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Regulation of chromatin modifications
through coordination of nucleus size and
epithelial cell morphology heterogeneity
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Cell morphology heterogeneity is pervasive in epithelial collectives, yet the underlying mechanisms
driving such heterogeneity and its consequential biological ramifications remain elusive. Here, we
observed a consistent correlation between the epithelial cell morphology and nucleus morphology
during crowding, revealing a persistent log-normal probability distribution characterizing both cell and
nucleus areas across diverse epithelial model systems. We showed that this morphological diversity
arises from asymmetric partitioning during cell division. Next, we provide insights into the impact of
nucleusmorphology on chromatinmodifications.Wedemonstrated that constraining nucleus leads to
downregulation of the euchromatic mark H3K9ac and upregulation of the heterochromatic mark
H3K27me3. Furthermore, we showed that nucleus size regulates H3K27me3 levels through histone
demethylase UTX. These findings highlight the significance of cell morphology heterogeneity as a
driver of chromatin state diversity, shaping functional variability within epithelial tissues.

Variability is inherent in biological systems and can influence the regula-
tions and outputs of biological processes at all length scales1,2. At the
molecular level, chemical reaction noise leads to uncertainties in
transcription3, translation4, and post-translational modifications5. At the
cellular level, stochastic gene expression imposes profound influences on
cell functions, including cell cycle progression6, metabolism7, and stress
response8,9. Over the past few decades, substantial efforts have beenmade to
understand the role of noise in gene expression and genome organization,
which are usually consideredas “upstreamnoise”10,11. In contrast, cell-to-cell
phenotypic heterogeneity, such as morphological variability, is viewed as a
consequence of genetic and environmental variations12,13. As a result, the
emergence of cell morphological heterogeneity within a population and its
role in regulating gene expression has been relatively underexplored.

Morphological heterogeneity is one of the most noticeable features of
phenotypic variability in epithelial cells. Even in a clonal population where
all cells are genetically identical, each cell can exhibit a unique size and aspect
ratio (AR)14. Specifically, during epithelial cell crowding, where cells con-
tinue toproliferateuntil a tightly packedcell layer is formed, each cell’s shape
can be controlled by its cytoskeletal properties and interactions with the
neighboring cells and substrate15,16. In addition to these biological

regulations, recent studieshave also found that cell shapeAR inapopulation
follows a nearly universal distribution across different organisms and
systems17,18. This universal distribution can be explained by physical prin-
ciples, such as the packing constraint17, fundamental polygon geometric
properties18, and topological optimal transport19. These findings thus sug-
gest that the statistical properties of epithelial cell shapes can be governed by
mechanisms that transcend molecular details. However, the process
through which morphological heterogeneities initially arise during crowd-
ing is not clear, and how similar mechanisms may also regulate the mor-
phological heterogeneity in other organelles, such as the nucleus, remains an
important open question.

The functional significance of cell shapes are highlighted in several
recent studies that demonstrated the impact of cell shapes on chromatin
structures and gene expression20,21. Leveraging engineered single-cell sys-
tems, these studies have uncovered the link between cell shapes and chro-
matin states. For example, cell shapes altered by micropatterns can directly
influence the levels of lysine trimethylation22 and acetylation20 of histones, as
well as influence chromosome positioning23 and chromatin dynamics21. In
addition, deformation of nucleus and cell shapes using topological micro-
pillars can induce chromatin structure and gene expression changes24,25.
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However, how the epigenetic states of cells are regulated by cell morpho-
logical variations in a physiologically relevant setting is not well understood.

To address these questions, we base our analyses on collective cell
studies during epithelial crowding, which emulates physiological processes
of epithelial biology and has been widely used for studying the functional
roles of physical cues26,27. In this study, we focus on the emergence of
morphological variations and their roles in determining chromatin mod-
ifications and organizations. Specifically, we characterized both the cellular
and nuclear sizes, as the nucleus contains key architectural structures that
interact with the genome28,29 and has been shown to be an important
organelle in mechanotransduction30,31. By combining such quantitative
measurements with pharmacological perturbations, we show that cell and
nucleus sizes follow a common log-normal probability distribution, and the
cell-nuclear size correlation is regulated by both actomyosin tension and
intracellular osmotic pressure balance. Importantly, cell and nucleus size
variations are established andmaintainedwith each cell doubling event, and
these size differences influence the expression of UTX, a histone deme-
thylase, which in turn modulates chromatin methylation states. Nuclear
constraint thus reduces UTX levels, leading to increased H3K27me3. Our
results demonstrate that cell morphological heterogeneity is not merely a
noise during epithelial crowding, but has functional implications in
directing nucleus sizes and subsequently modulating chromatin changes.

Results
Correlated evolution of cell and nucleusmorphology throughout
cell crowding
To understand how cell morphology affects cell behavior, we first set out to
examine the evolutionof both cell andnucleus sizes,whichhavebeenshown
to mediate mechanical and geometric cues30. To do so, we cultured Madin
Darby Canine Kidney (MDCK) cells with a seeding density of 30k cells/cm2

and conducted cell and nucleus segmentation at 24, 64, 72, and 104 h after
seeding (Fig. 1A). These timepoints were chosen to capture critical transi-
tions in cell confluency and behavior, encompassing subconfluence, con-
fluence, crowding onset, and a crowded steady-state32. These distinct stages
capture the evolution of cell-substrate and cell-cell interactions, and changes
in adhesion strengths and motilities33. Following known hallmarks of
crowding, cell area and nucleus area becameprogressively smaller, while the
adherence junction protein E-cadherin (E-cad) became upregulated and
more localized to the intercellular junction34.

We next quantified the cell and the nucleus size changes across time-
points. While nucleus and cell sizes refer to their three-dimensional (3D)
volumes, within a monolayer, their projected areas are well accepted to
approximate the cell andnucleus sizes35,36.Measuring areas has the benefit of
improved statistics, as it enables a higher throughput of data acquisition and
analysis. Studying cell and nucleus area would also allow us to compare
results with previous studies that mainly performed two-dimensional (2D)
analyses37. To validate using area as an approximation for volume in our
system, we analyzed the nucleus volume using 3D image stacks (Fig. S1A)
and showed a strong correlation between area and volume (Pearson cor-
relation coefficient ~0.81) in a confluent cell layer (Fig. S1B). We further
validated our size approximation by demonstrating that the cell layer is
relatively flat (Fig. 1A middle row and Fig. S1C) throughout crowding,
consistent with previous findings38. Together, these results confirmed the
reduction of cell and nuclear sizes during epithelial crowding (Fig. 1B, C).
Importantly, we found that both cells and nuclei exhibited morphological
heterogeneity throughout crowding. Themagnitude of suchmorphological
variability, denoted by the largewhiskers shown in Fig. 1B, C,well surpassed
the magnitude of overall decrease in cell and nucleus area. This finding
suggests that the intrapopulation cell-cell variability should not be over-
looked when assessing individual cell behavior, as interpreting cell prop-
erties solely based on the global averagemay gloss over important biological
information39.

While the variabilities in both cell and nucleus areas may be initially
regarded as biological noise, we identified a significant correlation between
these characteristics (Fig. 1D). Specifically, we found that the nucleus and

cell areas are positively correlated throughout crowding, indicating a con-
stant nucleus area to cell area ratio (NC ratio) at each timepoint. Further-
more, this ratio becomes constant by the 64 hr timepoint when the cell layer
reaches confluence. The lowerNC ratio at the 24 h timepointmay be due to
cell spreading associatedwithhigher traction forces and actomyosin tension
in the subconfluent state when compared to confluent cells40. To further test
if NC ratio is also correlated in other epithelial model systems, we examined
the human keratinocyte cell line (HaCaT) and the developing mouse epi-
thelium at embryonic day (E) 12.5, in which the scatter plots are shown in
Fig. S2. In both cases, we observed NC correlations. Here, while the mouse
epithelium is a 3D tissue, we analyzed the outermost cells, which form a
differentiated and flat layer that can be considered as a 2D model system41.
The consistent observation of NC correlation in different models suggests
that the nucleus-cell area co-regulation is conserved and likely regulated by a
common mechanism across systems.

The observed ubiquitous NC correlation suggests that the morpholo-
gical variability of cell and nucleus could be governed by a coordinated
process throughout the highly dynamic cell crowding process. To under-
stand the nature of this NC correlation, we next assessed the statistical
commonality of suchamorphological variability bynormalizing the cell and
nucleus areas to their respective means (Fig. 1E). Aside from the MDCK
24 hr cell area, this normalization revealed a universal collapse of all
probability distribution function (PDF) curves, indicating that the area
variability for both nucleus and cell share the same statistical properties.We
further found that these distributions can be described by a log-normal fit
PDFðxÞ � 0:25

x expð� ðln xþ0:05Þ2
0:19 Þ, consistent with previous findings34. Also,

the collapse of all curves demonstrates that the degree of area heterogeneity
is independent of the post-confluent cell density and model systems, sug-
gesting that the observed feature is conserved in human cells and devel-
oping mouse tissues.

Anothermorphological hallmark of crowding is the transition from an
elongated to rounded cell shape, whichwe confirmed in ourMDCK system
bymeasuring the cell AR across different timepoints (Fig. 1F). Similar to the
area analysis, we also measured nucleus AR throughout crowding (Fig. 1G)
and found that as the cell ARdecreasedby 20%, the nucleusAR increased by
10% from the 24 h timepoint to the 104 hr timepoint. Moreover, both cell
and nucleus ARs exhibited variabilities that are greater than the mean
change over time (~1.5 × mean). Consistent with our area measurements,
this observation suggests that heterogeneity must be considered to under-
stand differences between individual cells.

Similar to the nucleus-cell area correlation, there is a mild, but statis-
tically significant, correlation between cell and nucleus ARs in MDCK cells
(Fig. 1H),HaCaT cells (Fig. S3A), and themouse epithelium (Fig. S3B). The
ratio between the nucleus and cell ARs increases during crowding, reflecting
the simultaneous decrease in cell AR (Fig. 1F) and increase in nucleus AR
(Fig. 1G). After scaling the AR distribution using a previously published17

form x = (AR− 1)/(〈AR〉− 1) where 〈〉 denotes average, we found that all
normalizedARPDFs collapsed to a common curve that can be described by
a Gamma distribution PDF(x; k) = kkxk−1e−kx/Γ(k), where Γ(k) is the
Legendre gamma functionwithk~2.43 for our bestfit (Fig. 1I). Thisfinding
is consistent with a previous study suggesting that AR heterogeneity in
crowded epithelia may be universally described by geometric constraints
during jamming transition17. Notably, we found the correlation between
area andARnegligible, in which themean Pearson correlation coefficient is
~0.05 (Fig. S4). This finding suggests that these two variables are indepen-
dentmorphological features and governed by distinctmechanisms.Overall,
our results illustrate that both cells and nuclei share common statistical
properties of morphological variability across three distinct epithelial cell
models.

Size heterogeneity emerges following cell division
The overall reduction in cell area during crowding must arise from the
production of new cells through cell proliferationwithin a limited space. It is
alsowell known that cell division plays a key role in inducingmorphological
changes from confluence to a crowded state17. In our experiment, we
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Fig. 1 | Coordinated morphological changes in cells and nuclei during crowding.
A Images of MDCK cells demonstrating evolution in cell and nucleus morphology
from being subconfluent to crowded (top). Cross-sectional 3D reconstruction of
MDCK cells demonstrating monolayer flatness throughout crowding (middle).
Scale bar = 10 μm. DAPI and actin staining shows that cells progressively acquire a
cobblestone-like morphology with decreasing sizes of both cell and nucleus during
crowding. E-cadherin (E-cad) staining illustrates the maturation of intercellular
junctions in late crowding. Scale bar = 50 μm. B Quantification of cell area
throughout crowding illustrates that the cell area variability surpasses the mean
change. N = 124, 732, 803, and 1033 for 24, 64, 72, and 104 h analyses, respectively.
C Quantification of nucleus area throughout crowding illustrates that the nucleus
area variability also surpasses the mean change. N = 147, 837, 840, and 1107 for 24,
64, 72, and 104 h analyses, respectively. D Persisting nucleus-cell area correlation
throughout crowding. 64 h, 72 h, 104 h datasets exhibit the same NC ratio, indicated
by the same slope of the best fits (solid lines). N = 124, 808, 802, and 1033 for 24, 64,
72, and 104 h analyses, respectively. Solid lines represent best linear fits. p < 0.0001
for all timepoints. 95% confidence intervals corresponding to the 24, 64, 72, and
104 h data are [0.518, 0.731], [0.810, 0.853], [0.771, 0.822], and [0.668, 0.731],

respectively. Correlation coefficients corresponding to the 24, 64, 72, and 104 h data
are 0.637, 0.804, 0.751, and 0.721, respectively. E Normalized probability density
functions (PDF) for MDCK, HaCaT, and developing E12.5 mouse epithelium cell
and nucleus area. All PDFs, except the MDCK cell 24 h PDF, collapse on a master
curve and can be described by a log-normal fit. F Quantification of cell aspect ratio
(AR) throughout crowding. N = 124, 732, 803, and 1033 for 24, 64, 72, and 104 h
analyses, respectively. G Quantification of nucleus AR throughout crowding.
N = 124, 808, 803, and 1033 for 24, 64, 72, and 104 h analyses, respectively.
H Nucleus-cell AR correlation during crowding showing progressively increased
slopes over time. Solid lines represent best linear fits (solid lines). N = 124, 808, 803,
and 1033 for 24, 64, 72, and 104 h analyses, respectively. p < 0.0001 for all time-
points. 95% confidence intervals corresponding to the 24, 64, 72, and 104 h data are
[0.134, 0.455], [0.366, 0.479], [0.388, 0.499], and [0.533, 0.614], respectively. Cor-
relation coefficients corresponding to the 24, 64, 72, and 104 h data are 0.303, 0.424,
0.386, and 0.575, respectively. I Normalized PDFs for MDCK, HaCaT, and mouse
epithelium cell and nucleusAR collapse on amaster curve, which can be described by
a gamma distribution. **** refers to p < 0.0001. 3 biological replicates were used for
all analyses.
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observed that the cell number tripled from the 64 h to 104 h timepoints
(Fig. S5). This cell number increase prompted us tohypothesize that cell and
nuclear morphological heterogeneity may arise following cell divisions, at
which point the regulation of NC ratio may have also begun. We therefore
set out to live-track the cellular and nuclear area of dividing cells and their
daughter cells, using cells with the plasma membrane labeled with green
fluorescent protein (GFP) and the nucleus labeled with blue fluorescent
protein (BFP) (Fig. 2A). We focused our analysis using ~95%-confluent
monolayers, where cells were crowded but remained proliferative (Fig. S5).
We then measured the cellular and nuclear area of dividing cells and their
daughter cells for 6 h to observe their morphological evolutions during cell
growth, at which point a stable size is reached (Fig. S6).

As shown by the evolution of cell areas, we found that daughter cells
from the samemother do not possess equal areas (0 h in Fig. 2B), rather one
is larger than the other. Despite having identical genomes, there is a cor-
responding difference in nucleus area, with the larger daughter cell owning a
larger nucleus (0 h in Fig. 2C). While the size differences between daughter
cell size increased, the differences between their nuclei remained relatively
constant after ~3 h of growth. By analyzing 58 pairs of daughters, we
confirmed that the area disparity between the two daughters persisted as the
cells grew, as demonstrated by the positive correlation between the 0 h and
6 h areas for both the cell (Fig. 2D) and the nucleus (Fig. 2E). The scatter
plots also illustrate that the cell area increased more, with a slope of ~1.12,

than the nucleus area, with a slope of ~0.88, revealing that although co-
regulated, most growth occurs within the cells and less so in their nuclei.

The persisting area difference leads to the question of whether the area
variability observed in the steady-state system could simply originate from
uneven cell divisions. To assess this possibility, we analyzed the statistical
properties of cell area and nucleus area at 0 h and 6 h after division by
plotting their PDFs in Fig. 2F, G, respectively. Consistent with Fig. 2D, E,we
found that the distributions of both cell and nucleus area simply broadened
as the cells grew. Notably, all PDFs were unimodal and skewed. We found
that after normalization, both cell (Fig. 2F, inset) andnucleus (Fig. 2G, inset)
area PDFs can be described by a universal log-normal distribution. This
finding suggests that the area variability emerged from uneven cell divisions
andwas approximately linearly amplifiedduring cell growth.Tounderstand
whether this randomness dominates over any inherited lineage dependent
trait, we calculated the cell area-area autocorrelation function, which decays
by an order of magnitude at the nearest neighbor distance of ~10 μm
(Fig. S7). Such a short correlation length suggests that the final daughter cell
area is not an inherit property from mother cells.

The similar evolutionbetweencell andnucleus areasduring cell growth
indicates that the NC ratio regulation begins as soon as the cell division is
completed. To test this, we studied the NC ratio correlation at 0 h (Fig. 2H)
and 6 h (Fig. 2I) after division. While we observed a strong correlation
regardless of the time after division, the ratiowashigher at the 0 h than at the
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6 h timepoint, which can be attributed to the increase in cell size due to
subsequent cell growth after division. This finding indicates that the cor-
relation between cell and nucleus is established before cell growth reaches a
steady state following division, and such a correlation is maintained despite
their disproportionate size increase during cell growth.

Collectively, our cell division tracking experiments suggest that the cell
and nucleus area variability is established in two sequential steps. The first
step involves uneven cell division, similar to previously established bacteria
models42. In such models, it has been shown that cell division involves a
series of multiplicative random events, which lead to a log-normal dis-
tribution of cell size, consistent with our measurements. The second step in
the establishment of area distribution is the variability amplification due to
size-regulated cell growth, in which the cell growth rate roughly scales with
the cell size. Such a cell growth regulation has mainly been observed in
unconfined single cells43. Our results demonstrated a similar mechanism in
physiologically confined cells. Lastly, the nucleus and cell size are correlated
throughout this two-stage process. Our finding also suggests that the log-
normal distribution observed in the steady-state cells can simply arise from
morphologically asymmetric divisions. In contrast to AR, where the origin
of heterogeneity is mainly attributed to junctional remodeling17,18, our
results indicate that the geometric constraint due to cell-cell interactions
mainly determines the final mean size, but not area heterogeneity.

Actomyosin and osmotic pressure balance regulate NC ratio
Having established that all cells within amonolayer share a similarNC ratio,
we next asked what mechanism coordinates the nucleus and cell sizes.
Previous studies in single cells have shown that nucleus size can be con-
trolledby either cytoskeleton44 or intracellular osmoticpressure45,46. To test if
thesemechanisms play a role in propagating the size heterogeneity from cell
to nucleus in confluent epithelia, we performed a series of perturbation
experiments to investigate the functional requirement of the cytoskeleton,
nucleus-cytoskeleton linkage, and osmotic pressure balance in this con-
text (Fig. 3A).

We first investigated whether actomyosin tension regulates nucleus
size by measuring the Pearson correlation coefficient of the NC ratio in
confluent cells that have been treated with blebbistatin, a non-muscle
myosin II inhibitor, or control vehicle (Fig. 3B). We observed a dose-
dependent response, as a higher concentration of blebbistatin further
attenuates the nucleus-cell area correlation. Notably, although functional
actomyosin has been shown tomainly restrict the nucleus height in isolated
single cells47, we here found that it also limits nuclear area and volume in
monolayers. To that end, we obtained 3D image stacks of blebbistatin-
treated and control nuclei and measured their volumes, since the projected
nucleus area change can be due to either volume change or nucleus
flattening47. We found that the area, volume, and height increased by
approximately 40%, 75%, and25%, respectively (Fig. S8), suggestinganearly
isotropic expansion of the nucleus when myosin activity is inhibited. We
also analyzed the changes in cell area and found them to be statistically
insignificant (Fig. S9).

We next assessed the contribution from microtubules, another main
component of the cytoskeleton, using nocodazole to inhibit microtubule
assembly. However, regardless of the concentrations used, inhibition of
microtubules alone was insufficient to reduce the nucleus-cell area corre-
lation (Fig. 3C). When mysoin II and microtubules were simultaneously
inhibited, we observed a correlation reduction ( ~30% reduction) similar to
the blebbistatin-only samples (Fig. 3D, ~20% reduction). These results thus
suggest that, in confluent epithelia, actomyosin tension plays a more
dominant role than microtubules in coordinating the nucleus size with the
cell size.

To further understand how cytoskeleton regulates the NC ratio, we
investigated the requirements of the nucleus-cytoskeleton linkage, which
transfers the strain from the cytoplasm to the nucleus through the Linker of
Nucleoskeleton and Cytoskeleton (LINC) complex30. To inhibit the
nucleus-cytoskeleton linkage,wedisrupted theLINCcomplexby expressing
a dominant negative GFP-KASH2 (DN-KASH) protein48. We found that

disruption of the LINC complex significantly reduces the nucleus-cell area
correlation (Fig. 3E), suggesting that the linkage between the nucleus and
cytoskeleton is required for regulating nucleus size.

Besides the cytoskeleton, osmotic pressure balance between the cyto-
plasm and the nucleus has also been proposed to be a main regulator of
nuclear-to-cytoplasmic volume ratio45,46. In this context, the osmotic pres-
sure difference across thenuclear envelope is predominatelydrivenby active
nuclear transport of macromolecules, causing subsequent nuclear size
changes. To examine the contribution of osmotic pressure in NC ratio
regulation, we first performed a hypo-osmotic shock experiment46, inwhich
cells were analyzed before and after selective cell membrane permeabiliza-
tion, followed by an exchange of cell culture medium for a mixture of 95%
water and5%cell culturemedium(Fig. 3F). Thismediumexchange reduced
the cytoplasmic osmotic pressure from ~290 mOsm to ~14.5 mOsm (see
Materials and Methods), conducive for nuclear expansion. By live imaging
cells with nuclear-BFP and plasma membrane-GFP, we found that nuclei
significantly swelledafter theosmoticpressuredrop,while cell size remained
roughly constant (Fig. 3G). Quantitative measurement showed that
the nucleus size increased by ~50% (Fig. 3H),while the nucleus area and cell
area correlation was significantly reduced (Fig. 3I), likely due to the dis-
proportionate increase in nuclear size across the sample. Notably, this
increase in nuclear size occurred without a corresponding substantial
change in cell area (Fig. S9), suggesting that the increase in the NC ratio is
predominantly driven by a significant enlargement of nuclear size. Osmotic
pressure is, therefore, critical for maintaining the NC ratio.

Because osmotic pressure is in part controlled by active transportation
of macromolecules across the nuclear envelope49, we next investigated if
nuclear transport is required forNCcorrelation by inhibitingnuclear export
using selinexor, a selective exportin-1 inhibitor (Fig. 3J)50. Consistent with
the hypo-osmotic shock experiment described above, we found that nuclei
swelled by ~1.4 fold in area (Fig. 3K, L) 24 h after selinexor treatment with
no significant changes in cell area (Fig. S9). The corresponding volume
increase was also validated by analyzing 3D image stacks (Fig. S8). This
observation of nuclear expansion is anticipated sincemolecules could not be
shuttled out of the nucleus, leading to an increased osmotic pressure within
the nucleus. Importantly, we also observed that the selinexor-treated cells
exhibited a significantly lower nucleus-cell area correlation (Fig. 3M), sug-
gesting that the macromolecule homeostasis between nuclear and cyto-
plasmic compartments is required for regulating nucleus size in confluent
epithelia.Collectively, our results show for thefirst time that bothosmolarity
and the cytoskeleton play an essential role in NC regulation in confluent
epithelia. A comprehensive statistical analysis of the six Pearson correlation
coefficient measurements reported in Fig. 3B–Dwas performed in Fig. S10.

Nucleus size impacts histone modifications
Is the morphological variability of cells merely a by-product of upstream
biological events? Alternatively, could the nucleus size heterogeneity have
downstream biological impacts? In the last few decades, seminal studies
have demonstrated that physical confinement of cells has profound influ-
ences onchromatinorganizations, inducing changes in epigenetics andgene
expression24,51. Motivated by these findings, we first examined different
histone modifications, which control the physical properties of chromatin
and the corresponding epigenetic states. For instance,HistoneH3 Lysine 27
trimethylation (H3K27me3) is associatedwith gene silencing, or repression,
and with the formation of facultative heterochromatin, while Histone H3
Lysine 9 acetylation (H3K9ac) is an euchromaticmark associated with gene
activation52. By immunostaining H3K27me3 in confluent MDCK cells
(Fig. 4A) and then analyzing the correlation between nucleus area and
H3K27me3 intensity, we found that the H3K27me3 intensity was anti-
correlated with the nucleus area (Fig. 4B). To control for the intrinsic
dependence of intensity measurement on the nucleus size and potential
variations in staining and imaging, we normalized theH3K27me3 intensity
to the DAPI intensity53. The anti-correlation between the normalized
H3K27me3 intensity and nucleus area was further confirmed by analyzing
isolated nuclei with imaging flow cytometry (Fig. S11). Our observed anti-
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correlation results illustrate that larger nuclei contain less H3K27me3
compared to smaller nuclei. We repeated the same measurement using the
developing E12.5 (Fig. S12) and E12.5 (Fig. 4C) mouse epithelia and
observed a similar correlation (Fig. 4D), indicative of a conserved process in
cultured cells and in vivo systems.

Next, we assessed the expression of the euchromatic mark H3K9ac in
confluent MDCK cells (Fig. 4E). In contrast to the H3K27me3 result, we
observed a positive correlation between the nucleus size and H3K9ac
intensity, where H3K9ac was upregulated in larger nuclei (Fig. 4F). This
result was reproduced in the E12.5 mouse embryonic epithelium (Fig. 4G,
H).Our results in bothMDCKcells andmouse embryos suggest that there is
a universal mechanism dictating H3K27me3 and H3K9ac expression
through nucleus size regulation.

To further characterize how nucleus size impacts the chromatin state,
we performed systematic spatial analyses of the histone mark intensity
within individual nuclei. We focused on two higher-order organization
features: chromatin radial distribution and compaction. Here, the radial

distribution reports how chromatin is arranged with respect to the nuclear
lamina54, whereas chromatin compaction impacts DNA replication55,56 and
damage response57. To quantify the radial distribution, we defined the outer
20% of a nucleus as the nuclear periphery and the inner 80% as the center
(Fig. 4I). We then calculated the intensity ratio between these two nuclear
regions. To illustrate the different levels of euchromatin aggregation, we first
showed that larger nuclei exhibited more chromatin aggregation when
compared to smaller nuclei (Fig. 4J). Such an euchromatin aggregation
morphology was then confirmed by calculating the coefficient of variation
(CV) of the histone intensity58.

By characterizing the radial distribution of H3K9ac in crowded
MDCK cells, we found that larger nuclei have less centralized H3K9ac, as
illustrated by the positive correlation between the periphery-center ratio
and nucleus area (Fig. 4K). We also found that this observed correlation
does not strongly depend on the split ratio between the nucleus center
and the periphery (Fig. S13). This finding confirms that nucleus size can
influence chromatin spatial distribution. To confirm our findings on the
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Fig. 3 | Actomyosin and osmotic pressure balance coordinate the cell and
nucleus areas. A Experimental overview. Inhibitions of myosin II (blebbistain or
Bleb), microtubules (nocodazole or Noco), and the nucleo-cytoskeletal coupling
through LINC (KASH) were performed for 24 h before sample characterization.
Pearson correlation coefficient of cell area and nucleus area in (B) Bleb-treated cells,
correlation measurements conducted using N = 4751, 9444, and 5248 for control,
5 µM, and 10 µM Bleb-, respectively; (C) Noco-treated cells, correlation measure-
ments conducted using N = 3415, 2456, 1999, and 1612 for control, 50 nM, 75 nM,
and 100 nM Noco-, respectively; (D) Bleb- and Noco-treated cells, correlation
measurements conducted using N = 3415 and 1795 for control and Bleb- and
nNoco-, respectively; and (E) KASH cells, correlation measurements conducted
using N = 5376 and 6680 for control and KASH, respectively. F Schematic illus-
trating the hypotonic experiment and timeline. Cells were first treatedwith digitonin
for 5 min to selectively permeabilize the cell membrane (dotted outline). Cell culture
mediumwas subsequently exchangedwith a 95%water solution, inducing a decrease

in osmotic pressure. Purple and gold arrows indicate osmotic pressure into and out
of the nucleus, respectively. Reduction of arrow size in the hypotonic cell illustrates a
decrease in osmotic pressure.G Image of control and hypotonic-shocked cells. Nuc-
BFP/PM-GFP cells were used for real-time visualization of cell and nucleus mor-
phology. Scale bar = 25 μm. H Nucleus area of untreated and hypotonic-shocked
cells. I Pearson correlation coefficient of cell area and nucleus area of untreated and
hypotonic-shocked cells. J Schematic illustrating that selinexor (SLX) inhibits
nuclear exportation through the nuclear pore complex (NPC), increasing the
intranuclear osmotic pressure. Cells were treated with SLX for 24 h before char-
acterization.K Image of control and SLX-treated cells. Scale bar = 25 μm. LNucleus
area of control and SLX-treated cells. M Pearson correlation coefficient of cell area
and nucleus area of control and SLX-treated cells. All correlation measurements
shown in (B,C,D, E, I,M) were conducted usingN = 100 cells, in which all p < 0.05.
“ns'', *, **, ***, ****, refer to p ≥ 0.05, <0.05, <0.01, <0.001, and <0.0001,
respectively. 3 biological replicates were used for all analyses.
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H3K9ac spatial distribution, we performed Airyscan and stimulated
emission depletion (STED) microscopy to further visualize stained
chromatin marks (Fig. S14). By analyzing 114 representative nuclei, we
reproduced the positive correlation between the H3K9ac periphery-
center ratio and nucleus area (Pearson correlation coefficient ~0.29,
Fig. S14). Lastly, we systematically analyzed how CV and periphery-
center ratio correlates with nucleus area for both H3K9ac and
H3K27me3, and summarized all the correlation coefficients in Fig. 4L.
The summary highlights that nuclear size mainly affects the organization
of euchromatin, labeled by H3K9ac, more than heterochromatin, labeled
by H3K27me3.

Our observed effect of nuclear size on chromatin states is reminiscent
of previous micro-patterning constraint studies. In our system, the physical
confinement arises from the neighboring cells. To examine if geometric
constraint alone without the effect of cell-cell adhesion can induce a similar
histone modification change, we micro-patterned 10 μm-diameter fibro-
nectin disks on an anti-adherent substrate to mimic the geometric con-
straint found in crowdedMDCKcells (Fig. 4M).We showed that themicro-
printed fibronectin was able to confine individual cells. In comparison,
subconfluent, unconfined cells exhibited a larger area and irregular cell
shape (Fig. 4M).Consistentwith bothprevious literature andourfindings in
monolayers, we found that confinement upregulated H3K27me3 (Fig. 4N)

Fig. 4 | Nucleus size regulates the expression of histonemarks. A Image ofMDCK
cells stained with Histone H3 Lysine 27 trimethylation (H3K27me3) illustrating its
variable expression levels in different cells. Scale bar = 50 μm.BCorrelation between
normalized H3K27me3 expression level and nucleus area in MDCK cells. N = 461.
95% confidence interval is [−0.447,−0.194].C Image of an E12.5mouse epithelium
stained with H3K27me3. Scale bar = 25 μm. D Correlation between normalized
H3K27me3 expression and nucleus area in the mouse epithelium. N = 130. 95%
confidence interval is [−0.459, −0.209]. E Image of MDCK cells stained with His-
tone H3 Lysine 9 acetylation (H3K9ac). Scale bar = 50 μm. F Correlation between
normalized H3K9ac expression and nucleus area in MDCK cells. N = 1130. 95%
confidence interval is [0.183, 0.293]. G Image of an E12.5 mouse epithelium stained
with H3K9ac. Scale bar = 25 μm. H Correlation between normalized H3K9ac
expression and nucleus area in the mouse epithelium. N = 713. 95% confidence
interval is [0.0988, 0.241]. I Schematic of the nucleus region split for radial dis-
tribution analysis. Yellow shaded region occupying 80% of total nucleus area is
classified as the center, while the outer 20% shaded in blue is classified as the

periphery. J Airyscan image of a small (top) and large (bottom) nucleus of crowded
MDCK cells illustrating differences in the radial distribution of H3K9ac. Scale
bar = 5 μm.K Correlation between H3K9ac periphery-center ratio and nucleus area
of crowded MDCK cells. N = 1246. 95% confidence interval is [0.131, 0.238].
L Summary of the absolute value of the Pearson correlation coefficient between
nucleus area and intensity or spatial distribution analyses in crowded MDCK cells.
M Images of unconfined (left) and confined (right) MDCK cells stained with
H3K27me3 (top) or H3K9ac (bottom). Cells were confined using circular 10 μm
fibronectin micro-patterned substrates. Scale bar = 50 μm.N Box and whisker chart
demonstrating an increase of normalized H3K27me3 intensity in confined cells.
Data were obtained from N = 59 and 75 nuclei derived from three independent
stamp samples for unconfined and confined cells, respectively. O Box and whisker
chart showing a decrease of normalized H3K9ac intensity in confined cells. N = 50
and 52 nuclei derived from three independent stamp samples for unconfined and
confined cells, respectively. *, **, and ***, refer to p < 0.05, <0.01, and <0.001
respectively. N = 3 biological replicates were used for all plots.
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and downregulated H3K9ac (Fig. 4O)20,59. Furthermore, we observed that
confined cells displayed reduced cell and nuclear areas (Fig. S9), aligning
with our finding that smaller nuclei are associated with increased
H3K27me3 levels. Our finding confirms that geometric constraint can play
a role in regulating chromatin modifications. Compared to previous con-
finement studies, which typically impose a constraintmuch smaller than the
nucleus size59, our finding suggests that a relatively mild, physiologically
relevant constraint emerging during crowding is sufficient to alter chro-
matin states.

Nuclear area as a primary morphological predictor of
H3K27me3 levels
Expanding on the identified association between nuclear sizes and histone
mark levels, we conducted a systematic linear multivariable analysis to
evaluate the significance of this nuclear property. This analysis included
seven morphological features of MDCK cells and nuclei, as well as two
textural properties (Fig. 5A).Wefirst validated this approach by confirming
the strong 1-to-1 relationship between cell and nucleus areas, establishing
area as a key feature linking cells and nuclei (Fig. 5B). Specifically, a single-
variable regression, using cell area as the sole predictor, showed a strong
correlation between predicted and measured nucleus area, consistent with
previous findings above. Incorporating additional cellular morphologies
into a multivariable model did not enhance the predictive accuracy com-
pared to cell area alone, evenwhen employing a nonlinear Gaussian process
regression (GPR)model. Also, canonical correlation analysis (CCA), which
identifies and quantifies linear relationships between nuclear and cellular
features by maximizing correlations between their canonical variates, only
slightly improved thenucleusmorphologyprediction.These results confirm
that the nucleus-cell area correlation is primarily pairwise, with other
morphological features playing a minimal role.

We then sought to identify the primary descriptors of phenotypic
heterogeneity in our MDCK cell population using principal component
analysis (PCA). The biplot shown in Fig. 5C revealed a relatively isotropic
distribution along the top three principal components, each contributing
similarly to the total variance. H3K27me3 levels, cell/nucleus area, and cell
aspect ratio were approximately orthogonal, indicating that heterogeneity
cannot be explained by a single morphological variable and that predicting
H3K27me3 levels requires integrating multiple morphological features.
This finding further suggested that the H3K27me3 regulatory pathways
may involve multiple cellular properties with nonlinear interactions, con-
sistent with the observed moderate correlation between H3K27me3 levels
and nuclear size.

We then investigatedwhether additionalmorphological features could
improve H3K27me3 level prediction (Fig. 5D). Notably, incorporating
more nuclear or cellular morphological features did not significantly
enhance prediction accuracy, confirming nucleus area as the primary
morphological predictor of H3K27me3 levels. However, prediction accu-
racy improved with the inclusion of NC ratios, and further enhancement
was achieved using a nonlinear GPR model. The high predictive power
is demonstrated by the strong correlation (r = 0.720) between predicted
and measured H3K27me3 levels (Fig. 5E). To evaluate robustness, we
reconstructed the spatial distribution of H3K27me3 by regenerating
the cell and nuclear layouts of an MDCK monolayer, with each nucleus
color-coded based on normalized H3K27me3 levels (maximum = 1,
minimum = 0) (Fig. 5F).

The inclusion of the NC ratio and consideration of nonlinear rela-
tionships among predictors likely improves predictive accuracy by unifying
various aspects of nuclear and cellular morphology and function that col-
lectively influence H3K27me3 levels, effectively capturing the interplay
between nuclear and cytoplasmic factors regulating histone modifications.
Ourfindings suggest that the relationship betweennuclear size, cell size, and
histonemodifications is nonlinear, with nuclear area serving as the primary
morphological predictor of H3K27me3 levels.

Building on these findings, we investigated how H3K27me3 levels are
associated with cellular properties when the nucleus-cytoskeleton linkage is

disrupted. Analysis of DN-KASH cells revealed that, after LINC disruption,
nucleus area can no longer effectively predict H3K27me3 levels (Fig. 5G).
However, incorporating allmorphological features,NC ratios (Fig. 5H), and
nonlinear relationships (Fig. 5I) restored prediction accuracy to a level
comparable to that in the control samples. This restored predictive power
suggests that LINC disruption reprograms the relationship between histone
mark levels andmorphological properties. To evaluate this reprogramming,
we performed a dropout analysis, systematically removing individual
morphological features from the linear regression model and assessing the
impact on prediction accuracy. Feature importance rankings revealed dis-
tinct trends: in control samples, nucleus area, nucleus shape index, and NC
aspect ratio were key predictors, whereas in DN-KASH samples, cell peri-
meter and circularity emerged as dominant predictors (Fig. 5J). These
results suggest that LINC disruption does not abolish the association
between H3K27me3 levels and cellular morphology but instead
reprograms it.

Nucleus size regulates H3K27me3 levels via UTX
Because our multivariable analysis revealed that nucleus size is the most
dominant morphological predictor of H3K27me3, we next set out to
understand how nucleus size alters chromatin states. To do this, we inves-
tigated the levels of histone-modifying enzymes, which are responsible for
post-translational modifications of histones60. We first characterized the
dependence of histone demethylase levels on nucleus size by immunos-
taining MDCK cells for the lysine-specific demethylase UTX (Fig. 6A) and
compared thenormalizedUTX/DAPI intensities in the top andbottom20%
of nuclei based on size (Fig. 6B). This analysis indicates that UTX levels are
correlated with nucleus size (Fig. S15), consistent with our previously
observed anti-correlation between the H3K27me3 level and nucleus size.
We also assessed how the lysine methyltransferase EZH2 levels relate to
nucleus size (Fig. 6C), but did not observe a significant correlation (Fig. 6D).
Since UTX and EZH2 play antagonistic roles, we next calculated their
intensity ratio (Fig. 6E), which could determine the overall H3K27
methylation state. To that end, we observed a lower EZH2/UTX intensity
ratio in larger nuclei, corroborating the notion that UTX facilitates the
coordination between nucleus size and H3K27me3 levels.

To further examine the functional roles of these enzymes, we admi-
nistered GSK-J1 and DS3201 to inhibit UTX and EZH2, respectively
(Fig. 6F). We validated both drugs’ effects by observing increased
H3K27me3 expression upon GSK-J1 treatment and reduced expression
upon DS3201 treatment (Fig. 6G). By calculating the Pearson correlation
coefficient between nucleus size andH3K27me3/DAPI level, we found that
the anti-correlation observed in the control group was abolished by either
treatment (Fig. 6H), demonstrating that both enzymes are required to
regulate H3K27me3 levels in response to changes in nucleus sizes. Lastly,
since we found that cytoskeletal tension regulates the NC ratio and it has
been suggested to affect the histone-modifying enzyme recruitment20, we
also examined how it affects histonemodifications in our system.We found
that blebbistatin significantly reduced theUTX level (Fig. 6I, J). Importantly,
we observed reduced correlation between nucleus area and H3K27me3
(Fig. 6K) or H3K9ac (Fig. S16) levels, indicating that actomyosin is critical
for coordinating chromatin modifications with nuclear sizes. We also
investigated the potential impact of histone mark levels on nuclear het-
erogeneity by analyzing nuclear size distributions. The results revealed
similar probability density functions across control, DS3201-treated, and
GSK-J1-treated cells in both subconfluent and crowded conditions
(Fig. S17).

To elucidate how nuclear size regulates H3K27me3 through UTX,
we conducted confinement experiments using micro-patterning to
restrict cell spreading and assessed normalized UTX levels at 3, 5, and 8
hours post-seeding (Fig. 6L). Quantitative analysis revealed that UTX
accumulated in the nuclei of control, unrestrained cells, whereas nuclear
UTX levels were significantly reduced in confined cells (Fig. 6M). Using
hypotonic perturbations, we validated this trend by observing increased
UTX levels in nuclei enlarged by hypo-osmotic shock (Fig. S18). In the
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micro-patterning experiments, we further observed a corresponding
increase in H3K27me3 levels (Fig. 6N). These findings suggest that
nuclear size reduction (Fig. S9) hinders nuclear UTX accumulation,
leading to an increase in H3K27me3 levels, a process that takes
approximately 8 h to become evident.

Discussion
Integrating all findings from this study, we propose a model (Fig. 6P) in
which uneven cell division generates cell size variability, which is trans-
mitted to nuclear size variability through actomyosin tension and

intracellular osmotic pressure balance. This nuclear size variability, in turn,
drives variation in histone modifications, partly by modulating UTX
expression.

Our paralleled statistical analyses of both the cell morphology and
nucleus morphology have provided a detailed statistical description of
morphological variabilities in epithelial cells. These analyses unveiled a
constant correlation between the cell and the nucleus size, such that they are
co-scaled as cell density increases. These results have two key implications
for the epithelial cell jamming transition,when the cell collective experiences
crowding and shifts from a fluid-like state, allowing for cell rearrangement,
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Fig. 5 | Nucleus-cell coordination is primarily pairwise and nucleus area is a key
mophological predictor for H3K27me3. A Schematic illustrating cytoplasmic and
nuclear features used inmorphological analyses. CV refers to coefficient of variation
of DAPI intensity. B Prediction-measurement correlation with nucleus area. Axis
range has been optimized to highlight differences between groups. Group titled “Cell
Morph” refers to cell morphology illustrated in (A). GPR and CCA denote Gaussian
process regression and canonical correlation analysis, respectively. C Principal
component analysis biplot of cellmorphology, nuclearmorphology, andH3K27me3
levels. PC indicates principal component. D Prediction-measurement correlation
for H3K27me3 levels. Groups titled “Cell Morph” and “Nuc Morph” refer to
morphologies illustrated in (A). Nonlinearity group utilizes GPR model.
E H3K27me3 level predicted using GPR versus measured level. Gray shaded band
represents the GPR 95% confidence interval. Red dashed line denotes a perfect
correlation (r = 1).N = 1080. F Illustration ofmeasuredH3K27me3 levels inMDCK

cells (top) and predicted levels using GPR (bottom). Color bar indicates normalized
H3K27me3 level. G H3K27me3 prediction-measurement correlation for control
and DN-KASH (KASH) using nucleus area as the sole predictor. H H3K27me3
prediction-measurement correlation obtained using multi-linear regression.
IH3K27me3 prediction-measurement obtained using GPR. J Predictor importance
rank comparison scatter plot between control and KASH cells. Key morphological
features for control and KASH samples are emphasized in fuchsia and cyan,
respectively. Correlationmeasurements were conducted usingN = 376,N = 335, and
N = 446 cells for (B, D); N = 1277, N = 1346, and N = 1101 cells for the control
condition in (G–I); and N = 1262, N = 1438, and N = 1147 cells for the KASH
condition in (G–I). “ns'', *, **, ***, ****, refer to p ≥ 0.05, < 0.05, < 0.01, < 0.001,
and < 0.0001, respectively. 3 biological replicates were used for (B–F), while 4
biological replicates were used for (G–J).
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Fig. 6 | UTX coordinates with nucleus size and regulates H3K27me3 levels.
AMDCK cells stained for UTXwith example images of small (upper right) and large
nuclei (bottom right). B The UTX/DAPI intensity of the smallest 20% of nuclei
(Small) is significantly lower than that of largest 20% of nuclei (Large). N = 295
pooled from 3 biological replicates. C MDCK cells stained for EZH2 with example
images of small (upper right) and large nuclei (bottom right). D EZH2 levels dis-
played no significant difference between small and large nuclei.N = 295 pooled from
3 biological replicates. E EZH2/UTX intensity ratio is higher in small nuclei than in
large nuclei.N = 295 pooled from 3 replicates. FMDCK cells stained for H3K27me3
in control, GSK-J1 and DS3201 samples. G GSK-J1 and DS3201 respectively
increased and decreased the H3K27me3 levels. N = 77, 217, and 294 for control,
GSK-J1, and DS3201, respectively. H Pearson correlation coefficient between
nucleus size andH3K27me3 intensity for control, GSK-J1, and DS3201 treated cells.
GSK-J1 and DS3201 treatments reduced the anti-correlation between nucleus size
and H3K27me3 intensity. Dotted line denotes no correlation. IMDCK cells stained
for UTX in control and blebbistatin-treated (Bleb) samples. J Bleb samples exhibited

lower UTX levels than control. N = 6. K Pearson correlation coefficient between
nucleus size and H3K27me3 intensity for control and Bleb samples. Dotted line
denotes no correlation. L Fluorescent images illustrating UTX levels in unconfined
(top) and 10 μm-confined (bottom) cells. White dashed outline in confined cells
denotes nuclear contour. M Quantification of UTX intensity normalized to DAPI
intensity in unconfined and confined cells. N Same as (L) but for H3K27me3.
O Same as (M) but for H3K27me3. P Proposed mechanism of how heterogeneous
cell morphology generates diversity in nucleus size and chromatin states. In a
crowded epithelialmonolayer, amother cell divides unevenly into two daughter cells
with different sizes, which persist thereafter. Each cell size then propagates through
actomyosin tension and intracellular osmotic pressure balance to determine the
corresponding nucleus size. Cell size heterogeneity thus gives rise to nucleus size
heterogeneity, which in turn contributes to the varying UTX levels and chromatin
modifications. Scale bar = 10 μmfor (A,C,F, I). Scale bar = 20 μmfor (L,N). p < 0.05
for (B,D, F,H,K). “ns'', *, **, ***, ****, refer to p ≥ 0.05, <0.05, <0.01, <0.001, and
<0.0001, respectively. 3 biological replicates were used for all analyses.
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to a solid-like state, typically characterized by reduced cell motility61,62. First,
we demonstrated that the nearly universal distribution of cell size and AR
can be extended to the nucleus morphology. This nucleus-cell correlation
shows that cells and their nuclei share a similar morphological signature
during jamming transition. Therefore, as the cells undergo jamming tran-
sition that is facilitated by direct intercellular interactions, nuclei are con-
currently influenced by this jamming process through the cytoskeletal
tension and osmotic pressure balance. Second, our findings suggest that the
variabilities of cell AR and area are governed by distinct mechanisms.
Previous studies have demonstrated that cell AR variations are largely
impactedby remodeling the intercellular junction63,which is amulti-cellular
effect due to packing. Our result shows that cell area differences, in contrast,
are predominantly determined at cell birth, which is mainly a unicellular
effect.

Our finding that variability in cell size can arise from uneven cell
divisions unveils a source of cell size variability and its universality in a
biological system64,65. The current understanding of variability origin is
mainly built on conjectures predicting PDFs that are subsequently tested by
experiments with a focus on the role of packing geometry. Given that cell
divisions can generate daughter cells with different sizes66, our findings here
provide a framework on how cell divisions can introduce cell and nucleus
size variations within a population, that are subsequently maintained by
each cell to generate the observedmorphological heterogeneities inherent in
the system. Furthermore, our observed persisting cell size disparity sup-
ports a previously proposed cell growth model by which the molecular
synthesis, self-assembly, and transport determine the cell growth rate67. In
future studies, it would be important to determine how cell-cell forces
regulate cell cycles and growths, thereby determining thefinal size of steady-
state cells.

To understand how the nucleus-cell size coordination is achieved, we
investigated the roles of both active nuclear exportation of macromolecules
and actomyosin functions. Our results obtained using a confluent cell layer
highlight the importance of intracellular osmotic pressure balance in
nuclear size regulation, as well as its requirement for coordinating the
nucleus-cell size ratio. Similarly, perturbations of actomyosin functions or
the physical connection of cytoskeleton to the nucleus via LINC resulted in
loss of nucleus-cell size coordination as well. Therefore, both osmotic
pressure balance and actomyosin are critical for coordinating cell and
nucleus sizes.However, it remains unclearwhether inhibitionof actomyosin
hinders nucleus-cell size regulationmechanically or via nuclear transport68.
Future experiments will decipher the two possibilities by observing the
elastic response of nucleus upon laser ablation of cytoskeleton. Finally,
because asymmetric actomyosin localized at cell cortex can generate
unequal forces during cell division to produce daughter cells of unequal
sizes64,65, it will be important in the future to determine actomyosin’s role in
driving size heterogeneities, in addition to the nucleus-cell size correlation
we have identified here.

How nucleus morphology can control gene expression, such as
through chromatin modifications, is an active research topic49. Leveraging
the cell-to-cell variability in our steady-state monolayer system, we directly
tested the regulation of chromatin by nucleus sizes without perturbing
transient intracellular molecular events, and observed a positive or negative
correlation between the nucleus area and the H3K9ac or H3K27me3,
respectively. When compared to previous micro-patterning experiments
that examined isolated single cells, our observationunveils the pivotal role of
nucleus geometry in regulating chromatin organizations in an epithelial
monolayer setting. Our result also unveils that UTX facilitates these nucleus
size-driven chromatinmodifications, inwhich theUTX levels are controlled
by the nucleus size and actomyosin tension. Our finding of the correlation
between UTX levels and nucleus size is consistent with recent experiments,
where nuclear envelope curvature was found to regulate the nuclear pore
complex conformation, altering molecular weight-dependent nucleocyto-
plasmic transport68. This finding is also consistent with recent theoretical
predictions, which posit that the nucleus volume alone can impact the
chromatin state by altering the intra-nuclear electrostatic potential69 and

surface area to volume ratio, affecting expression of genes associated with
the nuclear lamina70. Lastly, previous studies have shown that chromatin
state and its interaction with the nuclear envelope can determine nuclear
morphology71. Our work highlights that a reverse regulation can too take
place, as thenuclearmorphology, controlledby the cytoskeletonandnuclear
transport, can modulate the levels and distributions of different
chromatin marks.

Finally, ourfindings here provide a potentialmechanismbywhich cells
in living tissues cangenerate diversity in cell shapes, fates, andbehaviors. For
instance, concomitant changes in cell/nucleus sizes and differentiation can
occur following asymmetric cell divisions during Drosophila neuroblast
differentiation72,mouse keratinocyte differentiation73, andmouse blastocyst
patterning74. In a pathological setting, cancer cells with larger nuclei are
often linked to a more metastatic state75. It is therefore plausible that var-
iations in cell and nucleus sizes, regardless of how they are produced, help
generate a spectrumof chromatinmodifications that in turnmodulate gene
expressionand fate changes acrossdifferent cells. Taken together, our results
unveil the process through which cell and nucleus sizes are coordinated to
control chromatin modifications and distribution, thus translating varia-
tions in cell sizes into differences in chromatin organizations. Cell mor-
phological heterogeneity that is present in any tissue may therefore play an
important role in generating cell diversity.

Methods
Cell culture and drug treatment
All experiments conducted using Madin Darby Canine Kidney cells
(MDCK II cell line) were cultured inMEM-α (Fisher Scientific, 12561-056)
supplemented with 10% fetal bovine serum (FBS) (Fisher Scientific, 12662-
029) and 1% Penicillin-Streptomycin (Fisher Scientific, 15140-122). The
MDCK II cell line was a gift from Jeffrey Fredberg at Harvard University.
HaCaT cells (AddexBio, T0020001), were cultured under low-calcium
conditions for growth and propagation and under high-calcium conditions
for differentiation, as outlined in previous HaCaT culturing protocols76.
DMEM was used as the base medium for both low-calcium and high-
calciummedia. Low calciummedia was supplemented with 2% 200 nM L-
glutamine, 1% of 3.0mM calcium chloride solution, and 10% low calcium
FBS. High-calcium media was made by adding 20mL of 200 nM L-gluta-
mine, 10ml of 280mM calcium chloride solution, and 100ml of low-
calcium FBS to 780mL of DMEM. Low-calcium FBS was prepared by
adding 0.38 g of Chelex 100 resin to 50mL of FBS and incubating for one
hour at 4 °C on a tube rotator. MDCK andHaCaT cells were maintained at
37 °C and 5% CO2 with humidity. For all MDCK and HaCaT assays, cells
were passaged when they reached ~80% confluence using Trypsin/EDTA
solution (Fisher Scientific, 25300-054). Cells utilized in time course
experiments and subconfluent experiments were seeded at 30,000 cells/cm2,
while cells utilized in confluent experimentswere seeded at 80,000 cells/cm2.

To inhibit non-muscle Myosin II, microtubules, and nuclear export,
blebbistatin (Millipore Sigma, B0560), nocodazole (Millipore Sigma,
M1404), and selinexor (Selleckchem, KPT-330) were used, respectively.
Concentrations used were 5 μMand 10 μM for blebbistatin, 50 nM, 75 nM,
and 100 nM for nocodazole, and 10 μM for selinexor. When combined,
10 μM blebbistain was mixed with 30 nM nocodazole. GSK-J1 (Sell-
eckchem, S751) andDS3201 (Selleckchem, S8926)were respectively used as
a histone demethylase inhibitor and a histone methylase inhibitor at a
concentration of 5 μM. These optimal concentrations were determined by
titrating doses to achieve their primary functions without causing other
adverse effects, such as apoptosis. All pharmacological agents were admi-
nistered for 24 h at 37 °C and 5% CO2 once cells reached ~90% confluence.

Mouse line and procedure
All animal procedures were conducted in compliance with the animal
protocols approved by the UCLA Institutional Animal Care and Use
Committee (Protocol Number ARC-2019-013).We have complied with all
relevant ethical regulations for animal use. Embryos were not sexed and
were selected at random for all experiments. No wild-type animals were
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used; the only inclusion criterion was Cre-induced membrane-GFP posi-
tivity in epithelial cells.

K14Cre77 and R26mT/mG78 mice were group housed and genotyped as
previously published. To generate K14Cre; R26mT/mG embryos for experi-
ments, timed pregnancy was set up between K14Cre; R26mT/mG mice, and
E12.5 embryos were harvested subsequently. Pregnant mice were eutha-
nized by CO2 followed by cervical dislocation. Both membrane GFP-
positive male and female embryos were selected at random and used in all
experiments. Embryonic tissues were harvested and fixed in 4% paraf-
ormaldehyde (PFA) in PBS overnight at 4 °C. Tissues were subsequently
washed with PBS three times and stained as previously described. All mice
were maintained in the University of California Los Angeles (UCLA)
pathogen-free animal facility. All mouse experiments were approved by the
UCLA Institutional Animal Care and Use Committee (Protocol Number
ARC-2019-013). No design study protocol was prepared before this study.

Immunostaining
For cell culture experiments usingHaCaT andMDCK cells, cells plated in a
4-chamber Ibidi slide (Ibidi, 80426) were fixed in 10% neutral buffered
formalin with 0.03% Eosin (Sigma-Aldrich, F5304-4L) for 10minutes at
room temperature. Cells were then simultaneously permeabilized and
blocked using a mixture of 2% Donkey Serum (Fisher Scientific, D9663-
10ML) with 0.25% Triton X-100 diluted in PBS with calcium and magne-
sium (Fisher Scientific, 14040-133) at room temperature for 30min. After
washing three times with PBS, cells were then incubated in a primary
antibody solution for 30min at room temperature. The primary antibodies
utilizedwereH3K27me3(Cell SignalingTechnology, 9733S, dilution1:800),
H3K9ac (ActiveMotif, 61663, concentration2 μg/ml), EZH2(Cell Signaling
Technology, 3147S, dilution 1:200), and UTX (Cell Signaling Technology,
33510S, dilution 1:200). The cells were then washed three times using PBS
before incubating with the secondary staining solution using anti-mouse
Alexa Fluor 488 and anti-rabbit Alexa Fluor 647 (Invitrogen, A21042 and
4414S, respectively; concentration 4 μg/ml) secondary antibodies for 30min
at room temperature. Nuclei were labeled using DAPI (Invitrogen, D1306,
concentration 1 μg/ml) was added along with the secondary antibody.

Formouse embryo staining, the sameprotocolwas utilized exceptwith
incubation times of 1 hour for the permeablization/blocking buffer,
24 hours at 4 °C for the primary staining solution, 3 hours for the secondary
staining solution, and 2 hours for the PBS washes.

Imaging and analysis
Fluorescent images were acquired using either a confocal microscope
(RCM1 with Nikon Eclipse Ti-E, NIS-Elements software) or a widefield
fluorescent microscope (Etaluma LS720 Lumaview 720/600-Series soft-
ware).A20×WI/0.95NA, 60×WI/1.00NA, or 20× /0.75NAobjectivewas
used for images taken using confocal microscopy. A 20×/0.40 NA objective
was used for the widefield fluorescent images. The imaging conditions were
consistently maintained across all experiments. To quantify fluorescent
intensity, z-projected images obtained fromz-stack imagingusing a step size
of ~2 μm were used. In time lapse imaging, images were taken using the
Etaluma microscope every 5minutes for 6 days with media changes per-
formed every other day. Morphological segmentation was performed using
Cellpose79 or Trackmate80. Maximum intensity projections of z-stacks were
utilized for segmentation. Quantifications were performed usingMATLAB
(version R2023a) or ImageJ (version 2.1.0/1.53c). For analyses investigating
the spatial localization of histone modifications, fluorescence intensities
were normalized to the area of the center and periphery regions. In all
relevant analyses, all cells at the edge of the image were excluded since their
correspondingmorphology couldnot be accuratelymeasured.Additionally,
actively dividing cells were excluded for analysis, as they exhibit non-
representative morphology and DAPI intensity. Confounders were not
controlled.

For the multivariable analyses shown in Fig. 5, all computations were
performedusing theMATLABRegression LearnerApp and custom scripts.

Morphological features were quantified with ImageJ measurement tools.
The quantifiedmorphological features are defined as follows: shape index is
the ratio of the perimeter to the square root of the area, solidity is the ratio of
the area to the convex area, circularity is the ratio of the area to the square of
the perimeter, roundness is the ratio of the area to the square of the major
axis length, aspect ratio is the ratio of themajor axis length to theminor axis
length, and the coefficient of variation is the ratio of the standard deviation
to the mean. Regression prediction accuracy was evaluated using the
Pearson correlation coefficient between predicted (MATLAB Regression
Learner App) and ground truth values. Nonlinear regression modeling
employed Gaussian Process Regression (GPR) with a squared exponential
kernel, chosen for its ability to handle noise, sparsity, and biological varia-
bility while providing probabilistic predictions with uncertainty quantifi-
cation. For H3K27me3 level analysis, DAPI mean intensity, standard
deviation, and coefficient of variationwere excluded from the predictors list,
as their direct correlation with normalized H3K27me3 levels (H3K27me3/
DAPI) lacks biological significance. Predictor importance was assessed via
single-variable dropout analysis, where each predictor was excluded indi-
vidually, and the regression model was recalculated. The predictors were
ranked based on their importance, quantified by the reduction in the
Pearson correlation between predicted andmeasured values caused by their
dropout.

Hypotonic shock experiment
MDCKcells with nuclear BFP and plasmamembraneGFPwere cultured in
a 4-chamber Ibidi slide (Ibidi, 80426) until confluent. Z-stack images of both
BFP and GFP channels were then acquired using a 60× WI objective. Fol-
lowing this, 10−4% V/V digitonin was added to the cell culture media for
5minutes and the same imaging protocol was repeated. To introduce a
hypotonic environment, the cell culture media containing digitonin is then
replaced with a solution 95% Milli-Q water and 5% MEM-α, in which the
corresponding osmolarity is then calculated based on the concentration of
individual solutes in the final solution. After a 4minute incubation with the
hypotonic solution, cells were imaged using the same imaging procedure
described above.

MDCK cell transduction
To label plasma membrane with GFP and nucleus with BFP for live
imaging, cells were first transfected with a pAcGFP1-Mem vector to
produce a plasma-membrane line. These cells were seeded at a density of
2 × 104 cells per well in 12-well plates. Three days after seeding, cells were
infected with 250 μL of lentivirus expressing nucleus BFP and 8 ng/μL
polybrene (MilliporeSigma, TR-1003-G). The plate was immediately
centrifuged at 500 × g for 1 h at room temperature following the infec-
tion. After centrifugation, 750 μL culture medium was added without
removal of lentiviruses. BFP/GFP double positive clonal populations
were sorted by FACS using a BD FACS Aria H. To generate the KASH
reporter, MDCK cells were seeded at a density of 2 × 104 cells per well in
12-well plates. Cells were transfected three days after seeding using
Lipofectamine Reagents (Invitrogen, 18324012) with 0.75 μg GFP-
KASH2 vector (Addgene plasmid no. 187017) and 0.25 μg PiggyBac
transposon vector. After neomycin selection, clonal populations were
sorted by FACS using a BD FACS Aria H.

Micro-patterning
Micro-patternedpolydimethylsiloxane (PDMS) stamps, containing circular
pillar arrays, were obtained from Research Micro Stamps (Clemson, SC).
PDMS stamps underwent sonication in an ethanol bath for sterilization.
Following sterilization, the pillars of the stamp were incubated with 20 μg/
mLfibronectin for 30min at room temperature. The PDMS stampwas then
affixed to hydrophobic, untreated petri dishes to transfer the fibronectin.
The surface was then treated with Anti-Adherence Rinsing Solution
(STEMCELL technologies, 07010) for 45min to minimize nonspecific cell
binding.
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Statistics and reproducibility
GraphPad PRISM (version 10) and MATLAB (version R2023a) were used
to perform statistical analysis and create figures. Data is presented as
mean ± standard deviation. For correlative analyses of all presented scatter
plots, both the Pearson correlation coefficient and the Spearman correlation
coefficient were calculated in addition to the p value, false discovery rate
(FDR), and confidence interval (CI), all of which are summarized in Table
S1. FDR was evaluated using a Monte Carlo simulation that randomly
permutes the XY values of data points. P > 0.05 are denoted as not sig-
nificant (ns), while p-values ≤0.05, ≤0.01, ≤0.001, and ≤0.0001, are repre-
sented as *, **, ***, and ****, respectively. Statistical comparisons were
calculated using unpaired two-sided t tests. The data points presented in
Fig. 4L were pooled from three independent biological replicates and ran-
domly resampled. No bootstrappingmethods were applied in any analyses.
Pearson correlation coefficient was calculated by dividing the covariance of
two variables by the product of their standard deviations. The Spearman
correlation coefficient was obtained by calculating the Pearson correlation
coefficient between the ranks of two variables. For box andwhisker plots, the
box represents the interquartile range (IQR), whiskers denote theminimum
andmaximumpoints, and the line represents themedian of the dataset. For
the dot plots, the error bars denote the standard deviation. The sample sizes,
number of replicates, and descriptions of replicates are detailed in the cor-
responding figure captions. For animal experiments, no a priori calculation
was used. Sample size was determined using standard lab practice of n ≥ 3.
As these are correlation studies of different cellular features using control
animals, no randomization was carried to allocate samples into different
experimental group.

Data availability
All data supporting the findings presented in this manuscript are provided
in the main text and Supplementary Information. Additional data are
available from the corresponding author upon reasonable request. Source
data are included in Supplementary Data 1, while data used for the multi-
variable analysis are provided in Supplementary Data 2.

Code availability
All algorithms used to analyze the data in this manuscript are described in
detail in the Methods section. Cell segmentation was conducted using
Cellpose 2.0. All analyses in this manuscript were performed using
MATLAB (R2021a) and Excel (2021), utilizing built-in functions with
default parameters. Custom MATLAB code is available from the corre-
sponding author upon reasonable request81. https://doi.org/10.5281/
zenodo.14795857.
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