
communications biology Article
A Nature Portfolio journal

https://doi.org/10.1038/s42003-025-07681-0

Double and single stranded detection of
5-methylcytosine and
5-hydroxymethylcytosine with nanopore
sequencing

Check for updates

Dominic Oliver Halliwell 1 , Floris Honig 1, Stefan Bagby 1, Sandipan Roy 2 & Adele Murrell 1

5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are modified versions of cytosine in
DNAwith roles in regulating gene expression. Using whole genomic DNA frommouse cerebellum, we
benchmark 5mC and 5hmC detection by Oxford Nanopore Technologies sequencing against other
standard techniques. In addition, we assess the ability of duplex base-calling to study strand
asymmetric modification. Nanopore detection of 5mC and 5hmC is accurate relative to compared
techniques and opens means of studying these modifications. Strand asymmetric modification is
widespread across the genome but reduced at imprinting control regions and CTCF binding sites in
mouse cerebellum. Here we demonstrate the unique ability of nanopore sequencing to improve the
resolution and detail of cytosine modification mapping.

Chemically modified versions of cytosine, 5-methylcytosine (5mC) and
5-hydroxymethylcytosine (5hmC), affect transcriptional regulation and
play important roles in many biological processes and diseases, including
development, ageing, and cancer1. In eukaryotic genomes, these modifica-
tions are enriched at motifs known as CpG sites, dinucleotide positions in
which cytosine is followed immediately by guanine.DNAmethyltransferase
(DNMT1) maintains methylation at these sites symmetrically, at the cyto-
sine base on both the forward and reverse strand. Asymmetrical mod-
ification is largely a feature of cell division, with the production of a
temporarily unmethylated template that is then methylated by DNMT12;
however, recent reports suggest that hemi-methylation, where 5mC is
present on only one strand, can be stablymaintained after cell division3, and
can affect DNA-transcription factor interactions4.

Oxidative conversion of 5mC by the Ten-Eleven Translocation (TET)
family of proteins produces 5hmC5. 5hmC is a stable modification impor-
tant for maintaining pluripotency in embryonic stem cells, neural devel-
opment, and tumorigenesis6,7, but can also be removed throughboth passive
and active enzymatic demethylation.

Genomic imprinting is an epigenetic phenomenon where some
mammalian genes silence one parental allele during gametic development8.
A collection of stable allele-specific differentially methylated regions
(DMRs), located at regulatory elements that act as imprinting control
centres, offers an excellent model system for studying DNA methylation
dynamics in mammalian cells. Allele-specific transcription is regulated by

methylation-sensitive transcription factors that bind within the DMRs. A
notable example beingCTCF,which structures allele-specific 3D chromatin
conformation at selected imprinted loci9, as well as genome-wide interac-
tions between distant regulatory elements10.

Most DNA methylation detection assays are performed using bisul-
phite sequencing techniques11. Sodium bisulphite causes cytosine bases to
deaminate, converting them to uracil, which is then replaced by thymine
during PCR. 5mC and 5hmC resist deamination and amplify as cytosine.
Sequencing the product provides a base-resolution binary readout of con-
verted (unmodified) and non-converted (modified) bases. The process
damages DNA, however, and destroys up to 90% of the initial DNA
template12. Subsequent PCR steps introduce PCR bias and generate pro-
ducts with reduced sequence complexity, leading to lowmapping rates and
unevengenomecoverage13,14. Since both 5mCand5hmCare protected from
bisulphite-mediated deamination, different treatments are also required to
distinguish between 5mC and 5hmC.

Oxidative bisulphite sequencing (oxBS-seq)15 and TET-assisted bisul-
phite sequencing (TAB-seq)16 were developed as means of sequencing
5hmC at base-pair resolution. These methods involve protection of either
5mC (oxBS-seq) or 5hmC (TAB-seq) from bisulphite-mediated deamina-
tion, leaving a binary readout of the protectedmodification only. The 5mC-
specific signal from oxBS-seq can also be subtracted from the standard
bisulphite reference to predict the presence of 5hmC; however, sample
variation can lead to logical inconsistencies, such as the calculation of
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negative hydroxymethylation17. Inefficient chemical conversion is the pri-
mary sources of read-level error within these methods. Within TAB-seq,
protection efficiency for 5hmC can be as low as 92%16, resulting in its
deamination and false negative reading; conversely, 5mC-to-T conversion
can be as low as 96%18, leading to false positive detection ofmethylated bases
as 5hmC.Given that 5mC is, in tissues likemouse embryonic stem-cells, 14-
fold more abundant than 5hmC5, it is possible that many TAB-seq-derived
5hmC detections represent this error. Where 5mC requires relatively low
input depth to be sequenced reliably, at roughly 5-10x in whole-genome
bisulphite sequencing13, deep sequencing is essential to confidently predict
5hmC, with the required depth increasing when the rate of incomplete
conversion is higher16, or when 5hmC abundance in a tissue is lower15.
Several methods have been developed to reduce these limitations, including
TAPS sequencing and related methods19,20, and ACE-seq21. Although
accurate and less deleterious to sample DNA, these methods still rely on
multiple chemical or enzymatic steps and remain vulnerable to PCR-
induced biases.

Immunoprecipitation-based approaches are used for genome scale
5mC and 5hmC sequencing. Methyl- and hydroxymethyl-DNA immu-
noprecipitation (MeDIP/hMeDIP) employ an anti-5mC/5hmCantibody to
isolate the modified DNA22,23, which is then amplified and sequenced,
producing “peaks” of coverage over regions where modifications are enri-
ched identical to chromatin (ChIP) sequencing24. As whole fragments are
pulled down, these methods lack base resolution. It is also difficult to dis-
tinguish instances of nonspecific binding of antibody to unmodified DNA,
which can produce false positive enrichment peaks accounting for a large
proportion of peak regions25.

Third generation sequencing technologies produce a direct readout of
canonical bases and of somemodified bases without chemical conversion or
PCR amplification. Two such technologies, PacBio’s Single Molecule, Real-
Time (SMRT) sequencing26 and Oxford Nanopore Technologies (ONT)
sequencing27, support detection of different base modifications, including
DNAmethylation. SMRTsequencingdetectspolymerase-catalysedaddition
of nucleotides to a DNA template as fluorescent pulses; polymerase kinetics
are affected bymodified bases, which allows the type of base to be inferred28.

In nanopore sequencing, blockage differences in ion channel current
are recorded to detect and identify the base sequence present in a nanopore
at any moment. Modifications such as 5mC and 5hmC, and RNA mod-
ifications such as 6-methyladenine (m6A)29, induce detectable differences in
blockage signal relative to the canonical base30. These differences are
decoded using software such as nanopolish31 and signalAlign32, which are
both built on hidden Markov models, or DeepSignal33, and Megalodon34,
which both use artificial neural networks. Predictions from several tools,
including nanopolish, DeepSignal, DeepMod35, and Oxford Nanopore
Technologies’ Guppy, Megalodon, and Tombo, are also included in
METEORE, a consensus approach capable of improving accuracy over
individual tools36. 5mC detection by these tools correlates well at base level
with bisulphite data (r>0:8� 0:95)36,37, even at lower coverage depths
(d ≥ 3)38. 5hmC-trained base-calling models were largely lacking, however,
until the development of Remora39.

The latest generation of Oxford Nanopore Technologies’ flow cells
(R10.4.1HD) offers further capabilities suited to epigenetics research. In
standard “simplex” sequencing, double-stranded input DNA is unwound
and one strand passes through a nanopore while the other is discarded or
sequenced in a different pore. R10.4.1HD flowcells improve second strand
capture rate, enabling the two strands of a dsDNA molecule to proceed
successively through a nanopore. The two reads are then paired informa-
tically. This technique, “duplex” sequencing, improves base-calling and
mapping accuracy via consensus fromboth strands of aDNAmolecule. Via
simultaneous examination of the modification status of both strands,
moreover, duplex sequencing permits determination of strandmodification
symmetry and asymmetry.

In this study we have used Oxford Nanopore Technologies’ Pro-
methION to generate whole genome sequences of mouse cerebellum for
benchmarking, comparing more than 1.6 billion base-calls encompassing

12.3 million CpG dinucleotide positions with public oxBS and TAB-seq
data. In addition, we verified the sensitivity of the base-caller to higher input
5hmC via direct sequencing with a MinION of a 5hmC-enriched hMeDIP
library. Finally, we used nanopore duplex sequencing to query locus-level
modification symmetry at imprinted loci and CTCF binding sites.

Results
Accuracy of raw read detection of 5mC frommethylation
standards
We sequenced two commercially available human DNA methylation stan-
dards (Zymo, D5013), a whole genome amplification (WGA)-produced
modification-negative control and an enzymaticallymethylated 5mC-positive
control. The modification negative control has no possibility of base mod-
ification; thus, all modified base detections represent false positives. The
methylation positive control, which is enzymatically methylated after WGA,
has a high degree ofmethylation (>95%) as reported by themanufacturer. All
5hmC detections represent classification errors. Raw read accuracy, which is
the accuracy of modified base detection at a single base in one read, was very
high for 5mC, with a precision of 0.99 and recall of 0.97 (Fig. 1a; Table 1).

Previous reports highlight a vulnerability of nanopore sequencing to
mappingmismatches at regions of especially high GC content40. To analyse
its effect on modification detection, we inspected rates of false positive
modificationdetection (FPR) as a functionof localGCcontent.This showed
a strong correlation between GC content and FPR (r ¼ 0:76; p≥ 0:001)
(Fig. 1b), with GC contents substantially higher than the genomic mean
(41.06%) experiencing the highest error rates.

Although we could not find any specific sequence motif in the 12-mer
sequence up/downstream of a false positive modified base-call, there was a
higher proportionofGorCbasedetections thanexpected fromthegenomic
mean for both false positives of 5mC (GC ¼ 0:56) (Fig. 1c) or 5hmC
(GC ¼ 0:59)(Fig. 1d).

Certain genomic elements may be predisposed to false positive error
due toGC content; namely, Alu repeats (mean 51.3%GC)41, satellite repeats
(mean 47.1% GC), and low complexity regions or simple repeat sequences
(GC variable), such as tandem repeats. GC-rich CpG islands (CGI) (mean
68.6%GC),which are important for transcriptional regulation, could also be
vulnerable to this effect. Indeed, in themodification-negative standard, FPR
above the genomic mean was noted in low complexity repetitive sequences
(Fig. 1e). By contrast, in the methylation-positive standard (Fig. 1f), false
5hmC detection was largely consistent with the genomic mean 5hmC FPR
for most contexts except for simple repeat elements, where 5hmC FPR
appears to double.

False positive detection of 5hmC was present in both the unmodified
and methylated standards. There was an almost five-fold difference in false
5hmCdetectionbetween theunmethylated (0.0024) andmethylated (0.011)
standards (Fig. 1g). This indicates a tendency for the base-caller to mistake
true methylated positions for hydroxymethylation.

Rates of calling ofmodified bases: nanopore is highly consistent
with bisulphite-based sequencing methods
To assess modified base detection from ex vivo tissues and compare rates of
base modification with orthologous techniques, cerebellar tissues from two
8-week-old femalemice were sequenced in duplicate, producing four whole
genome datasets (median genomic depth 29-32x) (Table S1). CpG mod-
ification calls were extracted from this, with median CpG depths of 15–17x
(stranded) (Fig. S1a). Samples were selected to match a publicly available
archive of sequence data, containing whole genome oxidative bisulphite
sequencing (oxBS-seq) for two biological replicates and TET-assisted
bisulphite sequencing (TAB-seq) for three biological replicates42. The
datasets produced using these techniqueswere lower coverage depth, with a
median CpG depth of 3x (stranded) for TAB-seq (Figs. S1b), and 2-6x for
oxBS-seq (Fig. S1c). To account for higher rates of FPR found in some repeat
contexts, repeats were soft-masked.

Higher genomicdepth in thenanopore sequencedata (Fig. S1d)provides
a larger sample of sequence reads per cytosine (Fig. S1e). Previous studies in
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bisulphite based libraries have highlighted a negative correlation between GC
content and sequencing depth43. In our study we noted significant negative
correlation with depth (Fig. S1f) and local GC content for all methods
(Nanopore: ρ ¼ �0:53; p≤ 0:001; oxBS-seq: ρ ¼ �0:71; p≤ 0:001; TAB-
seq: ρ ¼ �0:79; p≤ 0:001), with oxBS-seq and TAB-seq showing the most
prominent loss of coverage evenbelowthegenomicmeanGCcontent (41.7%)
(Nanopore: ρ ¼ �0:54; p≤ 0:001; oxBS-seq: ρ ¼ �0:71; p≤ 0:001; TAB-
seq: ρ ¼ �0:59; p≤ 0:001). Thus GC-related effects may explain the lower
depth of coverage found in promoters and CpG islands (Fig. S1h), as well as
general loss of coverage (Fig. S1i).

Modified base detection is similar in the nanopore sequencing and
bisulphite-based data. CpG methylation in either method follows a
bimodal distribution (Fig. 2a), with two maxima of CpG positions that
are either completely methylated or completely unmethylated. Fewer
5mC detections are made by the nanopore base-caller (60.3–62.8%) than
by oxBS-seq (66.3–68.8%) (Table S2); however, the difference is non-

significant (Welch’s T-Test: p ¼ 0:08; Cohen’s d: d ¼ 4:06), potentially
on account of sample size differences. False negative 5mC detection is
unlikely to fully account for this, with the difference between means
(6.0%) larger than that expected from the false negative error (3.0%)
noted above, potentially indicating a bias favouring the detection of
methylated bases in oxBS-seq.

5hmC is unimodally distributed around 0% in either method, with a
maximumreflecting ahighdensityofCpGsites inwhich5hmC isnot found
(Fig. 2b). As above, the proportion of base-calls detected as 5hmC is also
lower in the nanopore data, ranging from 9.6 to10.4%, and 11.0–11.8% in
TAB-seq (Welch’s T-Test; p ¼ 0:004;Cohen0s d : d ¼ 4:10). In the
absence of a ground-truth 5hmCcontrol, this difference (difference between
means: 1.6%) may approximate the rate of false negative error for 5hmC
detection bynanopore sequencing. 5hmCwas significantlymore likely to be
detected at any givenCpG position at least once, likely due to the difference
in depth (Welch’s T-Test; p ¼ 0:01; Cohen0s d : d ¼ 3:21).

Table 1 | 5mC base detection statistics using methylation standards

True Positive Rate (TPR) False Negative Rate (1-TPR) False Positive Rate (FPR) Precision
( TPR
TPRþFPR)

Recall
( TPR
TPRþFNR)

F1-score

2 Precision�Recall
PrecisionþRecall

� �� �

0.97 0.03 0.0056 0.99 0.97 0.98

Base-calls from both the unmodified negative standard and 5mC-positive standard are concatenated and, for computational purposes, down-sampled to 100,000,000 base-calls.

Fig. 1 | Raw read accuracy of nanopore modified base detection using human
whole genomic controls. a Precision-Recall curve for 5mC detection using
unmodified (N = 2) andmethylated controls (N = 2). 5hmC detections are included
as error, due to the absence of 5hmC in either control sample. Base-calls from both
replicates of each control are counted and down sampled to 100,000,000 base-calls.
b False positive rate of modified base detection from the unmodified control as a
function of local GC content. CpG base-calls are binned into non-overlapping
100 bp windows and GC percentage calculated using the mm39 (GRCm39) refer-
ence genome. Bands indicate a 95% confidence interval across replicates (N = 2).
Logo representation of the 12-mer sequence up/down stream of false positive

modified base detections for 5mC (c) and 5hmC (d). Higher base probabilities are
shaded and stacked top-down. Includes reads from both unmodified DNA stan-
dards (N = 2). e Rates of false positive modified base detection across classes of
repetitive, low-complexity, or CpG island sequences, including (top) 5mC and
5hmC false positives in the modification-negative control (N = 2), and (bottom)
5hmC false positives in the 5mC-positive control (N = 2). LC: Low Complexity. SR:
Simple Repeat. Error bars indicate 1 s.d. f Confusion matrix for predicted and
ground-truth base-calls. Base-calls across all replicates are counted, consideringC to
be the ground-truth state of all base-calls in the unmodified controls (N = 2), and
5mC in the methylated controls (N = 2). ****p < 0.0001.
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Intra-assay variation was calculated pairwise between replicates, using
the root mean square of deviations (RMSD) between percentage mod-
ification values at matched CpG positions. The mean is then taken to
summarise all pairwise comparisons. This value is expressed here as a
percentage, reflecting deviations in the percentage of reads at any CpG sites
that were modified. At 5x depth, we found mean intra-assay RMSDs of
17.8% fornanopore 5mCdetection and13.3% for 5hmC.At the samedepth,
intra-assay variation was slightly higher in oxBS-seq and TAB-seq, with
mean RMSD values of 14.1% and 11.3% respectively. Using a sliding
threshold on minimum coverage depth, we noted changes in RMSD as
stricter thresholds were applied (Fig. S2a; Table 2). The oxBS-seq and TAB-
seqdata show lower rates of intra-assay variation at higher depth thresholds,
appearing less variable; however, this likely reflects a dataset artefact. Few
sites remain for comparison at these thresholds, leading to over-
representation of a small subset of positions that have different rates of
modification to the remainder of the sample (Fig. S2b).

Rates of modification detection at matched CpG sites are consistent
between techniques (Fig. 2c). This inter-assay deviation is calculated using
pairwise comparisons between replicates, calculating RMSD and Median
Absolute Deviation (MAD). Themean of pairwise comparisons is reported
here (Table 3). At 5x depth, we noted a MAD between 5mC sequencing

methods of 12.0% and RMSD of 20.0%. For 5hmC, compared to TAB-seq,
MAD calculated to 7.6%, with an RMSD of 15.8%. As above, inter-assay
deviation became lower with depth (Fig. S2c).

Rates of CpGmethylation and hydroxymethylation are known to vary
dependent ongenomic context.To study this fromthesenanopore sequence
data, CpG-context base-calls were aggregated according to overlapping
genomic features, before a standard (Z)-score was calculated to indicate
enrichment in a modification relative to the genomic mean. Within the
nanopore data, patterns of 5mC and 5hmC enrichment across genomic
features were typical of both modifications. Consistent with previous study

Fig. 2 | CpG-resolutionmodified base detection using nanopore sequencing and
bisulphite methods. Base-calls from matched CpG positions are concatenated
across replicates in all plots. Density distributions of (a) methylation, or (b)
hydroxymethylation, as the percentage modified reads at individual CpG sites, as
found by nanopore sequencing (solid line) and the orthologous bisulphite method
(dotted). Datasets are randomly down sampled to 1,000,000 CpG positions covered
by each (merged) dataset for density computation. c Histogram of deviations
between matched CpG positions within the merged nanopore datasets and
respective bisulphite orthologue for 5mC (n = 15,468,504 CpG sites) or 5hmC
(n = 11,283,580). Deviations are expressed as the difference in the percentage of

reads at any given base that are modified between techniques. Base-calls from
matched CpG sites are merged across replicates. d Violin plots showing CpG
modification rate Z-score across different genomic contexts. Each violin contains a
boxplot representing the distribution of modification Z-scores for that feature; for
each, black box shows the interquartile range, white centre line indicates themedian,
and black lines extending to the 1.5x interquartile range. Base-calls from matched
CpG sites are merged across replicates. Y-axis is limited between −3 ≤ Z ≤ 3 for
visualisation. Table S3 displays the summary statistics of Z-score and percentage
modification for each feature.

Table 2 | Intra-assay variation of each sequencing method

Intra-assay RMSD at x depth (%) Mean count of sites compared across replicates

5x 10x 15x 5x 10x 15x

Nanopore 5mC 17.8 16.8 15.3 24,840,932 19,873,534 9,765,218

5hmC 13.3 12.5 11.5 24,840,932 19,873,534 9,765,218

oxBS-seq 20.0 14.1 8.4 1,838,247 22,292 3437

TAB-seq 16.3 11.3 6.3 2,813,280 105,536 6126

Intra-assay variation shown for Nanopore sequencing (N = 4), oxBS-seq (N = 2), and TAB-seq (N = 3). Root Mean Square Deviation (RMSD) is calculated pairwise between all possible replicate pairs. The
mean of these pairwise comparisons is shown here for different depths.

Table 3 | Inter-assay variation between sequencing methods

Orthologous
technique

MAD at x depth (%) RMSD at x depth (%)

5x 10x 15x 5x 10x 15x

5mC oxBS-seq 12.0 9.9 7.7 20.0 17.1 17.7

5hmC TAB-seq 7.6 7.0 4.7 15.8 12.5 9.9

Replicates of Nanopore sequencing (N = 4), oxBS-seq (N = 2), and TAB-seq (N = 3). Median
Absolute Deviation (MAD) and Root Mean Square Deviation (RMSD) are calculated pairwise
between all possible replicate pairs in both sequencing methods compared. The mean of these
pairwise comparisons is shown here for different depths.
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of these modifications, both 5mC and 5hmC are depleted in promoters
(Fig. 1d; Table S3), 5’ untranslated regions (5’UTRs), CpG islands (CGI),
and “shore” regions in the 2 kb surrounding each CGI44,45. Unlike 5mC,
which is enriched outside of genes, 5hmC ismore abundant in genes, and is
comparatively enriched in the “shelf” regions adjacent to CpG shores.

At genomic elements matched between the nanopore and TAB-seq
datasets, we noticed that 5hmC Z-score correlates strongly between meth-
ods for each type of genomic feature (Fig. S3; Table S4), implying similar
sensitivity to specific 5hmC-dense regions across the genome.

To compare larger scale modification trends, such as regional
enrichment or depletion of 5hmC, we aggregated 5hmC base-calls within
non-overlapping 500 bp tiles of the mouse genome. After calculating
enrichment as before using Z-scores, we found a significant correlation in
5hmC Z-score between nanopore and TAB-seq (Spearman
ρ ¼ 0:820; p<0:0001; n ¼ 881; 755). From this enrichment-focused
approach we were interested to compare these tiles with public hMeDIP-
seq data46, a 5hmC-pulldown technique that detects 5hmC from “peaks” in
coverage, representing high 5hmC signal. A large proportion of these peaks
overlapped tiles enriched for 5hmC (Z > 0) in both the nanopore data
(91.1%) (Fig. S4) and TAB-seq data (87.3% of peaks). Conversely, 57.3% of
5hmC-enrichedpeaks from thenanoporedata (equivalent toalmost 50Mb)
did not overlap any 5hmC peak regions. A weak monotonic relationship
also exists between nanopore-detected 5hmC enrichment at these genomic
windows and hMeDIP-seq peak fold enrichment (Spearman
ρ ¼ 0:16; p<0:0001; n ¼ 274; 286), supporting the higher density of
5hmC detected by nanopore in these tiles.

Direct sequencing of a 5hmC-enriched pulldown library
Given the apparent sensitivity of nanopore sequencing to 5hmCenrichment
relative to bothTAB-seq and conventional PCR-based hMeDIP-seq, as well
as its reported efficacy even at ultra-low input concentration47, we decided to
assess the possibility of directly detecting base modifications from a 5hmC
pulldown library. Thiswould internally validate the enrichment of 5hmCby
immunoprecipitation and test the sensitivity of the nanopore base-caller to
altered modification levels.

We therefore sequenced the immunoprecipitation product of three
hMeDIP reactions using an Oxford Nanopore Technologies MinION.
UsingMACS2, we identified amean of 4654 peaks with an adjusted p-value
per sample of q<0:05 per run in anoverall extremely shallowwhole-genome
dataset (0.005–0.01x depth) (Fig. 3a).

With the public hMeDIP-seq dataset previously used to compare
enrichment over genomic windows as a reference, we found that, like
conventional hMeDIP, our peaks were significantly more common within
genic elements (binomial test; p<0:001) and promoters relative to the
background composition of the genome (Fig. 3b). Direct 5hmC base-calls
within peak regions accounted for a significantly larger share (Welch’s T-
Test; N = 3; p ¼ 0:006; Cohen’s d: d ¼ 11:286164) (26.4–31.4%) of CpG-
context C base-calls than was detected by whole genome sequencing
(9.6–10.3%) (Fig. 3c). 5mC was, by contrast, less abundant (41.4–47.6%)
than in the whole genome (60.3–62.8%). 5hmC is densely distributed in
most reads, with a mean of 0.29 5hmC base-calls per 100 bp.

5hmC was not detected in 34.6% of these sequence reads. This may
represent nonspecific pulldown of DNA fragments low in 5hmC, namely at
repetitive or high signal regions. Indeed, 5.5% of these 5hmC-negative reads
overlapped regions of high signal listed in the ENCODE Blacklist48, a further
12.7% intersect gamma satellite (GSAT) repeats, and 11.8% intersect simple
repeat sequences identified by RepeatMasker49. As 5hmC is deposited in a
strand asymmetrical manner16,50, some could also represent the unmodified
partners of hemi-hydroxymethylated CpG sites. Nevertheless, peak-calling
using all reads supports the sensitivity of the nanopore base-caller to identify
5hmC-enrichment, with 93.0% of hMeDIP-seq peaks overlapping regions
previously found to be enriched (Z > 0) for 5hmC in whole genome data
(Fig. 3d). That a similarly high proportion of these peaks (92.1%) overlap with
regions likewise enriched for 5hmCinTAB-seq suggests that these sequencing
techniques are similarly sensitive to enriched hydroxymethylation.

Modified base detection in pulldown sequencing offers substantial
utility in the ability to directly validate the presence or absence of base
modifications, helping to inform against false positive enrichment peak
detection. This also demonstrates the use of nanopore sequencing, paired
with antibody enrichment, to directly detect base modifications in a pull-
down library. This approach could be readily modified to target histone
modifications and transcription factors, enabling direct identification of
base modifications associated with these targets with ChIP-seq and
CUT&RUN techniques in a benchtop context.

Duplex sequencing detects CpG dyad asymmetry at molecular
resolution
To this point, our data indicated that the nanopore base-caller is sensitive to
5hmC and functions consistently with other techniques. Using high duplex
nanopore flow cells, we then aimed to investigate strand modification
symmetry and asymmetry (Fig. 4a) with the ability to identify modification
states present on both strands of a single DNAmolecule, a level of detail not
readily available with other techniques. This is done using primary or
germline DMRs from a panel of imprinted genes, given the well-established
stability of methylation at these loci51.

Across the genome, duplex-paired reads accounted for amean of 32%of
sequence reads across eight sequencing replicates, including whole genome
methylation controls (Fig. S5a). Of all CpG dyads, symmetrical modification
(affecting both forward and reverse cytosine bases) states are the most
abundant,with symmetrical 5mCaccounting for 52.5%ofall duplexbase-calls
and symmetrically unmodified C accounting for 23.5% (Fig. 4b; Fig. S5b, c).
Hemi-modification,where thedyad includes amodified (5mCor5hmC)base
and an unmodified partner, accounts for a minority of duplex base-calls
(C:5mC 6.3%; C:5hmC 2.0%). Here, “hetero-modified” refers to those CpG
sites comprised of two different modified states, such as 5mC:5hmC pairs.
Hetero-modified dyads are almost twice as prevalent as hemi-methylated
dyads, accounting for 12.8% of all duplex modification patterns across all
replicates. 5hmC is found predominantly in a hetero-modified state, being
paired with 5mC in 72.3% of dyads containing 5hmC (Fig. S5d).

We isolated duplex reads from 15 previously definedDMRs (Table S5)
and phased them into alleles according to modification state (Fig. 4c;
Fig. S6)52. We found roughly equal ratios of methylated and unmethylated
reads for most DMRs queried, as would be expected at imprinted loci
(Fig. S7). Direct detection of 5hmC highlights distinct patterns of hydro-
xymethylation, and potentially demethylation, within individual alleles,
such as patches of dense hydroxymethylation in the methylated alleles of
H19 and Rasgrf1, and groups of 5hmCpGs along the DMR boundaries of
Gnas1A and Igf2r (Fig. S6).

Duplex patterns for symmetrical CpG dyads within these DMRs were
significantly different from the genomic background (G-Test; p<0:001)
(Fig. 4d), consistent with DNA methylation being stably maintained at
germline DMRs. Asymmetrical modifications (hemi-methylated and
hetero-modified dyads), by contrast, are relatively rare, making up 7.7% of
all duplex base-calls within these DMRs compared to the genome mean of
21.1% (Fig. S8). Comparing asymmetric CpG dyads in individual alleles,
both the methylated allele and unmethylated alleles contained a smaller
proportion of hemi-methylated (C:5mC) dyads compared to the genomic
mean. Interestingly, hemi-hydroxymethylated (C:5hmC) dyads occurred
with similar frequency on unmethylated alleles to the genomic mean.

Symmetrically unmodified CpG dyads are enriched at CTCF
binding sites
Having studied modification symmetry at imprinted DMRs, we selected
CCCTC-binding factor (CTCF) as a test case for loci where symmetrical and
asymmetrical strand modification are relevant for transcription factor
binding4. Previously, CTCFwas one of the first transcription factors shown to
regulate genomic imprinting through its methylation sensitive binding to an
imprinting control region and 3D organisation of DNA53,54. Recently, this has
been shown to be sensitive to asymmetric strand modification, with different
dyadic permutations found to have specific binding affinities for CTCF4.
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CTCF has specific affinity to a short and highly conserved sequence
motif, a ~20-base sequence that often contains at least one CpG site. We
located these motif sequences using the JASPAR MA0139.1 dataset55,
selecting motifs overlapping CpG sites. Using CTCF ChIP-seq data from
ENCODE, we then found CpG sites present in motif sequences shown
experimentally to bind CTCF in cerebellum. We then selected only those
motif sequences overlapping ChIP-seq summits, representing the point of
highest CTCF signal. Although duplex modification patterns for CpG sites
present in CTCF sequence motifs were similar to the genomic background
(Cramér’s V: φc ¼ 0:11), the modification patterns at CTCF-bound posi-
tions were very different (φc ¼ 0:65). These bound motifs possess a sig-
nificantly higher proportion of symmetrically unmethylatedCpG base-calls
(T-Test; p<0:001) (Fig. 5a), with corresponding depletion of all other dyad
patterns.

Dyad modification states have a significant relationship with distance
fromCTCFChIP-seq binding (Kruskal-Wallis H; p<0:0001), with a higher
concentration of symmetrically unmodified C:C positions proximal to
binding summits than all other dyad permutations (Fig. 5b). Only for
this dyad type can a negative point-biserial correlation be found with
absolute distance from binding summits (rpb ¼ �0:32; p<0:0001)
(Table S6), implying closer proximity to CTCF-bound positions than other
states in cerebellum. Dyads with symmetrically modified 5mC:5mC
(rpb ¼ 0:25; p<0:0001) and asymmetrical hetero-modified 5mC:5hmC
(rpb ¼ 0:11; p<0:0001) are positively correlated with distance frombinding
summits, concurringwith the knownmethylation sensitivity ofCTCF. Both
hemi-modified C:5mC and C:5hmC, as well as symmetrically hydro-
xymethylated 5hmC:5hmC positions, have a very weak correlation with
distance to ChIP-seq summits.

Fig. 3 | Trial of direct nanopore sequencing of
5hmC-immunoprecipitated (IP) DNA.
a Nanopore sequenced hMeDIP peaks overlapping
the Kcnj11 gene (chr7:45,746,000-45,751,000). For
each repeat, tracks show the proportion of direct
5hmC calls at each CpG site (top) as well as
sequencing coverage depth and the corresponding
MACS2 narrow peak (bottom). Lowest tracks show
WGS data from input. Produced using pyGenome-
Tracks (v3.8)93. b Bar plot of primary genomic
context overlapped by peak regions, comparing the
direct nanopore hMeDIP (N = 3) with public
hMeDIP-seq data (N = 3). Genomic background,
based on mm39, provided as reference. Error bars
indicate 1 standard deviation. c Bar plot showing
modification states as a percentage of all CpG-
context cytosine base-calls within the PromethION
WGS data and hMeDIP peaks (N = 3). Error bars
indicate 1 standard deviation. d Density plot
underlay in shades of blue shows 5hmC Z-Score for
matched 500 bp windows of WGS data from nano-
pore and TAB-seq. Z-scores are calculated using the
arcsine transformed proportion of all CpG base-
calls (merged across replicates) enclosed in a win-
dow detected as 5hmC. Peaks from all nanopore
hMeDIP-seq replicates are overlaid onto the win-
dow they intersect as a scatterplot, with size and hue
proportional to fold enrichment over input. Dotted
line indicates samplemean 5hmCZ-Score for the (x)
TAB-seq and (y) nanopore datasets. *p < 0.05;
**p < 0.01; ***p < 0.001.
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Asymmetrical methylation, with 5mC opposite the motif strand, was
previously found to be more favourable to CTCF binding than symme-
trically unmethylatedCpG sites4. In our data, asymmetricallymodifiedCpG
sites comprise only a small percentage (4.6%) of dyad base-calls at bound
CTCF positions, with unmodified cytosine present on the motif strand in
56.2% of those cases.

TheorientationofCTCFbindingsiteshasbeenshowntobe important for
loop formation, with loops favouring convergently oriented CTCFmotifs56. In
mouse, 9373 CTCF motifs are palindromic, potentially enabling bidirectional
CTCF binding from either or both strands. We found 1365 (14.6%) palin-
dromic CTCF motifs that directly intersect CTCF ChIP-seq peaks (Fig. 5c).
Asymmetrical methylation at these motifs is uncommon in our duplex data
however, occurring at least once in only 188 (13.8%) bound motifs. The 102
genes associated with these motifs are most enriched for genes involved in
nervous system (Benjamini-Hochberg p ¼ 0:0039), whole body (Benjamini-
Hochberg p ¼ 0:0039), and brain (Benjamini-Hochberg p ¼ 0:0097)57,58.

We hypothesise that strand asymmetry at palindromic CTCF motif
sequences could influence the orientation of CTCF binding (Fig. 5d). In
such a model, 5mC present on the forward strand at these palindromic
positions would favour loop formation in a reverse direction, whereas 5mC
on the reverse strand would favour loops in the opposite direction. Sym-
metrically unmodified CTCF motifs enable bidirectional binding of CTCF
and enable looping in both or either direction. Future research, pairing
nanopore duplex sequencing of a CTCF ChIP library and HiC data, would
test this model and any effects this may have on gene expression.

Discussion
Cytosine methylation has important biological and evolutionary roles;
however, the roles of higher oxidation states such as 5hmC, formed via the
action of TET enzymes, are less well understood. Here we demonstrate that
the detection of 5mC and 5hmC by nanopore sequencing is consistent with
widespread techniques and opens new modes of studying these modifica-
tions with known involvement in disease, ageing, and development.

The DMRs of imprinted genes represent loci with known stable
methylation across most somatic tissues. We have demonstrated the use of
direct modification detection from nanopore sequence data to study strand
modification symmetry and allele-specific methylation at DMRs in a panel
of imprinted genes. This confirmed previous findings suggesting high
methylation fidelity at germline DMRs59,60, observing depletion of asym-
metrical strand modification states on both the methylated and unmethy-
lated allele compared to the genomic background. 5hmC is present on both
alleles in all DMRs, though is depleted relative to the genomic background.
Our study did not examine secondary DMRs, which may be less stable and
thus have more variable methylation states in mouse brain. Secondary
DMRs have previously been shown to have higher amounts of asymmetric
modifications59. Future studies examining the extent of hetero-modifica-
tions, potentially distinguishing transient and stable states of asymmetric
modifications and5hmC, coulddeterminewhether these states play a role in
maintaining normalmethylation patterns at imprinted as well as other loci.

Long read sequencing data have previously been used to identify and
phase patterns of allele-specificmethylation61–63, with longer reads serving to
bridge regions of low SNPdensity and offering greater utility to haplotyping
tools. In the inbred mouse strain used in this study, where no genomic
variation could be anticipated between parental alleles, we capitalised on the
allele-specificity of methylation at imprinted genes to separate alleles. The
quantitative ability of nanopore sequencing is also highlighted at imprinted
loci in the equal ratios of methylated to unmethylated reads at most DMRs.
For the discovery of new imprinted loci or types of allele-specific mod-
ifications, where haplotype construction is required, long reads with direct
modification readouts will greatly simplify haplotype reconstruction, where
haplotype information can become masked by bisulphite conversion itself.

Although 5hmC, and later oxidation derivatives of 5mC, have been
shown to be deposited in a largely strand asymmetrical manner16,50,64, it is
interesting to find such a high degree of asymmetrically hydroxymethylated
positions in cerebellum, a terminally differentiated tissue. Unlike the
canonical cytosine base and its methylation derivative 5mC, symmetrically

Fig. 4 | Duplex detection of modified bases using High Duplex PromethION
flow cells. Reads from all replicates are concatenated here for visualisation.
a Schematic summary of currently detectablemodification states fromduplex reads.
b UpSet plot of CpG-context cytosine base-calls from all duplex reads. Produced
using UpSetPlot (0.9.0)94. Top: percentage of duplex reads described by the inter-
sectionmatrix below. Below: percentage of duplex reads containing one ormore of a
given cytosine state. c IGV view of the Nespas-Gnasxl imprinted locus from
nanopore duplex sequencing. Reads are separated by allele and have been down
sampled for visualisation. Above: overview of the whole imprinted locus

(chr2:174,134,000-174,145,000). Below: close-up IGV view of duplex modified
base-calls over a 50 bp segment. Duplex modified bases appear as blocks of two
consecutivemodification calls, with the forward (top) modification indicated by the
colour on the left and the reverse (bottom) modification indicated by the colour on
the right. d Comparison of the mean percentage of all duplex modified base-calls in
the whole genome, as in (b), to modified base-calls within the methylated and
unmethylated alleles of 15 imprinted loci. Duplex base-calls across replicates are
merged.
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modified 5hmC:5hmC positions were rare, confirming previous findings
that the TET enzymes function in a primarily strand specific manner50.
Given that 5mC is largely symmetrically deposited between both strands at
the CpG site, the presence of asymmetrical hemi-hydroxymethylated
C:5hmC pairs is especially surprising, which could be evidence of incom-
plete demethylation.

To test the use of duplex modified base detection in a biologically
meaningful context, we compared our duplex sequence data with CTCF
ChIP-seq data from a similar biological sample, finding patterns of strand
modification symmetry and asymmetry unlike the genomic background.
These results confirm the preference for unmodified cytosine for CTCF
binding. In future, direct nanopore sequencing of a CTCF-ChIP pulldown

Fig. 5 |Duplex base-calling at CTCF-binding sites.
a CpG dyad duplex modification pattern across the
whole genome, CTCF binding motifs, and ChIP-seq
peak summits (split into two plot areas for visibility
of dyad states with a small proportion of base-calls).
Error bars indicate 1 s.d. Replicates are shown as
separate dots (N = 4). bViolin plot representation of
duplex modification pattern distance to CTCF
ChIP-seq summit sites. CpG dyads more than
500 bp from a summit are not represented. Duplex
base-calls from all replicates are merged. c IGV view
of F830045P16Rik locus (chr2: 129,338,223-
129,385,892) highlighting two CTCF ChIP-seq.
peaks overlapping palindromic CTCF motif posi-
tions. d Schematic representation of methylation
and strand symmetry dependent CTCF loop for-
mation. 1: A forward strand CTCF motif (left)
overlaps a symmetrically unmodified CpG site and
faces an asymmetrically methylated palindromic
CTCF motif (right). Methylation on the forward
strand of the palindromic motif sequence favours
CTCF binding in a reverse orientation, convergent
with the previous unmodified motif and enabling
loop formation. 2: Symmetrical modification of a
CpG site (left) prevents CTCF binding and forbids
loop formation. 3: Inversion of strand modification
asymmetry at the palindromic motif (right) favours
CTCF binding in a forward orientation. **p < 0.01;
***p < 0.001; ****p < 0.0001.
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library, using duplex reads, would add further sensitivity to the detection of
asymmetric modifications and CTCF binding.

There are some technical considerations for experimental design using
duplex sequencing for sequencing asymmetrical CpG modification, as it
takes two simplex reads to get a single duplex image of a CpG dyad. Duplex
capture is still only moderately effective in High Duplex flow cells, with a
mean of 32% of reads found in duplex pairs. If duplex capture is the
objective, aiming for total coverage at least 6–7-times higher than target
duplex depth is advisable. As an example, median genomic coverage in our
murine samples was 29-33x, whereas mean dyad depth in duplex
was 2–2.5x.

It remains to be seen whether future developments will include
increased rates of duplex read capture. This, along with improved base
calling algorithms to enable detection of later TET-mediated oxidation
products of 5mC, and other base modifications including 6mA, would
provide a great advantage to epigenetic research, culminating in the
detection of a complete vocabulary of DNA modifications, detectable on
both strands of the same molecule, as part of standard sequencing practice.

In summary, nanopore sequencing enables robust direct detection of
three epigenetic statesof cytosine inDNA:C, 5mC, and5hmC.Thismethod
provides several advantages compared to other commonly used techniques,
allowing high throughput direct and accurate readout ofmodification states
on both strands of a single DNA molecule as part of standard sequencing
practice.

Methods
Publicly available data benchmark data
Data for 5mC and 5hmC were procured from the oxBS-seq and TAB-seq
experiments, respectively, performed byMa et al. on cerebella from three 8-
week-old female C57BL/6 mice using Illumina HiSeq X Ten (data available
on the Genome Sequence Archive of the Beijing Institute of Genomics
under experiment identifiers CRX008031 and CRX008032)42,65,66. These
were downloaded in fastq format and aligned to the mm39 (GRCm39)
mouse reference genome using Bowtie2 and Bismark67,68.

hMeDIP-seq data from homogenousmouse tissues produced by Song
et al.46, stored under Gene Expression Omnibus (GEO) accession
GSE25398, were downloaded in fastq format. Quality control was per-
formed using TrimGalore! (0.6.10)69, before alignment to mm39 reference
using Bowtie268. Duplicate sequence reads were marked using Picard
MarkDuplicates70. Regions intersecting the ENCODE blacklist file for
mm3948 were removed using bedtools (v2.31.1) intersect71, before peak
calling was performed using MACS224 with options: “--gsize ‘mm’ --call-
summits”.

An identical pipeline72 was used for CTCF ChIP-seq and input
sequence data produced by the Bing Ren Lab of UCSD, stored in the
ENCODE Portal under accession codes ENCSR000CBN and
ENCSR000CAT, respectively73. These were produced from cerebellum tis-
sues derived from two 8-week-old male C57BL/6NCrl mice.

Animal samples and DNA extraction
No statistical calculation was used to predetermine sample size, which was
instead designed to optimise sequencing depth. Brain tissues were obtained
from two 8-week-old female C57BL/6NCrl (Charles River Laboratories)
mice procured from the University of Bath animal facility. The project was
given a favourable opinion by the University of Bath’s AnimalWelfare and
Ethical ReviewBody (AWERB; ReviewReference 3436-4022), a Committee
defined in law under the UK Animals (Scientific Procedures) Act, and
approved by the University’s Academic Ethics and Integrity Committee
(AEIC). We have complied with all relevant ethical regulations for
animal use.

High molecular weight genomic DNA was extracted from these cer-
ebella using the QIAGEN MagAttract HMWDNA Kit (QIAGEN, 67563)
using a modified protocol available from the Oxford Nanopore Technolo-
gies Community website74. Quality control was performed on a DeNovix
DS-11 FX+ Spectrofluorometer.

Whole genome sequencing of mouse cerebellar gDNA
Cerebellar gDNAwas sheared using a Covaris g-TUBE (Covaris, 520079) to a
target length of 8 kb. Whole genome sequencing (WGS) libraries were pre-
pared in duplicate for each biological replicate, using the Ligation Sequencing
Kit V14 standard protocol (Oxford Nanopore Technologies, SQK-LSK114)
with reagents from theNEBNext®CompanionModule for Oxford Nanopore
Technologies® Ligation Sequencing (New England Biolabs, E7180S). Libraries
were quantified using a Qubit 4 fluorometer (ThermoFisher Scientific,
Q33238)withQubit dsDNAHS (ThermoFisher Scientific,Q33230). 150 ng of
each sample was loaded onto PromethION (Oxford Nanopore Technologies,
PRO-SEQ048)flowcells (OxfordNanoporeTechnologies, FLO-PRO114HD).
All sequencing runs were manually stopped after 72 h. Each run generated
65–80Gb over 9–15 million sequence reads.

Whole genome sequencing of human methylated/unmethylated
controls
Two libraries were prepared as positive and negative methylation controls
using the HumanMethylated &Non-Methylated (WGA) DNA Set (Zymo
Research, D5013). Libraries were quantified using a Qubit 4 fluorometer
(ThermoFisher Scientific, Q33238) with Qubit dsDNA HS (ThermoFisher
Scientific, Q33230). Sample DNA was sheared to 8 kb, and library pre-
paration was performed in duplicate using the Ligation Sequencing Kit
V14 standard protocol (Oxford Nanopore Technologies, SQK-LSK114).
Libraries were sequenced by loading 150 ng onto PromethION (Oxford
Nanopore Technologies, PRO-SEQ048) flow cells (Oxford Nanopore
Technologies, FLO-PRO114HD), with runs lasting 72 h. Runs produced
25–52 Gb over 5–9 million reads.

Nanopore hMeDIP-seq
DNA frommouse cerebellumwas sheared to a target of 6 kb using aCovaris
g-TUBE (Covaris, 520079). An aliquot was sequenced as a control on an
R10.4.1MinION flow cell (OxfordNanopore Technologies, FLO-MIN114)
using Ligation Sequencing (SQK-LSK114) Kit 14 following the associated
protocol. Sheared DNA was sonicated in triplicate using a Bioruptor® Pico
sonication device (Diagenode, B0106001) in a 1.5mL Bioruptor® Pico
Microtube with cap (Diagenode, C30010016) to target fragment lengths
<500 bp. A 2200 TapeStation system (Agilent, G2991A) with D1000
ScreenTapes (Agilent, 5067-5582) and associated reagents (Agilent, 5067-
5583) was used to assess the fragment size distribution of each replicate
(mean 362 bp).

5hmC immunoprecipitation was performed based on Nestor and
Meehan23. 1 μg sonicated dsDNAwas incubated overnight at 4 °C rotating in
IPbuffer (10mMNa-phosphate pH7.0, 140mMNaCl, 0.05%TritonX-100)
with either 1 μL (1:500) of whole serum α-5hmC antibody (ActiveMotif,
39769; lot: 23720003) or 2 μL (1:250) IgG-purified α-5hmC antibody
(ActiveMotif, 39791; lot: 25419010) per reaction. Samples were then incu-
batedwith 40 μL equilibratedDynabeads ProteinG (Invitrogen, 10003D) for
1 h while rotating at 4 °C and washed three times in ice-cold IP buffer for
5min at room temperature. Bound DNA was eluted in digestion buffer
(50mMTris-HClpH8.0, 10mMEDTA,0.5%SDS)and200 ngproteinaseK
(ThermoFisher Scientific, EO0491) for 3 h at 50 °C on a shaker at 800 rpm.
Immunoprecipitated DNA was purified using the QIAQuick PCR Pur-
ification kit (QIAGEN, 28104) following manufacturer instructions and
eluted into 50 μL elution buffer before sequencing.

The eluate was prepared for sequencing following the MinION pro-
tocol SQK-LSK114. Libraries were loaded onto three R10.4.1MinION flow
cells and sequenced, generating 154-382Mb of sequence data per flow cell.

Base-calling and data exclusion
Base-calling was performed using the Oxford Nanopore Technologies
open-source Dorado base-caller (v0.5.1). For the PromethION data, the
super-accurate (sup@v4.3.0) base-calling model was used with 5mC and
5hmC base-calling (5mCG_5hmCG@v1). The hMeDIP-seq data were
produced earlier, using base-calling sup@v4.2.0. Minimap2 (v2.24-r1122)
was used to produce an index file of themm39 (GRCm39)mouse reference
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genome75. Aligned sequence data was then sorted and indexed using the
samtools sequence alignment tool suite (samtools 1.19)76. Modified bases
were extracted from these reads using ‘modkit pileup’ for simplex and
‘modkit pileup-hemi’ for duplex basecalls (0.2.8)77. The options ‘--only-tabs
--cpg’ and ‘--mask’ were used against the mm39 mouse reference genome
fasta file fromUCSC. The ‘--mask’ argument excludes regions that intersect
thoseflaggedby theRepeatMasker software to reduce the influenceof highly
repetitive elements49. Reads are extracted using ‘modkit extract’ with the
‘--read-calls-path <PATH> --cpg --mask’ arguments.

CpG sites were filtered to a minimum sequencing depth of 5x. Data
points below this depth are excluded.

At each CpG site, the ratio of sequence reads in which the C base is
modified to all C calls from that site (i.e., excluding C-to-N SNPs) is com-
puted to summarise its level of modification. Using 5hmC as an example:

%5hmC ¼ 5hmC
5hmCþ 5mCþC × 100

GC content definition
In both the human (hg38/GRCh38) andmouse reference genomes (mm39/
GRCm39), mean GC content is calculated using ‘bedtools nucBed’71, which
summarises the total number of G and C bases in all chromosomes in the
reference genome.Mean genomicGC is then calculated as the sumofG and
C bases divided by the total length of all non-N bases.

To determine local GC content, bigwig files of GC content over 5 bp
windows was downloaded for the respective genome from the UCSC
Genome Browser78. 100 bp bed intervals were defined using the bedtools
command ‘makewindows’. This bed file was used together with the UCSC
tool bigWigAverageOverBed (v2) with the ‘-bedOut’ option to calculate the
meanGCcontent over those 100 bp intervals. Data fromCpG sites from the
nanopore data were overlapped to these 100 bp intervals. Finally, all CpG
sites were grouped into 5-percentile bins of GC content ranging from 0 to
100%, producing (n = 20) bins.

Gene and CpG island definition
Gene bodies are defined using the GENCODE Consortium Basic annota-
tion (VM32)79. Promoter regions are defined as regions starting 1 kb
upstream of a gene. CpG islands (CGI) were downloaded as a track from
UCSC Table Browser for mm3978. Shores are defined as 2 kb regions
immediately up- anddownstreamofCGI, and shelves are defined as regions
2–4 kb up- and downstream of CGI following Rechache et al.80

Nanopore hMeDIP-seq peak calling and comparison to WGS
Whole genomic DNA from the same sample, without treatment, was
sequenced on a MinION flow cell for use as an input sample. The Model-
Based Analysis of ChIP-Seq (MACS2) software (v.2.2.6) was used to call
narrow peaks relative to this input with the ‘--gsize mm’ option24. From the
resulting narrowpeaks, those overlapping regions on the ENCODEblacklist
were removed48. By default, ‘MACS2 callpeaks’, peaks are filtered out if they
have an adjusted p-value (Benjamini-Hochberg corrected) greater than 0.05.

For comparisonwithWGS,Nanopore andTAB-seqderivedWGSdata
were tiled into non-overlapping 500 bp windows. Windows containing
fewer than 10 CpG sites were discarded. The overlap between narrow peaks
and these genomic tiles was then found using PyRanges81. Where peaks
overlapped with multiple windows, the window with the highest degree of
overlap was selected. Only windows containing at least half of an over-
lapping peak region were analysed.

DMRmethylation clustering in duplex reads
Germline DMR coordinates were obtained from Tomizawa et al.52 These
were lifted over tomm39 using theUCSC liftOver tool82. After visualisation,
some coordinates have beenmanually shifted to apparent boundaries of the
differentially modified region. After defining these as regions of interest,
duplex reads overlapping these regions were extracted from the alignment
files using ‘samtools view’ with ‘--tag dx:1’, from which read-level infor-
mation was extracted for CpG sites using ‘modkit extract’ with the ‘--cpg’
flag and the ‘--reference’ and ‘--include-bed’ arguments.

Allelic phasing was performed in Python: CpG sites on each read were
nominally encoded by modification state. Sites absent from a read are also
encoded. Reads containing too high a proportion of absent positions are
excluded. Each read is therefore represented by a string of CpG site mod-
ification states, which were then used to produce a Hamming distance
matrix. The mean distance between reads, and then successive clusters of
reads, produced a hierarchical clustering pattern, whichwas flattened to the
two highest cluster levels. Read IDs extracted from these clusters were then
used for ‘samtools view’ and the ‘--qname-file’ argument to extract reads
into new bam files.

Statistics and reproducibility
Thenumberof replicates (N) andobservations (n) used in tests are provided
in text. Test statistics, p-values, and effect sizes, are provided rounded to two
significant figures. Additional details, including exact p values and
unrounded test statistics, are provided in full in Supplementary Data 1.

Mean rates ofCpGmodification are compared across four replicates of
nanopore data and three replicates of either oxBS-seq or TAB-seq data, for
5mC and 5hmC respectively, using a two-tailed Welch’s T or unequal
variances test, given differences in both sample size and sequencing depth.
Root mean square deviation (RMSD) is calculated to compare percentage
modification rates at matched CpG sites between datasets of the same
sequencing method, as a metric for intra-assay variation, and as an inter-
assay metric for CpG level deviation differences between the nanopore,
oxBS-seq, and TAB-seq datasets. This is calculated for all replicate pair
permutations, from which the mean is taken as a summary statistic.

To compare modification detection at intervals spanning multiple
CpG sites, such as genomic features, genes, or genomic windows scale; the
count ofmodified base detections is taken across the interval, alongwith the
total sumof allCpG-context base-calls. The ratio between the two is taken to
find the proportion of all CpG base-calls within the interval with a given
modification. Arcsine transformation of these proportions is used to
approximately normalise the distribution of proportion values and a stan-
dard score (Z-score) is calculated from transformed values.

Comparing the proportion of coverage made up of given features in
direct nanopore hMeDIP-seq with the genomic background is performed
using one-tailed binomial tests with n = 17,368 total observations from all
replicates. The genome was divided into non-overlapping 500 bp windows,
with the proportion of these primarily overlapping a given type of feature
used to inform p for each binomial test. The count of peaks that primarily
overlap a given feature informs k.

Comparing the proportion of CpG-context base-calls comprised of a
given state is performed usingWelch’s T, with three replicates of nanopore
hMeDIP-seq (N = 3) compared to four replicates of nanoporeWGS (N = 4).

Comparison of duplex modification states between DMRs and the
genomic mean is performed using a G-test, equivalent to a chi-square test
performedusing a log-likelihood ratio to account for very large count values.
The expected frequency of duplex patterns used for this test is derived from
proportion of duplex modification states in the given state from over WGS
replicates.

The level of association between CpG dyad modification patterns
between the whole genome, CTCF binding motif sequences, and CTCF
motif sequences overlapping ChIP-seq summits, is expressed using Cra-
mér’s V or φc, where high values of φc are taken to suggest greater depen-
dence between context (i.e., CTCF motif, or motif at summit) and dyad
modification pattern. Paired two-tailed T-tests with N = 3 are used to
compare individual differences in the proportions of duplex CpG base-calls
made up of each dyad state between the whole genome, CTCF motifs, and
motifs at binding summits. These are paired on account the fact that CpG
sites at bound summits are a subset of those at all CTCF motifs, with both
being a subset of the CpG sites included in the whole genome.

The Kruskal–Wallis test is used to determine whether there is a sta-
tistically significant difference between different CpG dyad modification
states and absolute distance to CTCF ChIP-seq summits. This result is
followed by post hoc analysis using Dunn’s test with a Holm-Bonferroni
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correction on calculated p values. To further assess the relationship between
dyad modification state and absolute distance to ChIP summit, point
biserial correlations are calculated for each state.

Tissue enrichment for asymmetrically methylated CTCF binding sites
is calculated using the STRING database58, using a Benjamini-Hochberg
corrected p value threshold of 0.05.

Statistical analyses were largely performed using Python. Annotations
are given within scripts where necessary to improve reproducibility or
indicate where any non-Python code is used.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Code availability
Data analysis was performed in Python and Jupyter Notebooks using
additional open-source software packages, including pandas (2.0.1)83,
numpy (1.24.3)84, scipy (1.13.1)85, scikit-learn (1.5.2)86, PyRanges (0.0.120)81,
and Pingouin (0.5.4)87. Visualisations were produced using matplotlib
(3.7.1)88, seaborn (0.13.2)89, and the Integrative Genomics Viewer (IGV)
(2.19.1)90. Other graphing packages are mentioned in text where used.
Scripts and analysis code are publicly available via a project GitHub repo-
sitory (v1.0.0, DOI: 10.5281/zenodo.14753748)91. An executable pipeline,
ChIP2MACS2 (v1.0.0, https://doi.org/10.5281/zenodo.14535833), which
includes Bowtie2, TrimGalore!, and MACS2 and related tools, was also
produced to handle hMeDIP-seq/ChIP-seq alignment and peak calling
pipeline used in these analyses72.

Data availability
Raw nanopore machine data in fast5 format has beenmade available for all
murinewhole genome sequence experiments on the SequenceReadArchive
(SRA) as BioProject PRJNA1144670. Aligned sequence data in BAM file
format is also available. Additionally, CpGcontextmodifiedbase detections,
as produced by ‘modkit pileup’ are available on theNCBIGEOarchive with
the accession: GSE279860. These data are limited to CpG positions relative
to the mm39 reference genome and are soft-masked. Machine data is not
available for the Zymo DNA Methylation Standards; however, these are
available as BAM format files under the same BioProject. For the nanopore
hMeDIP-seq experiments, data is available in both BAM format under the
previouslymentioned SRABioProject, as well as in pod5 format on Zenodo,
with record https://doi.org/10.5281/zenodo.14514705. BAM format
sequence data used as an input is available as SRR30150148 on the SRA.
Narrow peak data, along with direct modified base detections from those
peaks, is downloadable under the GEO Series GSE288331. Source data for
figures can be downloaded from Figshare (https://doi.org/10.6084/m9.
figshare.28287962.v2)92.
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