Table 5 Performance of hybrid model on independent dataset developed by combining best-performing classification models with MERCI

From: Prediction of hemolytic peptides and their hemolytic concentration

Model

Threshold

Sp (%)

Sn (%)

Acc (%)

MCC

AUC

ML

RF

(ALLCOMP-ex SOC)

0.45

83.4

83.8

83.5

0.670

0.921

RF

(AAC + DPC + PCP)

0.49

82.6

77.6

83.9

0.621

0.899

XGBC

(ESM2t36 embeddings)

0.47

84.0

80.8

82.9

0.658

0.900

ET

(ESM2t33 embeddings)

0.49

85.6

82.4

82.8

0.651

0.905

MLPC

(ProtBERT embeddings)

0.48

86.4

77.4

81.1

0.636

0.891

ET

(ESM2t6 embeddings)

0.51

87.7

76.9

82.4

0.646

0.902

PLM

ESM2-t33

0.57

92.7

68.5

83.5

0.668

0.901

ESM2-t30

0.48

79.7

82.7

80.2

0.634

0.885

ESM2-t6

0.58

83.0

82.0

82.5

0.649

0.919

ProtBERT

0.44

65.9

90.3

79.0

0.585

0.871

  1. Sn sensitivity, Sp specificity, Acc accuracy, MCC Matthews correlation coefficient, AUC area under receiver operating characteristic, Bold values indicate the best-performing model in ML and PLM.