6), ProtBERT, BioBERT, and ProtBERT+
BiLSTM, mirroring the approach adopted to develop classification models.
Thenumberof embeddings extractedwas 2560, 1280, 320, 1024, and767 for
ESM2-t36, ESM2-t33, ESM2-t6, ProtBERT, and BioBERT models, respec-
tively, consistent with that used in classification models. These embeddings
were used as features for developingML regressor models like XGBR, RFR,
GBR, ETR, DTR, ADBR, SVR, KNNR, LR, and MLPR to predict the HC50

peptides. Table 6 illustrates the performance of the top-performing ML
regressionmodel with the corresponding PLMs on an independent dataset,
utilizing embeddings derived from various language model architectures.
Oncemore, among theML regressors, tree-basedmethods like the EFR and
ETR consistently stood out as strong performers. ESM embeddings, parti-
cularly those generated by ESM2-t33, demonstrated the best performance,
especially with the Extra Trees Regressor achieving an R of 0.711 and an R2

of 0.495.

Model finalization
In our research, we constructed several regression and classificationmodels,
utilizing a diverse set of features derived from Pfeature. Additionally, we
incorporated word embeddings extracted from PLMs as input features. We
experimented with various combinations of these features to optimize our

Table 6 | EvaluationofML regressormodels constructedusing
word embeddings derived from PLMs on an independent
dataset

Embedding
source

ML model R R2 MAE MSE

ESM2-t36 ETR 0.706 0.486 0.808 1.105

ESM2-t33 ETR 0.711 0.495 0.786 1.084

ESM2-t6 ETR 0.677 0.452 0.820 1.177

ProtBERT RFR 0.410 0.115 1.076 1.407

BioBERT ETR 0.616 0.366 0.927 1.362

ProtBERT
+BiLSTM

RFR 0.646 0.449 0.825 1.265

R Pearson correlation coefficient, R2 coefficient of determination,MAE mean absolute error, MSE
mean squared error, Bold values indicate the best-performing model.

Table 5 | Performance of hybridmodel on independent dataset developed by combining best-performing classificationmodels
with MERCI

Model Threshold Sp (%) Sn (%) Acc (%) MCC AUC

ML RF
(ALLCOMP-ex SOC)

0.45 83.4 83.8 83.5 0.670 0.921

RF
(AAC+DPC+ PCP)

0.49 82.6 77.6 83.9 0.621 0.899

XGBC
(ESM2t36 embeddings)

0.47 84.0 80.8 82.9 0.658 0.900

ET
(ESM2t33 embeddings)

0.49 85.6 82.4 82.8 0.651 0.905

MLPC
(ProtBERT embeddings)

0.48 86.4 77.4 81.1 0.636 0.891

ET
(ESM2t6 embeddings)

0.51 87.7 76.9 82.4 0.646 0.902

PLM ESM2-t33 0.57 92.7 68.5 83.5 0.668 0.901

ESM2-t30 0.48 79.7 82.7 80.2 0.634 0.885

ESM2-t6 0.58 83.0 82.0 82.5 0.649 0.919

ProtBERT 0.44 65.9 90.3 79.0 0.585 0.871

Sn sensitivity, Sp specificity, Acc accuracy,MCC Matthews correlation coefficient, AUC area under receiver operating characteristic, Bold values indicate the best-performing model in ML and PLM.
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models. All developedmodels were ultimately evaluated on an independent
dataset, and their performanceswere compared. In our classificationmodels
developed using features extracted from Pfeature, the RF classifier achieved
anAUCof 0.888, and after combining these features withMERCI, theAUC
improved to 0.921. When embeddings were used as features to develop
machine learning classifiers, the performance was comparable to themodel
developed using Pfeature but did not outperform it in either case, before or
after combining withMERCI. Among the PLMs, ProtBERT performed the
best, with an AUC of 0.875. However, after combining with MERCI, its
performance did not improve andwas outperformed by the ESM-t6model,
which achieved anAUCof 0.919. Among all the regressionmodels, the RFR
model exhibited superior performance with an R 0.739 and an R2 0.543. A
comparative analysis of the performanceof the bestMLandPLMregression
models is presented in the tables.

In our classification model development, we diversified our
approach similar to the regression models. Notably, we observed pro-
mising performance with RF (ALLCOMP-ex SOC) and ProtBERT
models. Moreover, we extended our classification methodologies by
integrating hybrid approaches that combine ML and PLM classifiers with
MERCI. These hybrid strategies were meticulously crafted to leverage the
complementary strengths of both methods. Subsequent evaluation
revealed enhancements in model performance following the incorpora-
tion of MERCI. A comparative assessment of these hybrid models on
independent datasets is detailed in the table. The RF (ALLCOMP-ex
SOC) and ESM2-t6 models are particularly noteworthy, which demon-
strated optimal performance with AUC scores of 0.921 and 0.919,
respectively. These regression and classification models have been
seamlessly integrated into our prediction software and web services,
streamlining the quantification and classification of hemolytic peptides.

Benchmarking
Benchmarking of developed method against existing ones is crucial to
comprehend its significance and potential improvements. In the context
of a regression model, to the best of our knowledge, no tool has been
specifically designed to quantify hemolytic peptides. However, several
traditional machine learning-based tools have been developed for clas-
sification (as detailed in Supplementary Table S1). We conducted an
evaluation of these current tools using an independent/unseen dataset

from our study. This evaluation provides a comparative analysis with
other existing approaches, offering insights into their relative effective-
ness. Table 7 compares the performance of our proposed approach,
HemoPI2, with other existing methods reported in the literature. On the
independent dataset used in HemoPI2, methods like HAPPENN, Pep-
tideBERT, and Plisson et al. achieved AUC values of 0.736, 0.739, and
0.740, respectively. HemoPI2 significantly outperformed these methods,
achieving AUC values of 0.888 with the RF model and 0.882 with the
ProtBERTmodel. We further improved performance with hybrid models
by incorporating MERCI. Our hybrid models, RF and ESM2-t6, achieved
AUCs of 0.921 and 0.919, respectively. The subpar performance of tools
like HemoPI and HemoPred could potentially be attributed to the uti-
lization of randomly generated negative datasets during training. Fur-
thermore, we faced challenges in comparing the performance of certain
tools such as HLPpred-FUSE, HemoNet, hemolytic-Pred, RNN
(Capecchi et al.), and QSVM due to limitations in their services.
HLPpred-FUSE and hemolytic-Pred had issues with their web services,
while HemoNet and RNN (Capecchi et al.) had non-functional GitHub
code due to missing input files. Additionally, QSVM currently offers no
model or webserver, limiting our ability to make a full assessment.
However, we were able to compare our results with the QSVM model
using their GitHub code, which was based on 56 physicochemical
descriptors, though their primary model was built using 40 descriptors.
On the HemoPI-3 dataset, a QSVM achieved an AUC of 0.705,
demonstrating that our classical ML models and PLMs outperform this
quantumML approach. HemoPI2 demonstrates superior performance in
predicting hemolytic activity compared to other existing methods, with
our Random Forest and ESM-2t6 models leading the way. The ESM-2
model utilizes a transformer architecture to generate rich protein
embeddings, capturing more intricate relationships in protein structure
compared to the earlier approaches, while the RF model enhances pre-
diction accuracy through ensemble learning, reducing overfitting.
Together, these advanced techniques provide robust and reliable pre-
dictions, substantiating the effectiveness of our updated method over
existing tools. This superior performance underscores the potential of
HemoPI2 as a valuable tool in the field of therapeutic peptide develop-
ment, particularly in the classification and quantification of hemolytic
peptides.

Table 7 | Benchmarking of classification tools on an independent dataset of HemoPI2

Tools Model Sp (%) Sn (%) Acc (%) MCC AUC

HemoPI D1 16.7 90.8 58.4 0.099 0.538

D2 59.9 60.8 60.3 0.207 0.662

ModelAll 49.2 69.8 58.8 0.194 0.669

HemoPred Default 31.5 87.0 57.2 0.221 –

HAPPENN Main_Dataset 53.7 84.9 68.1 0.402 0.736

AMP_deep Prot-BERT-BFD 67.0 53.0 59.0 0.413 0.602

Ansari et al. Embedding+ Bi-LSTM 73.3 32.3 54.5 0.07 0.512

PeptideBERT Default 79.1 62.4 71.0 0.422 0.739

Plisson et al. XGBC 69.0 61.4 70.0 0.470 0.740

QSVM(56 D Descriptors) HemoPI-1 92.7 13.0 50.0 0.095 0.642

HemoPI-2 73.2 49.8 60.6 0.234 0.701

HemoPI-3 81.0 41.5 59.8 0.243 0.705

HemoPI2 (Without MERCI) ESM2-t6 76.1 84.0 79.5 0.591 0.870

RF 76.5 86.9 82.1 0.640 0.888

HemoPI2(With MERCI) ESM2-t6 80.5 88.8 84.3 0.691 0.919

RF 88.3 79.8 84.3 0.685 0.921

Sn sensitivity, Sp specificity, Acc accuracy,MCC Matthews correlation coefficient, AUC area under receiver operating characteristic, Bold values indicate the best-performing model.
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Community contribution through HemoPI2
Tocontribute to the scientific community,wehavemade our regression and
classification algorithms accessible online via our user-friendly web server,
HemoPI2, which is freely available for academic researchers at https://webs.
iiitd.edu.in/raghava/hemopi2/. The web server is organized into four main
modules: Home, Prediction, Protein scanning, Motif scan, and Design. The
prediction modules enable users to predict the hemolytic potency of their
peptides by submitting multiple peptide sequences in FASTA format.
However, predictions are restricted to peptides composed of the 20 natural
amino acids, with non-canonical amino acids not being supported. The
protein scanning module provides the functionality to identify or scan
hemolytic regions within a protein. The motif scanmodule enables users to
scan ormaphemolyticmotifs within the query sequence usingMERCI. The
design module creates non-hemolytic peptides from the primary sequence,
generating mutant peptides with a single mutation for hemolytic activity
prediction. Additionally, Download and Help modules are available to
facilitate data download and provide user assistance. Alongside the web
server,wehave alsodevelopeda standalonepackage that canbedownloaded
fromourwebserver.This standalone software andpippackage, designed for
large-scale hemolytic peptide prediction, offers a versatile solution for
comprehensive analysis.

Discussion
In recent years, the focus on therapeutic peptide development has grown,
butmanypotential peptides face challenges due to hemolytic toxicity, which
hinders their approval as a drug molecules. Clinically approved peptides
typically have a high therapeutic index, with minimal hemolytic activity.
However, many promising peptides still exhibit varying degrees of hemo-
lysis. Thus, developing peptides with a high therapeutic index is crucial.
While numerous tools exist to classify hemolytic peptides, this study aims to
enhance thedesign andoptimizationprocess by introducing an improved in
silico method to classify and quantify peptides as hemolytic or non-
hemolytic based on their sequence. This approach aims to advance ther-
apeutic peptide development by improving the understanding of hemolytic
toxicity and aiding in the creation of safer, more effective drugs.

We used two types of features for model development: features from
Pfeature and embeddings from fine-tuned PLMs. The RF classifier achieved
an AUC of 0.888 using ALLCOMP-ex SOC features. After combining with
MERCI, the AUC increased to 0.921 on an independent dataset. QSVM
performs well with lower-dimensional features, outperforming most clas-
sical SVMs with AAC features, but requires further optimization to con-
sistently match or exceed traditional models in complex scenarios. For
regression, RFR outperformed othermodels, achieving anR of 0.739 and an
R² of 0.543 using ALLCOMP-ex SPC features. The logarithmic transfor-
mation of HC50 values (pHC50) improved model performance, though its
effectiveness can vary. While beneficial in some cases, as noted by Feng
et al.47, log transformationmay sometimes increase variability or skewness48.
Therefore, it should be applied carefully based on dataset characteristics.
TheMAE andMSEwere 0.734 and 0.981, respectively. Residual errors may
result from terminal modifications like amidation and acetylation, varia-
tions in hemolytic concentration reporting, or noise in experimental data-
sets. Some sequences, like “RVKRVWPLVIRTVIAGYNLYRAIKKK,” are
reported as both hemolytic and non-hemolytic in different studies34. To
reduce errors, we could normalize hemolytic data, include features for
modifications, and incorporate structural data to improve sensitivity.

We found that tree-based methods, especially RF, outperformed other
models when applied to features like AAC, DPC, PCP, and CeTD, indi-
cating a strong correlationwithhemolytic activity. The combinationof these
features further improved performance. RF’s ensemble learning, which uses
multiple decision trees to reduce variance and prevent overfitting, is parti-
cularly effective with high-dimensional data49. Additionally, RF can capture
complex, non-linear relationships common in biological data, making it a
robust choice for both regression and classification tasks50,51. ESM-2
embeddings showed similar performance across both classifier and
regressor categories, regardless of checkpoint size. Typically, larger

checkpoints havemore layers, containmore parameters, and are trained on
larger datasets, which can enhance performance, though this also increases
computational demands.

Various analytical methods were employed to analyze experimentally
validated hemolytic peptides, focusing on sequence-based features like
amino acid composition (AAC), positional distribution, andmotif patterns.
TSLwas used to identify amino acid preferences at different positions.Motif
analysis with the MERCI tool revealed recurring patterns associated with
hemolytic activity. Correlation analysis between Pfeature-extracted features
andHC50 concentrations identified key features linked tohemolytic activity.
Hydrophobic residues such as Cysteine, Phenylalanine, Glycine, and Leu-
cine were predominant in hemolytic peptides. Positional analysis showed
enriched hydrophobic residues in the N-terminal, and motif analysis
identified unique motifs in hemolytic peptides (e.g., “CGET”,
“TLLKKVLKA”) and non-hemolytic ones (e.g., “AKD”, “SKIK”). These
motifs, rich in hydrophobic amino acids, promote membrane disruption
through increased interaction with the lipid bilayer, supporting hemolytic
activity. Models describing peptide-lipid bilayer interactions, such as the
carpet, barrel-stave, and toroidal pore models, explain these mechanisms26.
Correlation analysis also showed that certain residues, like positively
charged ones, negatively correlate with hemolytic activity, while hydro-
phobic residues positively correlate with it. Our analysis highlights the key
role of hydrophobicity in hemolytic activity, with peptides exhibiting higher
hydrophobicity showing greater hemolytic potential. Amino acids like
Cysteine, Phenylalanine, Glycine, and Leucine, due to their chemical
properties, prefer lipid bilayers, leading to membrane disruption and cell
lysis52. The amphipathic nature of many hemolytic peptides, with both
hydrophobic and hydrophilic regions, further enhances membrane
disruption53,54. Peptides containing cysteine in β-sheets are also linked to
increased hemolytic activity55–57. These findings emphasize the critical role
of hydrophobic residues in membrane interactions and hemolysis.

Challenges and future directions
This study presents significant advancements in predicting and quantifying
the hemolytic potential of peptides. However, several limitations require
further attention. One key limitation is the size and recency of the datasets
used for training. While the Hemolytik database is valuable, it has not been
updated, highlighting the need for a more comprehensive and current
dataset. Additionally, HemoPI2 is limited to natural peptides, excluding
non-canonical amino acids, modified peptides, and sequences with fewer
than six residues. This restricts its applicability to synthetic peptides, which
are increasingly relevant in therapeutics. Future work should extend the
model to include these peptide types for broader use. Furthermore,
HemoPI2, which predicts hemolytic activity based solely on peptide
sequences, faces challenges from sequence and structural biases. Integrating
structural data, as recentmachine learning research suggests, could improve
predictive accuracy and applicability across diverse peptide structures58.
Lastly, the potential taxonomic bias in the training data should be examined
to ensure robust predictions across underrepresented taxa59. Addressing
these challenges will enhance the model’s overall utility and accuracy.

Methods
Data collection
We acquired experimentally validated hemolytic peptides from DBAASP
version 3 andHemolytik database17,60. These databases offer comprehensive
details on the hemolytic activity of peptides that have undergone experi-
mental validation. Peptide activity is assessed by extrapolating measure-
ments from dose-response curves to determine the concentration at which
50%ofRBCsare lysed, knownas theHC50value.Wecollected3147peptides
fromDBAASP and 560 peptides from theHemolytik database,whoseHC50

value is available. We implemented several preprocessing steps that inclu-
ded the removal of peptides containing non-natural amino acids and the
removal of peptides containing less than six residues. In cases where a
peptide sequence has multiple HC50 values or a range of HC50 values, we
computed the averageof these values.Thismeanactivitymeasure represents
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the overall hemolytic activity of the peptide under various experimental
conditions. By averaging, we ensure that our model captures the general
behavior of the peptide’s hemolytic activity rather than specific instances,
thereby enhancing the robustness of our predictions. The final HemoPI2
dataset comprises 1926 unique experimentally validated hemolytic peptides
along with their corresponding hemolytic concentrations measured in μM.
For classification purposes, we establish binary labels distinguishing strong
hemolytic (positive) from weak hemolytic (negative) peptides; we utilized
the criterion that peptides with an HC50 of ≤100 μM are classified as
hemolytic. Peptides with HC50 values ≤ 100 μMwere labeled as hemolytic,
while those with values > 100 μM were classified as non-hemolytic. Fol-
lowing this criterion, we got 891 hemolytic peptides and 1035 non-
hemolytic peptides in the dataset.

We standardized the HC50 values by converting them into a uniform
measurement unit (μM). Following this, we transformed these HC50 values
into pHC50 values using a specific equation (Eq. (1)). This standardization
and transformation process ensures consistency in our data, which is crucial
for the accuracy and reliability of our regression model. It allows us to
compare and analyze the hemolytic activity of different peptides on a
common scale, thereby enhancing the predictive capabilities of our model.

Predictive target for regression analysis
In this study, we have chosen the negative logarithmic HC50 (pHC50) as the
target for our regression prediction. The pHC50 value is calculated using the
following equation:

pHC50 ¼ �log10ðHC50Þ ð1Þ

This equation transforms the HC50 values into a logarithmic scale,
which can help in handling a wide range of HC50 values and can potentially
improve the performance of the regression model. This transformation is
commonly used in bioinformatics and cheminformatics for handling
bioactivity data61–63. It allows us to compare and analyze the hemolytic
activity of different peptides on a common scale, thereby enhancing the
predictive capabilities of our model.

Cross-validation approach
We have ensured that the study followed established bioinformatics pro-
tocols. Initially, our data was randomly divided into training and inde-
pendent datasets, with the cross-validation set comprising 80% of the data
and the independent set containing the remaining 20%. We employed a
five-fold cross-validation technique within the cross-validation dataset for
training and testing to assess model performance. This process involved
randomly dividing sequences into five subsets, using four for training and
one for testing iteratively across five repetitions. Notably, the independent
dataset was held aside throughout training, testing, and hyperparameter
tuning. Only the final models were evaluated using the independent or
unseendataset.Comparisonofmodels on this independent dataset is critical
to any predictive methodology.

Feature extraction
We have used two approaches to extract features from peptide sequences.
Initially, we used the Pfeature, which extracts composition-based features
from a given peptide sequence, as well as captures the information of the
composition along with its distribution in the given sequence. Next, fine-
tuned pre-trained language models (PLMs) to generate embeddings,
representing the sequences in a dense vector space that encapsulates
semantic and syntactic information. This integrated approach, as illustrated
in Supplementary Fig. S1, enables a comprehensive representation of the
feature extraction approach.

Feature extraction using Pfeature
Feature extraction is important for predicting peptide properties, as it
converts raw sequence data into meaningful representations that machine
learning models can accurately analyze and learn. To extract features, we

utilized the Pfeature64 tool, which yielded a diverse range of composition-
based descriptors. These include AAC, which computes the frequency of
each of the 20 amino acids in a peptide sequence, resulting in a 20-
dimensional feature vector; DPC, which considers the coupling of adjacent
amino acids and their positional information, yielding 400 features; Atom
Type Composition (ATC) and Bond Type Composition (BTC), which
calculate the fractions of different atoms (C, H, N, O, S) and bond types
(total, aromatic, hydrogen, single, double), generating 5 and 4 features
respectively; and Physico-chemical Properties composition, which
encompass 30 descriptors that quantify various physical and chemical
characteristics of the peptides, such as charge, polarity, aromaticity, etc.
Additionally, we included various indices such as the Residue Repeats Index
(RRI) (20 descriptors), which counts consecutive runs of each amino acid
type; the Property Repeats Index (PRI) (25 descriptors), assessing the
repetitiveness of physicochemical properties; and the Distance Distribution
of Residues (DDR) (20 descriptors), measuring distances from the
N-terminal and C-terminal as well as between identical residues. We also
computed Shannon Entropy measures at different levels: overall peptide
level individual amino acid level, and specific physicochemical property
level (46 descriptors). The Conjoint Triad Descriptors (CTD) analyze the
frequency of three consecutive amino acids based on their dipoles and side
chain volumes, resulting in 343 descriptors. Pseudo Amino Acid Compo-
sition (PAAC) uses 21 descriptors to capture amino acid frequencies and
biochemical properties, enhancing sequence analysis. Amphiphilic Pseudo
Amino Acid Composition (APAAC) expands this with 23 descriptors to
include hydrophilic and hydrophobic traits, useful for membrane proteins.
Quasi-sequence Order (QSO) uses 42 descriptors to encode residue corre-
lations, representing both composition and spatial arrangement for com-
plex structural insights. Furthermore, the Sequence Order Coupling
Number (SOC) utilizes dissimilarity matrices to compute a 2-dimensional
feature vector. Lastly, the Composition-enhanced Transition Distribution
(CeTD) describes amino acid distribution patterns along the peptide
sequence based on seven physicochemical properties and generates 189
features.We also incorporatedmolecularweight and peptide length into the
feature vector, resulting in a total of 1192 featuresper peptide,which serve as
the basis for our predictive models. All features are further detailed and
formulated in Supplementary Information S1.

Word embeddings from protein language models
Recent strides in natural language processing (NLP) have catalyzed the
emergence of PLMs, which harness individual amino acids and their
combinations (doublets or triplets) as tokens or words. These models yield
fixed-size vectors, referred to as embeddings, to encapsulate specific peptide
sequences. These protein embeddings serve as pivotal inputs for a spectrum
of tasks, spanning structure prediction, novel sequence generation, and
protein classification65. In our study, we employed three widely recognized
LLMs: ESM-266, ProtBERT, and BioBERT, to produce embeddings for
peptide sequences. ProtBERT and BioBERT are built upon the BERT
model67 and are pre-trained on extensive datasets of protein sequences in a
self-supervisedmanner. Conversely, ESM-2 (Evolutionary Scale Modeling)
is a transformer-based PLMs initially developed for protein structure pre-
diction, trained on sequences sourced from the UniRef protein sequence
database68. ESM-2, renowned as a state-of-the-art protein model, is trained
on amasked language modeling objective. This model proves adept at fine-
tuning across an extensive array of tasks that entail protein sequences as
inputs. Several ESM-2 checkpoints with varying sizes are available on
HuggingFace, where larger sizes generally yield slightly better accuracy
but necessitate significantly more memory and training time. We
opted to utilize the ESM-2_t36_3B_UR50D, which consists of 36 trans-
former blocks with 3B parameters trained from UniRef5069, and ESM-
2_t33_650M_UR50D70,which consists of 33 transformer blockswith 650M
parameters trained from UniRef5069, checkpoints to generate embeddings.
These checkpoints were deemed suitable for our objectives, offering a bal-
ance between accuracy and resource requirements. Subsequently, the
embeddings derived from these ESM-2 checkpoints were employed as
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features for anML regressor and classifier, facilitating the development of a
robust model. This approach empowered us to exploit the rich contextual
information encoded within the embeddings to enhance the predictive
capabilities of the regressor and classifier models.

Comprehensive analysis
To conduct the preliminary analysis of experimentally validated hemo-
lytic peptides, we employed several analytical approaches. Initially, we
conducted sequence-based analysis, which involved scrutinizing amino
acid composition, positional distribution, and motif patterns. This
exploration includes both the N-terminal and C-terminal regions. Fol-
lowing this, we employed Two Sample Logo (TSL)71 to discern specific
preferences for amino acid residues at distinct positions within the
peptides. In motif-based analysis, we employed theMotif-EmeRging and
Classes-Identification (MERCI) tool72 to uncover recurring patterns
contributing to hemolytic activity. We also involved various classification
schemes, including Koolman-Röhm and Bets-Russell, to categorize motifs
based on the physicochemical properties of amino acids, such as polarity,
charge, hydrophobicity, aromaticity, and aliphatic characteristics. Such
motifs serve as pivotal regions within peptides responsible for their
hemolytic effects. Identifying these motifs enhances our understanding of
the molecular mechanisms underlying toxicity, offering insights for drug
development and therapeutic strategies73–75. Lastly, we conducted a cor-
relation analysis between features extracted by Pfeature and their cor-
responding HC50 concentrations. This facilitated the identification of
features closely associated with peptide hemolytic activity, elucidating
meaningful relationships crucial for further research76.

Classification models
Machine learning models. In our study, we employed a diverse set of
ML classifiers to enhance the robustness and prediction accuracy. These
include Extra Trees (ET), which are known for their ability to reduce
over-fitting and bias; Support Vector Machines (SVM), effective in high-
dimensional spaces; Extreme Gradient Boosting (XGB), renowned for its
speed and performance; Random Forest (RF), appreciated for its hand-
ling of unbalanced datasets; Multi-Layer Perceptron Classifier (MLPC), a
type of neural network known for its flexibility; Gradient Boosting (GB),
recognized for reducing errors; and Decision Trees (DT) and Logistic
Regressor (LR), both fundamental to understanding feature importance
and relationships. Each of these classifiers contributes unique strengths to
our ML pipeline, resulting in a more robust and accurate predictive
strength.

Protein language models
In our hemolytic peptide classification study, we utilized PLMs, which are
computational frameworks that leverage natural language processing
techniques to analyze protein structures, functions, and interactions. Spe-
cifically, we employedmodels such as ESM2-t33, ESM2-t30, ESM2-t12, and
ESM2-t6 from the Evolutionary Scale Modeling (ESM) series, which are
pre-trained on large protein sequence corpora and excel in tasks like
structure prediction and variant effect prediction77.We also used BioBERT,
a domain-specific model pre-trained on large-scale biomedical corpora78,
andProtBERT, a protein-specificmodel from theBERT series79, pre-trained
on a vast corpus of protein sequences80. These models, each with their
unique strengths, significantly enhanced the precision and reliability of our
hemolytic peptide classification model.

Quantum machine learning
Quantummachine learning (QML) is emerging as a transformative tool in
healthcare and biomedical research81. Recent studies have demonstrated the
potential of quantum models to perform sequence classification tasks that
are crucial for designing therapeutic proteins39,82. After using classical
machine learning and LLMs, we employ quantum kernel methods
(QKMs)83 with a focus on the quantumsupport vectormachine (QSVM), to
develop classification models. The quantum kernel function used in this

study was derived from a feature mapping technique inspired by Zhuang
et al.39 The feature mapping encodes classical descriptors into a high-
dimensional quantumHilbert space84, where the quantum kernel measures
the similarity between pairs of data points based on their mapped repre-
sentations. The quantumkernels were executed through a noiseless classical
simulation with the help of the PennyLane85 Python library, which was
specifically employed to compute the quantum kernel matrix. This matrix
was subsequently utilized in the scikit-learn function svm.SVC, where we
experimented with different kernels, including precomputed, linear, radial
basis function (RBF), polynomial, and sigmoid. These trials allowed for a
comprehensive evaluation of the performance of different kernel types
within the context of the quantum-enhancedmachine learning framework.
Before training, we standardized each descriptor in the training sets using z-
score normalization, resulting in a mean of 0 and a standard deviation of 1.
The independent datasets were then standardized using the same para-
meters derived from the training sets. Hyperparameter tuning was con-
ducted for all models through stratified 5-fold cross-validation and grid
search across various hyperparameter values, allowing us to identify the
optimal model for each dataset based on average accuracy across the folds.
Different hyperparameters, such as the number of qubits, time (circuit
depth), and optimization steps, play a crucial role in fine-tuning the model.
Thenumberof qubits determines thedimensionalityof thequantumfeature
space, time influences the complexity of the quantum circuits by controlling
the depth of entanglement and gate operations, and optimization steps
govern the convergence of the training process. The specific range of
hyperparameters used in this study is detailed in Supplementary Table S5.
To compare the QSVMwith classical SVM, we implemented SVM kernels
using scikit-learn’s svm.svc.

Hybrid/ensemble model for classification
MERCI identifies motifs composed of specific amino acids and physico-
chemical properties, which can serve as markers to recognize new
sequences involved in biological processes of interest, such as hemolytic
activity in this case. In our further investigation, we looked into the
approach by combining two approaches to build the final model for
enhanced predictive performance. This hybrid strategy merges a motif-
based technique utilizing MERCI and models constructed using ML and
PLMs. First, we assess the performance of classical motifs and motifs
based on physicochemical properties from the Koolman-Röhm and Betts-
Russell classification schemes. Due to the large number of property-based
motifs, we limited our selection to motifs with a length of five or more. In
the initial phase, each classification approach was tested independently to
evaluate its predictive value. Then we experimented with different
combinations of these methods, ultimately finding that integrating
classical motifs with property-based motifs, especially those derived from
the Koolman-Röhm classification scheme, significantly improved classi-
fier model performance. We used a weighted scoring method for inte-
grating MERCI with ML models and fine-tuned PLMs. MERCI
predictions were weighted as follows: “+0.5” for hemolytic, “−0.5” for
non-hemolytic, and “0” for no match, providing confidence scores for
each prediction. This weighting, combined with ML and PLMs, sig-
nificantly boosted area under the curve (AUC) values, an essential metric
for model evaluation. This combined approach has been widely applied
in numerous scientific investigations, validating its effectiveness in
enhancing prediction accuracy.

Regression models
To predict the HC50 of hemolytic peptides, we employed a diverse array of
ML models along with PLMs. Our model development process involved
leveraging various categories of features extracted by Pfeature. Additionally,
we harnessed embeddings derived from fine-tuned PLMs, incorporating
themas features forMLmodel development. This comprehensive approach
enabledus to explore thepredictive potential of both traditional features and
advanced language model embeddings in modeling peptide hemolytic
activity.
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Machine learning regressor models
The predictive performance of the computational models developed in
this study relies not only on the chosen feature representations but
also on the specific regression models employed. To explore the pre-
dictive capabilities comprehensively, we utilized a range of popular
regressors, including XGBoost Regressor (XGBR), Random Forest
Regressor (RFR), Gradient Boosting Regressor (GBR), Extra Trees
Regressor (ETR), Decision Tree Regressor (DTR), AdaBoost Regressor
(ADBR), Support Vector Regressor (SVR), K-Nearest Neighbors
Regressor (KNNR), Linear Regressor (LinR) and Multi-Layer Percep-
tron Regressor (MLPR).

Each of these regression models operates differently and leverages
distinct mathematical algorithms to make predictions. For instance,
XGBR is an implementation of gradient-boosted decision trees designed
for speed and performance, while RFR utilizes an ensemble of decision
trees to improve prediction accuracy and mitigate overfitting. GBR
sequentially fits weak learners to the residuals of the previous models,
gradually improving prediction accuracy. Similarly, ETR builds an
ensemble of randomized decision trees to enhance prediction robustness
further. DTR constructs a tree-like model of decisions based on feature
inputs, recursively splitting data into subsets to minimize variance.
ADBR combines multiple weak learners to create a strong learner
iteratively, focusing on instances that previous models misclassified. SVR
identifies the optimal hyperplane that maximizes the margin between
data points and minimizes prediction error. KNNR predicts the output of
a query point based on the majority vote of its k nearest neighbors, while
LinR assumes a linear relationship between input features and the target
variable. These regression techniques have demonstrated success in
predicting various functions and properties of peptides, as well as other
biological or chemical entities in previous studies, as evidenced by the
cited literature86–89.

Performance metrics
The validation of the empirical predictive model is of paramount impor-
tance for evaluating its robustness. In the realm of pattern recognition,
predicting hemolytic activity is approached as both as a regression and a
classification problem. The regression analysis employs four standard sta-
tistical parameters. These include the Pearson Correlation Coefficient (R),
which measures the linear correlation between predicted and actual values,
and the Coefficient of Determination (R²), which indicates the fit of the data
to the regression model (the closer to 1, the better the fit). Additionally, the
Mean Absolute Error (MAE) provides the average of the absolute differ-
ences between predicted and actual values, while the Mean Squared Error
(MSE) calculates the average of the squared differences, givingmore weight
to larger errors.

The efficacy of different classification models was gauged using
established evaluationmetrics, both threshold-dependent and independent.
Threshold-dependent metrics, including sensitivity, specificity, accuracy,
and the Matthews correlation coefficient (MCC), are influenced by the
classification threshold. Conversely, the area under the receiver operating
characteristic curve (AUC) is a threshold-independent metric that offers a
holistic view of amodel’s discriminative capacity. Thesemetrics, extensively
validated in previous studies, are crucial for reliable performance
assessment21,63.

Statistics and reproducibility
This study focuses on computational analyses, with no wet lab experiments
conducted.We compared amino acid compositions between hemolytic and
non-hemolytic peptides and examined N- and C-terminal residues within
hemolytic peptides. Statistical analyses were performed using scipy.stats for
independent t-tests and the Benjamini-Hochberg procedure (statsmodels.-
stats.multitest) for false discovery rate correction, ensuring control of type I
errors. Replicates correspond to individual peptide observations, enhancing
the reproducibility of findings through well-documented statistical
methods.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Thedatasets generated for this study canbe accessed on the “HemoPI2”web
server at https://webs.iiitd.edu.in/raghava/hemopi2/download.php, pub-
licly available on GitHub https://github.com/raghavagps/HemoPI2, and
from Zenodo (https://zenodo.org/records/14676712)90.

Code availability
The source code for this study is publicly available on GitHub and can be
found at https://github.com/raghavagps/HemoPI2, “HemoPI2” web server
at https://webs.iiitd.edu.in/raghava/hemopi2/download.php, and from
Zenodo (https://zenodo.org/records/14676712)90.
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