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Common neuroanatomical differential
factors underlying heterogeneous gray
matter volume variations in five common
psychiatric disorders
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Multifaceted evidence has shown that psychiatric disorders share common neurobiological
mechanisms. However, the tremendous inter-individual heterogeneity among patients with
psychiatric disorders limits trans-diagnostic studies with case-control designs, aimed at identifying
clinically promising neuroimaging biomarkers. This study aims to identify neuroanatomical differential
factors (ND factors) underlying graymatter volume variations in fivepsychiatric disorders.We leverage
4 independent datasets of 878 patients diagnosedwith psychiatric disorders and 585 healthy controls
(HCs) to identify shared ND factors underlying individualized gray matter volume variations.
Individualized gray matter volume variations are represented with the linear weighted sum of ND
factors, and each case is assigned a unique factor composition, thus preserving interindividual
variation. We identify four robust ND factors that can be generalized to unseen disorders. ND factors
showsignificant associationwith group-levelmorphological abnormalities, reconciling individual- and
group-level morphological abnormalities, and are characterized by dissociable cognitive processes,
molecular signatures, and connectome-informed epicenters. Moreover, using factor compositions as
features, we discover two robust transdiagnostic subtypes with opposite gray matter volume
variations relative to HCs. In conclusion, we identify four reproducible and shared neuroanatomical
factors that underlie the highly heterogeneous morphological abnormalities in psychiatric disorders.

Evidence from symptoms, as well as genetic and environmental risks,
suggests that various psychiatric disorders share common neurobiological
mechanisms1–3. For example, vulnerability to psychiatric disorders thought
to be driven by a general psychopathology dimension, Known as the “p
factor”, which accounts for the positive correlations between symptoms4.

Genetic analyses have also identified common polymorphisms shared
across multiple psychiatric disorders5. These findings support the idea that
psychiatric disorders impact common neural circuits6,7. In this context,
neuroimaging studies andmeta-analyseshave sought to identify graymatter
morphological differences shared by all disorders (transdiagnostic effects)8,9.
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A recent meta-analysis by Goodkind et al. highlighted overlapping reduc-
tions in gray matter in the cingulate cortex and insula across psychiatric
disorders10. However, challenges such as sample size, methodological
standardization, and particularly the significant heterogeneity among
patients with psychiatric disorders, limit the identification of clinically
promising biomarkers.

Patients with psychiatric disorders demonstrate tremendous inter-
individual variations in terms of symptoms, disease courses, therapeutic
responses, and neuroimaging phenotypes11–14. Neuroimaging studies have
shown that group-level findings are only representative of only a handful of
individual cases15. Despite the noticeable heterogeneity, previous neuroi-
maging studies relied almost exclusively on case-control approaches that
focus on group-level effects, consequently leading to inconsistent or even
conflicting findings16. In recent years, a growing number of researcher have
begun to focus on individualized differences in neuroimaging measures via
normative modeling15,17–19. Similar to growth charts, normative modeling is
used to construct normative expectations for biological measures of brain
function (brain morphology, in most cases) based on demographic infor-
mation of healthy cohorts. For a given patient, personalized differential
patterns of the brain morphology are characterized by extreme deviations
from the normal distribution17. By applying normative modeling to psy-
chiatric disorders, researchers have quantified the neuroanatomical het-
erogeneity consistent with individual clinical manifestations and
discovering potential psychiatric subtypes15,18–20. Moreover, individualized
deviations from normative range are strongly associated with treatment
responses, suggesting its potential to guide the treatment of depression21,22.
These studies provide new insights into the etiology of psychiatric disorders
and may facilitate precision medicine.

Although promising, previous studies on individualized morphologi-
cal abnormalities have failed to explain the tremendous interindividual
variations in the distributions of extreme deviations in patients with the
same diagnosis. Deviation maps reveal notable heterogeneity among
patientswith psychiatric disorders, such as a regional extremedeviation is at
most shared by 7% of individuals even with the same diagnosis8,15,18,19.
Heterogeneity contradicts the phenotypic similarities between cases with
the same diagnosis. In a recent study, Segal et al. explain that phenotypic
differences between cases are reflected in the heterogeneous localization of
differential regions, whereas phenotypic similarities are in circuits/networks
comprising of differential regions8. Here, we aimed to address this question
from a dimensional perspective. Based on previous studies23,24, we hypo-
thesized that morphological differences in psychiatric disorders are com-
monly underlain by neuroanatomical differential factors (ND factors)
reflecting phenotypic similarities, and that interindividual variability (phe-
notypic differences) is preserved by factor compositions.

This studyaimed to identifyNDfactors underlying graymattervolume
variations in five common psychiatric disorders: depression, schizophrenia,
obsessive-compulsive disorder (OCD), bipolar disorder (BD) andattention-
deficit/hyperactivity disorder (ADHD). We obtained individualized gray
matter volume variations in each patient using normative modeling15,17–19

and identified ND factors across patients using non-negative matrix fac-
torization (NMF)20,25. As a data-drivenmultivariatemethod,NMFproduces
a sparse, parts-based representation of the data under non-negative con-
straints, producingmore explanatory and reproducible results and avoiding
the opposite differences canceling each other relative to othermethods such
as independent component analysis and principal component analysis26.
We hypothesized that person-specific morphological abnormalities could
be represented as a linear weighted sumofND factors, and each patient was
assigned a unique factor composition, thus preserving interindividual
variability. A series of sensitivity analyses were performed to assess the
robustness and generalizability of the identified ND factors. To understand
the ND factors, we investigated their relevance to group-level differences
and cognitive processes. Furthermore, we showed that the identified ND
factors were relevant to the distribution of neurotransmitter receptors/
transporters andwere informed by normal healthy connectome. Finally, we
showed that factor composition aided the discovery of twoneuroanatomical

subtypes with opposite gray matter volume variation differences relative to
the healthy controls.

Results
Samples
This study included 4 independent datasets (1 discovery dataset and 3
validationdatasets) of 878patientswith one offive psychiatric disorders and
585 healthy controls (HCs) from different ethnic groups. All analyses were
conducted in the discovery dataset and validated in validation datasets,
unless otherwise noted. The demographic and clinical information in the
discovery dataset is presented in Supplementary Table S1. Sex, age and
educational level did not significantly differ between the patients with HCs.
Demographic and clinical information in the validation datasets is pre-
sented in Supplementary Table S2.

Four robust ND factors were identified
Consistent with a previous study27, we parsed individualized gray matter
volume variations into distinct differential patterns (ND factors) using non-
negative matrix factorization (NMF) where individualized gray matter
volumevariationsweremeasured as individual deviations (Z scores) derived
from normative models15,17,27. As there was no prior knowledge of the
optimal number (K) of ND factors, we proposed a comprehensible metric,
namely generalizability error (GE), to determine the optimal K, assuming
that the optimal K would yield the most generalizable disease factors (See
Methods). A higher GE indicated a worse generalizability. The GE reached
minimumwhen the numbers of latent factors was two for both the positive
andnegative parts (Supplementary Fig. S1), suggesting that twopositive and
two negative ND factors are underlying morphological abnormalities in
psychiatric disorders. For each factor, the most representative voxels (the
top 10% of the voxels with the largest F values) are shown in Fig. 1 and
Supplementary Table S3, and stratified into eight classical networks (seven
cortical and one subcortical networks) as defined by Yeo et al.28 (Fig. 1).
Positive factor 1 mainly contained the bilateral temporal gyrus, postcentral
gyrus, ventromedial prefrontal cortex/anterior cingulate cortex (vmPFC/
ACC), and insula. Positive factor 2 mainly contained the bilateral striatum,
vmPFC/ACC, bilateral thalamus, hippocampus, parahippocampal gyrus,
amygdala and occipital lobe. Negative factor 1mainly involved the vmPFC/
ACC, bilateral hippocampus, superior frontal gyrus, bilateral insula, bilat-
eral parahippocampal gyrus, middle cingulate cortex, and occipital lobes.
Negative factor 2 mainly involved the bilateral middle and superior tem-
poral gyrus. The spatial distributions of the ND factors and patient factor
compositions are shown inFig. 1, and the validationdatasets are shown in in
Supplementary Figs. S4–S6.

We conducted a series of analyses to assess the reproducibility of the
identified ND factors (see Methods). First. The 10-fold cross-validation
(100 times) results showed that the identified ND factors predicted the
factor compositions of unseen patients, with averaged Pearson’s corre-
lation coefficients between predicted factor compositions and trues ones
of 0.89 (±0.01), 0.50 (±0.04), 0.98 (±0.00), and 0.87 (±0.01) for positive
factor 1, positive factor 2, negative factor 1, and negative factor 2,
respectively. 2). Second, we applied trainedNMF using patients with two
disorders to predict the factor compositions of patients with the
remaining disorder (leave-one-disorder-out cross-validation), to
investigate the generalization of the identified ND factors to patients
with unseen disorder. The leave-one-disorder-out cross-validation
results showed that ND factors could significantly predict patients
with unseen disorders. Specifically, for patients with depression, Pear-
son’s correlation coefficients between the predicted factor compositions
by models trained using patients with OCD and schizophrenia with true
ones were 83.14e−2 for positive factor 1, 85.70e−2 for positive factor 2,
86.49e−2 for negative factor 1, and 87.20e−2 for negative factor 2. Like-
wise, for patients with OCD, Pearson’s correlation coefficients were
99.95e−2 for positive factor 1, 99.65e−2 for positive factor 2, 99.94e−2 for
negative factor 1 and 99.77e−2 for negative factor 2. For patients with
schizophrenia, Pearson’s correlation coefficients were 99.94e−2 for
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Fig. 1 | Spatial distributions of the identified ND factors and patient factor
compositions (W). A Spatial distributions of the top 10% of the voxels with the
highest F values for each factor and their overlap with classical networks. B Patient
factor compositions. Note: PF1 positive factor 1, PF2 positive factor 2, NF1 negative

factor 1,NF2 negative factor 2, Vis visual network,VAventral attention network, SM
somatomotor network, Lim limbic network, DA dorsal attention network, FP
frontoparietal network, Sub subcortical network, DMN default model network.
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positive factor 1, 99.66e−2 for positive factor 2, 99.83e−2 for negative
factor 1, and 98.92e−2 for negative factor 2 (Supplementary Fig. S5 and
Supplementary Table S7). All p < 0.001 (Benjamini‒Hochberg false
discovery rate (FDR) corrected). Third, the number of potential factors
was consistently four (two positive and two negative factors) in the
validation datasets (Supplementary Fig. S1). ND factors obtained using
different datasets correlated significantly with each other with correla-
tion coefficients of 0.21–0.57 (permutation testing p < 0.001, FDR cor-
rected). Details are presented in Supplementary Fig. S6. Fourth, NMF
trained using the discovery dataset significantly predicted the factor
compositions of patients in validation datasets. Specifically, Pearson’s
correlation coefficients between predicted factor compositions and true
ones for positive and negative factors were 0.90 (95% CI = [0.84, 0.94]),
0.81 (95% CI = [0.70,0.88]), 0.87 (95% CI = [0.79,0.92]), and 0.54 (95%
CI = [0.33,0.70]) for validation set 1. 0.80 (95% CI = [0.75, 0.83]),
0.91(95% CI = [0.89,0.93]), 0.84 (95% CI = [0.80,0.87]). 0.90 (95% CI =
[0.87, 0.92]) for validation 2; and 0.79 (95% CI = [0.71, 0.85]), 0.65(95%
CI = [0.53, 0.74]), 0.88 (95%CI = [0.83, 0.92]), 0.57(95% CI = [0.43,
0.68]) for validation set 3 (Supplementary Fig. S7). All FDR corrected
p < 0.001. These results suggest that ND factors can be reproduced in
independent datasets with different data acquisition equipment and

protocols, preprocessing strategies, medicine status, and races and can
be generalized to unseen disorders.

Association between ND factors and group-level results
After confirming the robustness of the identifiedNDfactors,we investigated
whetherND factors could explain the traditional group-levelmorphological
differences. To this end, we fitted a multilinear model of the group-level
results (unthresholded T-maps for patients vs. HCs) and the ND factors for
each disorder and all disorders. Group-level results were significantly
derived from theND factors for each disorder and all disorders. Specifically,
the model goodness-of-fit (adjusted R2) for depression, OCD, schizo-
phrenia, and all disorders were 0.15 (F-statistic = 1.43e4), 0.40 (F-statistic =
5.47e4), 0.57 (F-statistic = 1.10e5), and 0.76 (F-statistic = 2.64e5), respectively.
All FDR-corrected permutation p < 0.001. The estimated coefficients of the
models are drawn in Fig. 2A. This association was similarly observed in the
validation datasets (Supplementary Results).

For show, we embedded the factor composition of each disorder
(estimated coefficients of multilinear models) and patient into a two-
dimensional space (Fig. 2B) using a dimensionality reduction technique29.
This result confirmed that group-level results essentially represented an
“average patient” for each disorder (or all disorders).

Fig. 2 | Association between ND factors and group-level morphological differ-
ences. A Estimated coefficients of multilinear models between group-level gray
matter morphological differences (unthresholded T maps for patients vs. HCs) and
ND factors for each disorder or all disorders. The numbers are the estimated

coefficients of multilinear models. The permutation p < 0.001 (FDR corrected).
B Factor composition of each patient and disorder (or all disorders) are embedded
into two-dimensional space. Note: PF1 positive factor 1, PF2 positive factor 2, NF1
negative factor 1, NF2 negative factor 2.
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Association between ND factors and dissociable cognitive
domains
To investigate the relationship between ND factors and cognitive pro-
cesses, we performed functional annotation for each factor. Functional
annotation showed that the identified ND factors corresponded with
distinct cognitive domains (uncorrected permutation p < 0.05; Supple-
mentary Fig. S8).Most of these terms did not survive the FDR correction.
We used this tolerant threshold because the representative brain areas of
the ND factors are primarily located in association cortices that are
implicated in diverse but not specific cognitive processes. Broadly,
positive factor 1 was associated with multisensory integration, and
positive factor 2 was associated with attention deficits and emotions. In
contrast, negative factor 1 was implicated in attention and executive
functions, whereas negative factor 2 was implicated in auditory and
social functions. Additionally, we validated this association at different
top n% (8% and 12%) of the voxels for each factor and the results remain
largely unchanged (Supplementary Figs. S9-S10).

Association between neurotransmitter receptors/transporters
and ND factors
Psychiatric pathology can be informed by localmolecular attributes, such as
neurotransmitter receptor profiles30. Therefore, we investigated the con-
tribution ofmolecular vulnerability to the identifiedND factors. To this end,
we fitted four multilinear models of neurotransmitter receptors/transpor-
ters and each ND factor separately. The significance of the multilinear
models was assessed using one-sided permutation testing (10000 permu-
tations) and corrected for multiple testing with FDR correction. For each
positive and negative factors, the model goodness-of-fit (adjusted R2) were
0.56 (F (68,48) = 5.44, FDR-corrected permutation p < 0.001), 0.72 (F
(68,48) = 10.2, FDR-corrected permutation p < 0.001), 0.68 (F
(68,48) = 8.53, FDR-corrected permutation p < 0.001) and 0.65 (F
(68,48) = 7.66, FDR-corrected permutation p < 0.001) (Fig. 3A).

A dominance analysis was conducted for each multilinear model to
determine the relative importance of the predictors (neurotransmitter
receptors/transporters). The dominance analysis showed that: 5HT4 is

Fig. 3 | Contributions of neurotransmitter receptors/transporters to ND factors.
A We construct four separate multilinear models of neurotransmitter receptors/
transporters and each ND factor. The corresponding model goodness-of-fit
(adjusted R2) is shown in the bar plot.BDominance analysis was performed for each
multilinear model to determine the relative importance of the predictors. The total
dominance values, measuring the relative importance of the predictors, are shown.

C We stratified receptors into excitatory and inhibitory receptors and calculated
their accumulated contributions (by summing the total dominance values) to the
ND factors. The accumulated contribution of excitatory receptors
(Excitatory_Dtotal) was plotted against that of inhibitory receptors
(Inhibitory_Dtotal). The gray line indicates the identity line. Note: PF1 positive factor
1, PF2 positive factor 2, NF1 negative factor 1, NF2 negative factor 2.
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consistently important for both the positive and negative factors. D1 is
important for positive factor 2 and negative factor 1, whereas D2 is
important for positive factor 2 and negative factor 2. Moreover, 5HT1A and
H3 specifically contributed to positive factor 1 and negative factor 1,
respectively. The total dominance values which indicate the relative
importance of each predictor, are shown in Fig. 3B.

Moreover, we stratified the receptors into excitatory and inhibitory
receptors and calculated their accumulated contributions (by summing the
total dominance values) to the ND factors. We found that inhibitory
receptors predominantly contributed to positive factor 1,whereas excitatory
receptors predominantly contributed to negative factor 1. Excitatory and
inhibitory receptors contributed comparably to positive factor 2 and
negative factor 2 (Fig. 3C).

ND factors are anchored to dissociable disease epicenters
Recentneuroimaging studieshaveproposed thatneuropsychiatric disorders
target intrinsic brain networks. Pathological perturbations, measured with
structural abnormalities, begin in focal brain regions (‘epicenters’) and
propagate to other brain regions following normal brain network
architecture31–34. Raj et al. proposed a model named network diffusion
model (NDM) to quantitatively test this progress35. In NDM, the trans-
neuronal transmission of pathology along axonal projections is considered
as a diffusion process in the normal brain network, with graymatter volume
variations serving as a measure of pathology35. NDM has successfully cap-
tured the trans-neuronal propagation of pathology and even predicted the
future longitudinal progression of pathology in neurodegenerative
diseases35,36. Moreover, NDM reveals the temporal sequencing of patholo-
gical progression, correctly recapitulating the Braak staging of Lewy
pathology in Parkinson’s disease37. Based on these studies, we investigated
whether the identified ND factors were informed by the normal structural
covariance network.

The NDM outcomes (correlation matrices) for each factor are shown
in Fig. 4A. As shown, when the NDM was seeded at the anterior cingulate
cortex (ACC), rightmiddle temporal gyrus, right precentral gyrus, and right
putamen, the best recapturing of ND factors profiles was achieved (max-
imum correlation coefficients was obtained), suggesting that the regions
were plausible seed regions (disease epicenters). Spatial correlation coeffi-
cients between NDM-predicted morphological abnormalities and ND fac-
tors were 0.29 (FDR corrected permutation p < 0.001), 0.14 (FDR corrected
permutation p = 0.040), 0.30 (FDR corrected permutation p < 0.001), and
0.17 (FDR corrected permutation p = 0.023) for positive and negative fac-
tors (Fig. 4B).

Factor composition reveals two robust subtypes with opposite
morphological abnormalities
Using factor compositions as features, K-means revealed two transdiag-
nostic subtypes (silhouette values are plotted inFig. 5A). The averagepatient
factor composition for each subtype is shown in Fig. 5B. There were 195
(51.05%) and 187 (48.95%) patients in subtype 1 and 2, respectively. The
disorder composition of each subtype is shown in Fig. 5. These two sub-
types did not significantly differ in terms of sex, age, symptom severity,
illness duration, or age of onset (uncorrected p > 0.05) for each diagnosis.
However, they demonstrated opposite morphological abnormalities com-
pared with that of HCs (Bonferroni-corrected p < 0.05). Subtype 1
demonstrated GMV, mainly in the middle temporal gyrus, vmPFC/ACC,
inferior frontal gyrus,middle frontal gyrus, insula, putamen, andprecuneus.
In contrast, subtype 2 showed a widespread decrease in GMV in almost all
brain regions (Fig. 5). When mixed, the patients demonstrated no sig-
nificant graymatter volumevariations comparedwith theHCs (Bonferroni-
corrected p < 0.05).

Sensitivity analysis revealed that the subtyping results using randomly
selected subsamples were consistent with the main results, with the mean
ARI reaching 0.84 (±0.17). The ARIs are shown in Supplementary Fig. S11.
Weobtained subtyping results using another completely different algorithm
(heterogeneity through discriminative analysis, HYDRA), with regional

GMVas features.TheHYDRAshowed that theoptimal numberof subtypes
was 2 (Supplementary Fig. S12). In addition, the ARI between the HYDRA
subtyping and the main results was 0.58. These results confirmed the
robustness and reproducibility of the subtyping results.

Discussion
In this study, we identified four robust ND factors accounting for the het-
erogeneous morphological abnormalities in psychiatric disorders. The
identified ND factors were reproducible using independent datasets and
could be generalized to unseen disorders. The significant and quantified
relationship between ND factors with group-level morphological abnorm-
alities reconciled the individualized and group-level results. Furthermore,
ND factors are characterized by dissociable cognitive processes, molecular
signatures, and connectome-informed disease epicenters, suggesting dis-
tinct underpinnings. Moreover, factor composition revealed two robust
transdiagnostic neuroanatomical subtypes, providing new insights into
taxonomy of psychiatric disorders.

The identified ND factors exhibit robustness and reconcile morpho-
logical abnormalities at the individual and group levels. Although the
identified ND factors were obtained from first-episode and untreated
patients, they showed good reproducibility when validated using validation
datasets with different data acquisition equipment and protocols, pre-
processing strategies, medicine status and race. Further sensitivity analyses
suggest that ND factors significantly predict factor compositions of unseen
patients, and even patients with unseen psychiatric disorders. These results
confirm the generalizability of the identified ND factors and indicate that
they are shared by psychiatric disorders, reflecting transdiagnostic effects.
Of note, ND factors also share brain regions. For instance, in charging
multiple affective and cognitive functions, the ventromedial prefrontal
cortex/anterior cingulate cortex belongs to both positive and negative fac-
tors. Neuroimaging studies have frequently reported structural abnormal-
ities in this region38. However, the findings have been inconsistent. For
instance, both increased39 and decreased38 GMV have been reported in
schizophrenia. This discrepancy can be explained by the existent of opposite
differential factors underlying gray matter volume variations identified in
this study. The overlapping brain regions of positive and negative factors
suggest they have multifarious roles in the neurobiology of psychiatric
disorders and provide a potential interpretation for conflicting findings in
neuroimaging studies with case-control designs. Although they share
common ND factors, patients with psychiatric disorders exhibit notable
interindividual variations in factor compositions consistent with the notion
that psychiatric disorders are highly heterogeneous11,13,40–43. High hetero-
geneity reflects phenotypic differences among patients with psychiatric
disorders.Moreover, the identifiedND factors could significantly derive the
observed group-level gray matter volume variations for each diagnosis (or
all diagnoses), reconciling morphological abnormalities at the individual
and group levels. Besides, the factor compositions of psychiatric disorders
might reflect degree of abnormalities of psychiatric disorders, with schizo-
phrenia > OCD> depression. This trend has been documented in previous
studies44,45. Unlike previous findings that highlighted regional overlaps as
shared effects between disorders46–48, this quantitative relationship between
ND factors and group-level gray matter volume variations highlight how
common neurobiology underlies seemingly irrelevant morphological
abnormalities in different disorders. Individualized deviations in structural
and functional brain measurements show promise for subject-level classi-
fication, identifying disease subtypes, and predicting prognosis49–51. In the
present study, the identifiedND factors reveal two transdiagnostic subtypes
with distinct patterns of structural abnormalities. Additionally, previous
research has demonstrated that individualized deviations in gray matter
morphology are strongly associated with treatment efficacy in patients with
depression21,22. Building on these findings, we hypothesize that ND factors
may also hold promise for prognostic prediction, an area that warrants
further investigation.

Receptor distribution contributes to corticalmorphology inpsychiatric
disorders. Neurotransmitter dysfunction is thought to underlie psychiatric
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disorders, such as serotonin reuptake in depression anddopamine release in
schizophrenia30. Neurotransmitter receptor profiles are hypothesized to
have close relationship with disorder-specific cortical abnormalities and
cross-disorder similarities in brain disorders30,52. The effectiveness of mod-
ern antipsychotic and antidepressant drugs depends on the selective
manipulation of neurotransmitter function. In this study, neurotransmitter
receptor/transporter distribution account for up to 72% of the variations
observed in the identified ND factors, suggesting the fundamental con-
tributions of neurotransmitters to ND factors. In addition, we show that
some receptors (e.g. 5HT4) are consistently important for positive and
negative factors, whereas others are selectively important for some factors.
Furthermore, we showed the dissociable associations between ND factors

and excitatory and inhibitory receptors profiles. Collectively, these results
demonstrate the molecular signatures of the identified ND factors and
provide potential clues for pharmacotherapy.

Moreover, the identified ND factors are significantly recapitulated by
NDM seeding at distinct disease epicenters. In neuropsychiatric disorders,
emerging evidences suggest that progression of pathology manifested as
structural abnormalities, is constrained by or even forecasted by the normal
network architecture34,53,54. For instance, neuroimaging studies have shown
that pathological perturbations begin at focal epicenters and propagate to
unaffected brain regions31,32,54,55. Consistent with the findings of these stu-
dies, we observed that the identified ND factors were significantly recapi-
tulated by NDM, supporting the network-based spreading process model.

Fig. 4 |NDMperformance. AEvolutional correlationmatrices (R-t curves) between
predicted and actual ND factors by sequentially seeding NDM at each brain region.
Red lines indicate evolutional correlations between the most plausible seed regions,
whereas gray lines indicate those of non-seed regions. B Permutation testing results.
Orange lines indicate the true performance (True R2) ofNDMon the actual network,

and the performance distribution (Permutation R2) of NDM on random networks.
CDisorder composition for each subtype.DVoxel-wise gray matter morphological
differences of each patient subtype compared with that of the HCs (Bonferroni-
corrected p < 0.05).
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The identifiedND factors are associatedwith distinct disease epicenters that
are located in the brain regions implicated in high-order cognitive/emo-
tional and sensory/motor processes, possibly mirroring top-down and
bottom-up dysregulation in psychiatric disorders56–60.

Identification of more homogeneous psychiatric subtypes is expected
to improve the understanding of etiological mechanisms61. Previous studies
have identified subtypes basedmainly on clinicalmanifestation62–64. Despite
great success, clinical manifestations have a complex interplay with the
underling biological substrates and are unstable with age or illness course.
Identifying psychiatric subtypes from objective neuroanatomical data using
data-driven approaches has gained increased popularity61. In this study,
using factor compositions as features, we discovered two distinct neuroa-
natomical psychiatric subtypes. Sensitivity analysis conforms reproduci-
bility of the subtyping results. Despite the notable morphological
abnormalities, these two subtypes demonstrate similar clinical phenotypes.
Notably, when combined, the patients show no significant differences
compared with the HCs. Similar subtypes have been reported in schizo-
phrenia, depression, andOCDseparately39,65,66. Taken together, these results

suggest that the identified ND factors aid the discovery of two robust
transdiagnostic psychiatric subtypes, indicating the prospect of ND factors
in clinical applications.

This study has some limitations. First, we did not have sufficient
clinical information, such as medicine types and doses, and symptom
dimensions (e.g. obsessive dimensions). Thus, we failed to investigate
whether and howmedicinemodulatedND factors and whether ND factors
corresponded to specific symptom dimensions. Second, for the discovery
dataset, we only recruited patients without comorbidities with other psy-
chiatric disorders, who often had more severe symptoms. Although the
identified ND factors showed good consistency between patients with and
without comorbidities, the effect of comorbidities on the factor composi-
tions should be investigated in the future. Third, we only considered five
psychiatric disorders, future studies should investigate whether ND factors
can be generalized to more disorders. Fourth, although the identified ND
factors obtained using untreated psychiatric patients can be reproduced in
patients on medication, the specific effects of medication our findings
warrant further investigation in the future. Fifth, the current study did not

Fig. 5 | Subtyping patients into transdiagnostic subtypes based on factor compositions. A Silhouette values for each number of subtypes. B Averaged patients factor
composition in each subtype.
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take symptom severity into account and we did not find significant asso-
ciations between factor compositions and symptom severity (if any). Since
the ND factors are shared across psychiatric disorders, they could be asso-
ciated with common features not available in our study. These associations
warrant further investigation. Finally, theneurotransmitter receptor profiles
were obtained based on PET images of other samples. Future studies should
verify the association between ND factors with neurotransmitter receptor
profiles in the same samples.

In conclusion, we identify a reproducible and shared ND factors
underlying gray matter volume variations in patients with psychiatric dis-
orders, reflecting the phenotypic similarities across psychiatric disorders.
With these factors, individualized gray matter volume variations can be
represented as a unique and linear weighted sum of ND factors,
reflecting the phenotypic differences between patients. ND factors are
characterized by dissociable cognitive processes, molecular substrates, and
connectome-informed disease epicenters and aid the discovery of two
transdiagnostic subtypes with opposite differences compared with HCs.
These results provide novel insights into the neuropathology of psychiatric
disorders.

Methods
Overall approach
This study was organized as follows. We leveraged a discovery dataset of
untreated and first-episode patients to identify shared ND factors from a
dimensional perspective. The robustness and generalizability of the iden-
tified ND factors were assessed using independent validation datasets with
different data acquisition equipment and protocols, preprocessing strate-
gies, medicine status, and race. We investigated the relationship between
ND factors and group-level gray matter volume variations. To interpreta-
tionND factors, we characterized themusing distinct neurocognitive terms,
neurotransmitter receptor/transporter distributions, and disease epicenters.
Finally, using the factor compositions as features, we identified two subtypes
with opposite gray matter volume variations relative to the normal
population.

Datasets
Four independent datasets (1 discovery dataset and 3 validation datasets) of
878 patients and 585 healthy controls (HCs) with 5 psychiatric disorders
from different ethnic groups were included in this study. The discovery
dataset comprised the data of 383 patients with psychiatric disorders,
including patientswith depression (n = 104), schizophrenia (n = 180),OCD
(n = 98), and matched healthy controls (n = 130). Validation dataset 1 was
obtained from theCentre forBiomedicalResearchExcellence (COBRE) and
is available at http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html67.
The COBRE group comprised 72 patients with schizophrenia andmatched
74 HCs. Validation dataset 2 was obtained from the Depression Imaging
Research Consortium (DIRECT)68,69. We used only the single-site dataset
with the largest sample size (site 20) to prevent multi-site effects on our
results. This dataset comprised the data of 282 patients with depression and
matched 251HCs. Validation dataset 3 was obtained from theUniversity of
California, Los Angeles (UCLA) Consortium and is available in the public
database OpenfMRI70. The dataset included the data of 142 patients with
psychiatric disorders (schizophrenia, n = 50; ADHD, n = 43; BD, n = 49)
and 130 HCs.

All study procedures were in accordance with the Declaration of
Helsinki of 1975, andapprovedby the localResearchEthicsCommittees.All
ethical regulations relevant to human research participants were followed.

Discovery dataset
This study was approved by the Research Ethics Committee of the First
Affiliated Hospital of Zhengzhou University. Data of 382 patients
(depression, n = 104; OCD, n = 98; schizophrenia, n = 180) and 130 healthy
controls (HCs) were collected from the discovery dataset from the
Department of Psychiatry of, the First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China. All study procedures were performed in

accordance with the Helsinki Declaration of Helsinki of 1975. All partici-
pants provided signed informed consent before the experiment.

Diagnosiswasmadeby a chief physician and awell-trainedpsychiatrist
based on theDiagnostic and StatisticalManual ofMental Disorders, Fourth
Edition criteria. All patients were first episode and untreated and had no
comorbidity with psychotic disorders, nervous system diseases/cardiovas-
cular diseases, history of traumaor brain surgery, history of substance abuse,
or medication use in the past month. Symptom severity of the patients with
psychiatric disorders (depression, OCD, or schizophrenia) was assessed
using the 17-item Hamilton Depression Scale (HAMD)71, Positive and
Negative Symptom Scale (PANSS)72 and Yale–Brown Obsessive Compul-
sive Scale (Y-BOCS)73, respectively. One hundred and thirty HCs were
recruited from the adjacent community though poster advertisements.
None of theHCs had a history of seriousmedical or neuropsychiatric illness
and no family history of major psychiatric or neurological illness in their
first-degree relatives.

Validation dataset 1
Validation dataset 1 was obtained from the center for biomedical research
excellence (COBRE), available at http://fcon_1000.projects.nitrc.org/indi/
retro/cobre.html 67. TheCOBRE consisted of 61 patientswith schizophrenia
andmatched73HCs after excluding participantswith poor image quality or
missing data. Patients were diagnosed with schizophrenia according to the
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV, Fourth
Edition). Patients were taking antipsychotic medications, and no medica-
tion changes within 1 month. The exclusion criteria included active sub-
stancedependenceor abuse (except for nicotine)within thepast 1 year and a
history of neurological disorders. HCs were interviewed using the DSM-IV
Axis I disorders-non-patient edition. None of the HCs had a history of
depression or antidepressant use within the last six months, a history of
lifetime antidepressant uses for more than one year, a recent history of
substance abuse or dependence, head traumawith a loss of consciousness of
>5min, or a family history of psychotic disorder in a first-degree relative.

Validation dataset 2
Validation dataset 2 was obtained from site 20 of the Depression Imaging
Research Consortium (DIRECT)68,69, comprising the data of 282 patients
with depression and 251 HCs. The patients were recruited from the First
Affiliated Hospital of Chongqing Medical School, Chongqing, China. Two
psychiatrists independently assessed the diagnoses according to the Struc-
tured Clinical Interview for DSM-IV. Patients had no comorbidity with
other psychiatric disorders. Symptom severity was assessed using the
HAMD71. HCs did not meet DSM-IV criteria for any psychiatric disorders
nor have used any drugs that affect brain structure or function. All parti-
cipants (both patients and HCs) meet the following exclusion criteria:
current neurological disorders; a history of substance abuse; and serious
encephalopathy. The procedures of this dataset were approved by the
Research Ethics Committee of the Brain Imaging Center of Southwest
University and the First Affiliated Hospital of Chongqing Medical School.
All the participants provided signed informed consent.

Validation dataset 3
Validation dataset 3 was obtained from the University of California, Los
Angeles (UCLA) Consortium for Neuropsychiatric Phenomics (CNP),
which is available in the public database OpenfMRI70. The dataset includes
142 patients with psychiatric disorders (schizophrenia, n = 50; BD, n = 49;
ADHD, n = 43) and 130 HCs. This study was approved by the Institutional
ReviewBoards atUCLAand theLosAngelesCountyDepartment ofMental
Health, and all participants signed informed consent before the experiment.
Diagnoses were made according to the Structured Clinical Interview for
DSM-IV-Text Revision70. The inclusion criteria for all participants include
years of formal education of >8 years, absence of significant medical illness,
and negative urinalysis results for drugs of abuse (e.g. Cocaine and Mor-
phine). HCs had no lifetime diagnoses of psychotic/mental disorders, or
Substance Abuse. Further details regarding the dataset are provided
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elsewhere70. Participants whose behavioral scores/images were missing or
who had signal dropouts in the cerebellum were excluded74. Finally, 224
participantswere included, as described by Kebets et al.74. Additional details
are provided elsewhere70,74.

Data acquisition
Discovery dataset. T1-weighted anatomical images were acquired on
3-Tsela GE Discovery MR750 scanner (General Electric, Fairfield Con-
necticut, USA) with the following parameters: repetition time = 8164 ms,
echo time = 3.18 ms, flip angle = 7 degrees, voxel size = 1 × 1 × 1 mm3,
inversion time = 900 ms, thickness = 1.0 mm, resolution matrix = 256 ×
256, slices = 188.

Validation dataset 1
T1-weighted anatomical images of COBRE were acquired using Siemens
Trio scanner. Scanning parameters were as follow: repetition time =
2530ms, echo time = 1.64ms, flip angle = 7 degrees, voxel size = 1 × 1 × 1
mm3, inversion time= 1200ms, field of view= 256mm, resolutionmatrix =
256 × 256, thickness = 1.0mm, 256 slices.

Validation dataset 2
T1-weighted anatomical imageswere scanned on a 3.0-T SiemensTrioMRI
scanner using a 16-channel whole-brain coil (Siemens Medical,
Erlangen, Germany). Scanning parameters were as follow: repetition time
= 1900 ms, echo time = 2.52ms, flip angle = 9 degrees, inversion
time = 900ms, resolution matrix = 256 × 256, slice thickness = 1.0 mm,
176 slices.

Validation dataset 3
T1-weighted anatomical images were scanned on one of two 3 T Siemens
Trio scanners, located at the Ahmanson-Lovelace Brain Mapping Center
(Siemens version syngo MR B15) and the Staglin Center for Cognitive
Neuroscience (Siemens version syngo MR B17) at UCLA. scanning para-
meters were as follow: repetition time = 1900ms, echo time = 2.26ms, field
of view = 250mm, resolutionmatrix = 256 × 256, slice thickness = 1.0 mm,
176 slices.

Individualized gray matter volume variations
Voxel-wise gray matter volume variations (GMV) was determined with
voxel based morphometry analysis (VBM) equipped in the Computational
Anatomy Toolbox (CAT12, http://dbm.neuro.uni-jena.de/cat12/)75. We
followed the recommended procedures of CAT12 and smoothed the
obtained gray matter maps using a 6mm full width at half maximum
Gaussian kernel76,77. The total intracranial volume (TIV) was recorded for
the followingprocedures54,78. Forpatients in theDIRECTproject,wedirectly
smoothed the released graymattermaps obtainedusing theDataProcessing
Assistant for Resting-State fMRI (DPARSF) protocol79. The cerebellumwas
not included in the VBM analysis due to incomplete cerebellum scans for
some participants.

As previously described, Gaussian process regression was constructed
to infer voxel-level GMV from sex and age15,17,27. This model has been
proven to perform robustly across different cohorts27. The model trained
using HCs was applied to patients with psychiatric disorders to infer the
GMV. For each voxel of a given patient, a Z score was calculated to quantify
the deviation of the predicted GMV from normal distributions15,17,27. Posi-
tive Z scores indicated higher GMV in patients than that of HCs and
vice versa.

Modeling ND factors
As previously described27, we parsed individualized gray matter volume
variations into potential neuroanatomical differential patterns (ND factors)
using NMF20,25. We divided morphological differences into positive and
negative parts (henceforth referred to as the positive and negative factors)
according to the Z scores. The following analyseswere performed separately
on the twoparts. For thenegative part,weused the absoluteZ scores.NMF is

defined as follows:

D ¼ W× Fþ 2 W; F > 0 ð1Þ

Where D denotes individualized gray matter volume variations (subject ×
voxel); F, neuroanatomical factors (factor× voxel);W(subject × the number
of factors K), factor compositions (weights); and є, the residuals. The
optimal number of factors (K) needed to be predefined.

Based on a previous study23, we adopted an strategy to automatically
determine the optimal K (2–10), assuming that the optimal K yielded the
most generalizable factors for unseen patients. Generalizability was mea-
sured by increased out-of-sample reconstruction/generalizability error
(GE), which was defined as the mean of absolute differences between the
reconstructed out-of-sample Z scores using the trainedNMF and true ones.
A higherGE indicates aworse generalizability. Specifically, for each number
of factors, patients were randomly split into two (subsets 1 and 2). TheNMF
was trained based on subset 1 and applied subset 2. The mean absolute
reconstruction error (between the reconstructed and trueZ scores) of subset
1 (є11) and 2 (є12) were calculated. Similarly, є22 and є21 were calculated. GE
was calculated using the following formula:

GE ¼ 212 �211 þ221 �222 ð2Þ

This procedure was repeated 100 times. The optimal K value is the
number with the lowest average GE value.Most critically, a series of sensi-
tivity analyseswere performed to assess the robustness and generalization of
the identified ND factors (see Statistics and reproducibility).

Association between ND factors and group-level gray matter
volume variations
Group-level gray matter volume variations were obtained using a two-
sample t test with SPM12 software (http://www.fil.ion.ucl.ac.uk/spm),
where sex, age, andTIV(if any)were includedas covariates.The significance
of the multilinear models was assessed using one-sided permutation testing
(10,000 permutations) and corrected for multiple testing with FDR
correction.

To intuitively show the association between individualized and group-
levelmorphological abnormalities, we embedded the factor compositions of
each patient and disorder (or all disorders) into a two-dimensional space
using t-distributed stochastic neighbor embeddingmethod29. For the group-
level morphological abnormalities, the estimated coefficients of the multi-
linear models were considered as disorder factor compositions.

Association between ND factors and cognitive processes
Functional annotation was performed to associate the identifiedND factors
with functional terms/cognitive processes. Briefly, functional annotation
associates functional terms/cognitive processes with the identified brain
regions using probabilistic mappings (https://neurosynth.org/)80. Prob-
abilisticmappings associate voxelswith functional terms (such asmood and
autobiographical memory) by synthesizing results from about
15,000 studies80. In this study, we only considered 217 terms that bore clear
biological significance, according to Cheng et al.81. Similar to the gene
enrichment analysis, function annotation assesses the association between
the identified ND factors and certain cognitive processes by determining
whether voxels within a cluster have a higher probability of being co-
activated by the same functional terms than randomly selected voxels82. The
significance of this association was assessed using one-sided permutation
testing (10,000 times)82. Functional terms were considered significant if
p < 0.05 (uncorrected). For each factor, functional annotation was per-
formed on the top 10% of the voxels with the largest F values using brain
annotation toolbox (BAT version 1.1, https://istbi.fudan.edu.cn/lnen/info/
1173/1788.htm)82. Please note, we only considered 217 cognitive terms that
did not cover the entire range of human cognitive ontology. Detailed rela-
tionships between brain regions and much broader cognitive terms still
warrants further research and beyond the scope of this study.
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Contribution of neurotransmitter receptors/transporters to ND
factors
Therefore, we investigated the contribution ofmolecular vulnerability to the
identified ND factors. To this end, we fitted four multilinear models of
neurotransmitter receptors/transporters and eachNDfactor separately. The
significance of the multilinear models was assessed using one-sided per-
mutation testing (10,000 permutations) and corrected for multiple testing
with FDR correction. Neurotransmitter receptors/transporters were
obtained from PET-derived neurotransmitter receptors/transporters atlas
collected and shared by Hansen et al.52. The neurotransmitter receptors/
transporters include serotonin (5HT1A

83, 5HT1B
83–89, 5HT2A

90, 5HT4
90,

5HT6
91,92, 5HTT90), norepinephrine (α4β2

89,93, M1
94, VAChT95,96), cannabi-

noid (CB1
97–100), dopamine (D1

101, D2
102–105, DAT106), GABA (GABAa

107),
histamine (H3

108), glutamate (mGluR5
109,110, NMDA111,112), opioid (MOR113),

and norepinephrine (NET114–117). For consistency with previous studies30,52,
we restricted our analyses to the cortex using processed neurotransmitter
receptor/transporter Z scores provided by Hansen et al. (https://github.
com/netneurolab/neuromaps)52.

Thereafter, for each multilinear model, a dominance analysis was
performed to further assess the relative importance (‘dominance’) of pre-
dictors (neurotransmitter receptors/transporters) to the overallfit118. Briefly,
dominance analysis can be used to estimate the relative importance of
predictors byfitting the samemultilinearmodel to all possible combinations
of predictors (2n – 1 subset models for a model with n predictors). In this
study, total dominance was used to represent the relative importance of the
predictors30,118. The total dominance of each predictor is defined as the
averageof the additional variance (R2)when added it to the sub-models118,119.

Determining disease epicenters of the ND factors using network
diffusion modeling
In healthy population, a structural covariance network was obtained by
calculating the pairwise Pearson’s correlation coefficients between themean
GMV of each region defined in the Brain Connectome atlas120–122. Age, sex
and age2 were first regressed from the regional GMV33,60,123. An NDM was
built to model the pathological progression on the healthy structural cov-
ariance network. The NDM can be modeled as follows:

dxt
dt

¼ �βHx tð Þ ð3Þ

Where x tð Þ ¼ xiðtÞ is the regional pathology (regional values for each ND
factor) vector at time t. β is a global diffusivity constant controlling the speed
of pathological progression, and its exact value is arbitrary. H is the graph
LaplacianH ¼ I�D�1

2GD�1
2 where D is a diagonalmatrix whose diagonal

entries are the weighted degrees of each node.
The regional pathology vector x at time t can be obtained using the

equation:

x tð Þ ¼ e �βHtð Þx0 ð4Þ

where x0 denotes the initial pathological distribution at time zero. The unit
of time t is arbitrary (a.u.). In this study, β was set to 0.5 such that the peak
correlation between NDM-predicted abnormalities and empirical atrophy
wouldoccur at 5–10 years35,37. Future studies could estimate the t andβusing
longitudinal data.

Each region was considered the seed region (disease epicenter), where
x0 was 1 at the seed region and 0 at all other brain regions120. Spearman’s
correlation coefficient (R) between the regional ND factor and NDM-
predicted values was calculated for each time point t (between 1 and 50) and
region. This procedure would yield 246 (the number of regions) × 50 cor-
relationmatrices (referred to as ‘R-t curves’). Themaximumvalue ofR (mR)
was recorded for each region. The brain region with themaximummRwas
considered the putative seed region.

Subtyping patients based on factor compositions
Finally, we investigated whether factor composition could help reveal the
transdiagnostic subtypes. The K-means algorithm was used to identify the
transdiagnostic subtypes, with factor compositions as features and the
squared Euclidean distance as the distance metric. The optimal number of
subtypes ranging from2 to 10was determinedusing silhouette values124. For
each subtype number, k-means was repeated 100 times to avoid local
minima during the initialization of centroid positions125.

Statistics and reproducibility
Robustness and Reproducibility analysis of the identified ND fac-
tors. A series of sensitivity analyses were performed to assess the
robustness and generalization of the identified ND factors. First, internal
validation was performed using 10-fold cross-validation. For each run,
we trained the NMF based on the training set and used the trained NMF
to predict the factor compositions (W) of the patients in the testing set.
Pearson’s correlation coefficients between the true factor compositions
obtained using all patients, and the predicted ones across runs were
calculated. This procedurewas performed 100 times tominimize random
selection errors. Second, leave-one-disorder-out cross-validation was
performed. We trained the NMF based on patients with two disorders
(such as depression and OCD) and predicted the factor compositions of
patients with the remaining disorder (such as schizophrenia). Third, we
calculated spatial correlations between the ND factors obtained using
different datasets. The correspondence between ND factors obtained
using different datasets was determined using the Hungarian matching
algorithm24,126. The correlations significancewas assessed using one-sided
permutation testing (10,000 permutations) and corrected for multiple
testing using Benjamini-Hochberg false discovery rate (FDR) correction.
Forth, we predicted factor compositions of patients in validation datasets
based on the NMF trained using the discovery dataset. Pearson’s corre-
lation coefficients between the predicted and the true factor compositions
were calculated. The significance of the correlations was corrected for
multiple testing using FDR correction.

Significance of NDM. NDM significance was assessed by constructing
10,000 random networks127. For each random network, we rerun the
NDM and recorded the maximum Spearman’s correlation coefficient
(R_rand) across time and brain regions. This procedure yielded a null
distribution to assess the significance of the NDM based on the true
network.

Robustness and reproducibility analysis of clustering results. Two
strategies were used to assess the stability of the clustering results. First,
we randomly selected 90% of patients and performed k-means clustering
on this subsample (repeating 100 times). ARI between the subtyping
results obtained using the subsample and those obtained using all
patients was calculated. Second, we used a completely different clustering
algorithm, called heterogeneity through discriminative analysis
(HYDRA) with regional GMV as features128. As a semi-supervised
method, the HYDRA succeeds in uncovering distinct subtypes in psy-
chiatric disorders39,66,129. The HYDRA automatically determines the
optimal number of clusters based on the adjusted Rand index (ARI),
quantifying the similarity between the clustering results of cross-
validation128. The optimal number of clusters was determined when the
ARI was the largest. In this study, we determined the optimal subtypes
from 2 to 10 using 10-fold cross-validation, controlling for age and sex.
The Adjusted Rand Index (ARI) between HYDRA subtyping results and
those reported previously was calculated.

Statistical analyses in morphological and clinical differences
between the subtypes. We examined the morphological and clinical
differences between the subtypes. Specifically, we obtained voxel-wise
morphological differences in each subtype or in all patients compared
with HCs using a two-sample t test with SPM12, controlling for sex, age,
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and TIV (any). The significance was set at Bonferroni-corrected p < 0.05.
We then investigated whether the clinical features differed between the
subtypes, including age, sex, symptom severity, illness duration, and age
of onset for each diagnosis.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The probabilistic mappings are provided by Neurosynth (https://
neurosynth.org/). The discovery dataset is available from the correspond-
ing author upon request. The validation datasets are freely available (Vali-
dation dataset 1: http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html;
Validation dataset 2: https://www.scidb.cn/en/detail?dataSetId=
cbeb3c7124bf47a6af7b3236a3aaf3a8; Validation dataset 3: https://
openneuro.org/datasets/ds000030/versions/00016). PET images are avail-
able at https://github.com/netneurolab/neuromaps.

Code availability
All analytical procedures are based onpublicly available toolkits. Voxel-wise
graymatter volume is obtainedusing theComputationalAnatomyToolbox
(CAT12, http://dbm.neuro.uni-jena.de/cat12/)130. The normative modeling
is constructed using GAUSSIAN PROCESS REGRESSION AND CLAS-
SIFICATION Toolbox 4.2 (http://www.GaussianProcess.org/gpml/
code)131. The Brain Annotation Toolbox (version 1.1) is available at
https://istbi.fudan.edu.cn/lnen/info/1173/1788.htm82. Group-level gray
matter volume differences are obtained using SPM12 (http://www.fil.ion.
ucl.ac.uk/spm)132. Non-negative matrix factorization is performed using
scikit-learn 1.3.2 (https://scikit-learn.org/stable/)133,134.
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