Table 4 Evaluation of ML classifiers’ performance utilizing various PLM embedding sources on an independent dataset
From: Prediction of hemolytic peptides and their hemolytic concentration
Embedding source | ML classifier | Sp (%) | Sn (%) | Acc (%) | MCC | AUC |
|---|---|---|---|---|---|---|
ESM2-t36 | XGBC | 86.0 | 74.9 | 80.8 | 0.614 | 0.869 |
ESM2-t33 | ET | 85.5 | 73.2 | 79.8 | 0.604 | 0.873 |
ESM2-t6 | ET | 73.2 | 84.5 | 79.3 | 0.583 | 0.857 |
ProtBERT | MLPC | 83.9 | 84.0 | 83.9 | 0.677 | 0.882 |
BioBERT | MLPC | 81.5 | 68.5 | 75.6 | 0.507 | 0.792 |
ProtBERT+BiLSTM | ET | 82.8 | 71.4 | 77.4 | 0.547 | 0.859 |