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Automatic engagement of limbic and
prefrontal networks in response to food
images reflects distinct information about
food hedonics and inhibitory control
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Adaptive regulation of food consumption involves both identifying food as well as evaluating whether it
should be eaten, a process that requires assessing relevant properties such as healthfulness and
hedonic value. In order to identify how these fine-grained food properties are represented in the brain,
we analyzed functional Magnetic Resonance Imaging data from 43 participants who viewed images of
36 different foods. A data-driven clustering approach based on Representational Similarity Analysis
partitioned food-responsive brain regions into two sub-networks based on their multivariate response
to food pictures: a Prefrontal network composed of fronto-parietal brain regions and a Limbic network
composed of cortico-limbic and sub-cortical brain regions. Further analysis, using similarity
judgments of those foods from a large online sample, revealed that the Prefrontal network
predominantly represented information related to food healthfulness or processing, the key factor
underlying food similarity. In another imaging task, we found that responses in the Prefrontal network
were strongly influenced by judgments of food-related self-control, while the Limbic network
responses were more affected by hedonic food judgments. These results suggest that, upon viewing
food images, behaviorally relevant information is automatically retrieved from distinct brain networks

that act as opponent processes in guiding food consumption.

Brain responses to food stimuli have been a topic of interest for nearly
20 years in the field of neuroimaging research. Meta-analyses of neuroi-
maging studies involving food picture stimuli have shown that there are a
few regions that are consistently responsive to food images, compared to
scenes or non-food objects, including the orbitofrontal cortex, amygdala,
and insular cortex'~’. Some recent studies have also suggested that ventral
visual regions exhibit a degree of selectivity for food images**.

Despite this, there is still much to be learned about how the brain
responds to food. Studies that have examined the neural response to food-
related stimuli (most commonly images of foods displayed to subjects
during fMRI scanning) in healthy populations have come in two general
varieties. Studies of object representation that use foods as one of several
different object categories (e.g., faces, tools, scenes) often group all foods
together as a single category’~’, an approach which usually does not account

for the broad variation in properties present across different foods. In
contrast, behavioral and clinical studies focus more on the nutritional
composition of depicted foods, such as fat, sugar, or caloric content'*'".
While this approach does focus on factors which are more clinically relevant,
it overlooks other relevant food properties that can also drive food-related
decision-making (such as taste, the appearance of food, or if foods “go
together”"?). This approach can also lead to the generation of food groups
which are somewhat counterintuitive. For example, an approach that
grouped foods together based on sugar and fat content might group fruit
salad and marshmallows together within the same sub-category", though
these foods are wildly dissimilar across many relevant dimensions relevant
to health (e.g., degree of food processing').

The univariate-contrast approach typically employed for food-related
neuroimaging studies also has some limitations. In general, univariate
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analyses enable researchers to identify regions in which the activation for a
particular object category, such as food, is greater than activation for other
objects. However, they do not indicate what type of information about food
is being represented, nor whether that same information is shared across
multiple food-responsive regions. In contrast, multivariate techniques such
as Representational Similarity Analysis (RSA'*'®) can be used to identify the
presence of property-specific information within a brain region, as well as
compare the representation of information across regions, thus affording
increased inferential power over standard univariate methods.

In the present study, we sought to examine the representation of food-
property information in the brain using complementary data-driven
behavioral and neuroimaging analysis approaches. We employed data from
an online behavioral study'” which used an odd-one-out triplet task'*" to
obtain similarity judgments of a set of food images used in previous neu-
roimaging studies”’, images which had been previously selected by
experimenters according to the nutritional content of the depicted foods.
Analysis of the online task data revealed naturalistic food categories and
dimensions that underlie the similarity judgments of those foods. We
subsequently applied the results of these analyses to the analysis of neu-
roimaging data from a group of subjects who viewed images of these foods
during fMRI scanning. We used multivariate RSA to examine where this
information is represented, within brain regions preferentially responsive to
foods (vs. non-food objects).

Results

Food pictures fMRI task

Forty-three healthy participants from the greater Washington, DC metro-
politan area completed fMRI scans at the National Institutes of Health
Clinical Center in Bethesda, MD. Participants were kept on a controlled and
standardized eucaloric diet for at least 72 h prior to fMRI scanning (see
“Methods” section for more details). The participants completed our Food
Pictures task during functional Magnetic Resonance Imaging (fMRI), a task
in which they viewed a broad selection of foods and non-food objects™ .
The 36 types of food presented in this task included foods high and low in
both fat and sugar content, including appetizing foods such as French fries
and donuts, as well as healthy food options such as fruits and vegetables. We
performed a univariate fMRI analysis of the neuroimaging data from this
task and identified several brain regions exhibiting a significantly greater
hemodynamic response to food images than non-food images (Fig. 1).

Food > Non-Food Pictures
10 -10
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Fig. 1 | Hemodynamic Response to Food vs. Non-Food Images. A widespread
number of brain regions are activated by images of foods, including regions involved
in processing the sensory and affective components of food, such as the bilateral
mid-insula (MI), orbitofrontal cortex (OFC), amygdala, and ventral striatum (VS),
as well as fronto-parietal regions such as the bilateral inferior frontal gyrus (iFG) and
medial frontal gyrus (mFG) and Pre-Supplemental Motor Area (Pre-SMA) involved
in response inhibitional and behavioral control. vAI - ventral anterior insula, ACC -
anterior cingulate cortex.

Those include classic ventral limbic and pre-limbic brain regions, such as
bilateral regions of dorsal mid-insula and ventral anterior insula, bilateral
regions of lateral orbitofrontal cortex (BA 11 m), bilateral regions of the
amygdala, a region of the left ventral striatum bordering the nucleus
accumbens, and a region of the dorsal anterior cingulate cortex (Fig. 1,
Table S1). A food-specific response was also observed in dorsal and pre-
frontal regions of the brain, including regions such as the bilateral medial
frontal gyrus and medial frontal gyrus, the right intraparietal sulcus, the
right pre-central gyrus, and the pre-supplementary motor area. Food pic-
tures also led to greater widespread activation of the early visual cortex
extending into ventral occipitotemporal cortices, bilaterally, compared to
non-food objects.

In contrast, a greater response to non-food objects was observed in
bilateral regions of the lateral posterior temporal and parietal cortex (not
listed), the right cuneus, and the left lingual gyrus (Fig. 1, Table S1).

Identification of distinct food networks using RSA-based clus-
tering of food-responsive regions

We next ran a series of multivariate analyses to compare the representation
of food-related information within those food-responsive brain regions. To
accomplish this, we used a network clustering procedure, based on Repre-
sentational Similarity Analysis (RSA), of the data from within those regions
of interest (ROI). In general, this technique can be used to compare the
responses to different stimuli across multiple behavioral and imaging
modalities by representing those responses within a similarity space, which
serves as a common reference frame'’. As such, this method allowed us to
examine the similarity of the neural response to food images across multiple
food-responsive ROIs. Within each of the ROIs exhibiting a strong uni-
variate response to food pictures (Figs. 1 and 2A), we extracted a neural
Representational Dissimilarity Matrix (RDM), a matrix in which we com-
pared the multivariate responses to each of the 36 foods presented in our
task. We then compared the group average neural RDMs for each of these
ROIs to create a new similarity matrix reflecting the similarity of each ROI
representation of food-related information (Fig. 2B). We applied the
k-means clustering algorithm to the resulting ROI similarity matrix (see
“Methods” for details), and used a silhouette plot to identify the optimal
clustering solutions (Fig. 2C), which split the food-responsive regions into
two networks: (1) a “Prefrontal” network, composed of the dorsal food
regions such as the medial and inferior frontal gyrus and the Pre-
Supplementary Motor Area, and (2) the “Limbic” network, composed of
regions such as the insula, orbitofrontal cortex, amygdala, and striatal
regions (Fig. 2D).

Behavioral RSA within food networks using online food
similarity data

For the following analyses, we employed the results of our online behavioral
study"”. This behavioral study involved an odd-one-out triplet task'®", in
which 487 online participants made similarity judgments of the 36 foods
within our Food Pictures task (Fig. 3A, see “Methods” section for more
details). The data from this task were used to create a pairwise food similarity
matrix (Fig. 3B), which was then analyzed using Principal Components
Analysis (PCA) and K-means clustering to identify naturalistic food cate-
gories that emerged within this food similarity space (‘fats’, ‘sweets’, ‘star-
ches’, ‘“fruits’, and ‘vegetables’; Fig. 3C).

When applying these behavioral results to the neuroimaging data, the
first question we sought to answer was: in which of our two networks of
food-responsive brain regions is this information about food similarity
represented? To answer this question, we examined the relationship
between a food RDM created from the online data and neural RDMs
generated from our food-responsive ROIs (see “Methods” section for
details) and then compared the resulting z-scored correlation values across
our two food networks. We identified that this relationship was greatest in
the Prefrontal food regions (#(14) =2.16, p=0.031; Table S2, Fig. 3D),
suggesting that the relevant information about food similarity was best
represented across this network of brain regions.
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Fig. 2 | RSA-based clustering identifies separate prefrontal and limbic food
networks. We applied a network clustering approach based on Representational
Similarity Analysis (RSA") to examine the representation of food images within
food-responsive regions of the brain (A), (see Fig. 1). A We extracted and compared
the multivariate food representations of each food from our food-responsive
regions-of-interest (ROIs) to generate separate neural Representational Dissim-
ilarity Matrices, B which we then compared across each pair of ROIs, resulting in a
second-level ROI similarity matrix reflecting the similarity of representational
profiles across our food-responsive regions. C, D We applied a network clustering
algorithm to this matrix, which identified an optimal number of 2 clusters and
partitioned the ROIs into two networks exhibiting categorically different

representational profiles: a Prefrontal network composed of dorsal brain regions in
prefrontal and parietal cortices, and a Limbic network composed of ventral cortico-
limbic and sub-cortical brain regions. NB: Node sizes in this graph (D) are pro-
portional to the average similarity of each node to every other node. The coloring of
edge lines between nodes indicates whether those edges are within or between
networks, and their thickness indicates the edge strength (i.e., similarity). The
position of nodes within the graph indicates relative centrality within the whole node
network. For copyright reasons, original images have been replaced with visually
similar images from the public domain. Photos from Wikimedia.com. See the “Data
availability” section for the location of original images.

We conducted a subsequent RSA to identify which factors from
the food similarity matrix were most strongly related to the neural
similarity data. This RSA used separate RDMs created from the 1st
two principal components of the food similarity matrix (Fig. 3C; see
“Methods” section: Online Behavioral Study). The neural RDMs in
the Prefrontal food network were significantly correlated to the 1st
Principal Component RDM (Prefrontal: #(42) = 4.8, p <0.001, Limbic:
t(42) = 1.7, p=0.088; Table S2, Fig. 3E). As with the overall similarity
matrix, the relationship between neural similarity and behavioral
similarity was greatest in the Prefrontal network of regions
(#(14) =3.03; p=0.002). This first principal component, which
reflected nearly half of the variability in these online similarity
judgments, was shown to be nearly perfectly correlated with another
group of participants’ ratings of how processed these foods were and
their relative healthfulness' (Fig. 3F). Notably, this relationship was
still significant, even after regressing out the perceived and actual fat
content of the foods. In contrast, neither sub-network showed a
significant relationship with the 2nd Principal Component RDM
(Prefrontal: #(42) = —1.17, p=0.24, Limbic: #(42) = —1.66, p=0.10;
Table S2, Fig. 3E).

Searchlight RSA results

We next performed a multivariate searchlight RSA to verify the specificity of
our ROI analysis results and identify other brain regions where the neural
similarity of foods was significantly related to their similarity along beha-
viorally relevant property dimensions (the first two Principal Components
from the behavioral food similarity data; Fig. 3B). As in our ROI analyses, we

identified a significant relationship between neural similarity and similarity
along the 1st Principal Component dimension in regions of the inferior
frontal and middle frontal gyrus (Fig. 4A; Table S3). We also identified
multiple regions within the occipital and ventral-temporal cortex where
neural similarity was significantly correlated with the relative unhealthiness
or artificiality of these foods (the 1st Principal Component), including
regions involved in the visual processing of objects and scenes, such as the
bilateral fusiform gyrus, lateral occipital cortex, and bilateral para-
hippocampal gyrus, respectively (Fig. 4B; Table S3). As in our ROI analyses
above, we did not observe any brain regions exhibiting a significant positive
relationship with the second principal component dimension, after cor-
rection for multiple comparisons.

Food pleasantness and self-control (PSC) task
The results of our first neuroimaging experiment suggest that food-
responsive regions of the brain cluster into two sub-networks with distinct
representational profiles that reflect distinct types of food-relevant infor-
mation. Our RSA results suggested that the Prefrontal network represented
information related to the degree of food processing and healthfulness and
did so to a significantly greater degree than the Limbic network. Given the
association between the regions of this network and cognitive control, we
theorized that this network would be involved in the behavioral regulation of
food consumption. Based on prior studies of the Limbic network regions, we
theorized that it was involved more in the appetitive response to food
stimuli.

In order to test these possibilities, we examined the data from a second
functional neuroimaging task performed by the subjects in this study, in
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Fig. 3 | Information about food healthfulness is preferentially represented in the
prefrontal food network. A An online study (Carrington et al., 2023) examined
behavioral ratings of the similarity of the 36 foods, which were also presented to
subjects within our neuroimaging task. Those foods were originally selected by
researchers according to their relative fat and sugar content. B Analysis of the online
ratings generated a food similarity matrix. C Clustering of the food similarity data
along their Principal Component (PC) dimensions revealed five emergent food
categories. D We performed an RSA where we compared the behavioral food
similarity matrix to the neural RDMs, generated from the regions of our two food
sub-networks (Fig. 2). Error bars represent the standard error of the mean. Boxplot

Average Processed Ratings

lines signify distribution medians. Boxplot bottoms are distribution lower quartiles,
and tops are upper quartiles. The RSA identified that the representation of food
similarity information from the behavioral task was significantly greater in the
Prefrontal network of brain regions. E This similarity between behavioral and neural
data was due primarily to similarity along the first Principal Component dimension,
(F) which was most related to ratings of how processed and unhealthy those foods
were'’. For copyright reasons, all original images have been replaced with visually
similar images from the public domain. Photos from Pixabay.com and Wikime-
dia.com. See the “Data availability” section for the location of the original images.

Fig. 4 | Searchlight RSA identifies prefrontal and ventral visual brain regions
representing information related to food artificiality and healthfulness. We
performed a multivariate searchlight RSA, comparing the neural dissimilarity to pictures
of foods (Neural RDM) to the similarity of those foods along a dimension related to how
processed, artificial, or (un)healthful those foods were (PC1 RDM,; see Fig. 3C, F). A This
multivariate analysis revealed multiple brain regions reflecting significant

PC1 RDM x Neural RDM

Correlation
0 t-value 8

representational similarity between neural and model RDMs, including regions such as
the bilateral medial frontal gyrus (mFG) and inferior frontal gyrus (iFG), regions which
overlap with Prefrontal Food Network regions (see Fig. 2). B In the same analysis we also
identified multiple regions in the ventral occipitotemporal cortex, such as the bilateral
fusiform gyrus (FG), lateral occipital cortex (LOC), and (PHG) parahippocampal gyrus,
regions that are typically associated with processing images of objects and visual scenes.
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Fig. 5 | Food pleasantness and self-control task. A Participants performed another
fMRI task in which they viewed a variety of foods that varied in nutritional content.
During separate task blocks, they rated either the expected pleasantness of eating
those foods or the degree of self-control required to NOT eat those foods. B Though
the contextual framing of the conditions varied, participants’ average ratings across
the pleasantness and self-control conditions were nearly perfectly correlated. All
food images depicted here are original images prepared and photographed for this
fMRI task. See the “Experimental design” section for more details.

which they viewed another set of food pictures during fMRI scanning.
During different blocks of the PSC task, they rated either the expected
pleasantness of eating those foods or the degree of self-control required to
NOT eat those foods (Fig. 5A, see “Methods” section for task details).
Importantly, while both task conditions involved hedonic judgments about
foods (implicitly or explicitly), the Self-Control condition also required
participants to simulate inhibitory control of food consumption. As
expected, we identified that the average ratings of foods during the Plea-
santness and Self-Control conditions were nearly perfectly correlated
(r(41) = 0.99, p < 0.001; Fig. 5B), and the average correlation of those ratings
across participants was 0.90 (SD =0.16).

We analyzed the fMRI data from this task using a regression model
which incorporated participants’ ratings, in order to examine the degree
to which the response to food pictures was modulated by those plea-
santness and self-control inferences. We performed a 2-factor ANOVA
to compare the beta coefficients resulting from this model across food
networks and across task conditions. We observed a significant effect of
network (F(1,14)=25.5, p<0.001), a significant effect of condition

(F(1,1285) =28.2, p<0.001), and a significant network-by-condition
interaction (F(1,1285) =26.4, p <0.001). Post hoc mixed-effects ¢-tests
identified that the rating-modulated response in the Prefrontal network
was significantly greater during the Self-Control than during the Plea-
santness condition (P — SC: #(539) = —6.7, p < 0.001; Table S4), while the
Limbic network response did not differ between Pleasantness and Self-
Control conditions (P - SC: #(705) = —0.66, p = 0.54; Table S4, Fig. 5A).
Thus, the responses of the Prefrontal network were sensitive to the shift
in context between conditions and were strongly modulated by the
inferred degree of self-control required to inhibit food consumption.
Whereas the Limbic network was insensitive to the contextual shift and
was primarily modulated by participants’ hedonic judgments of
the foods.

We confirmed these findings with whole-brain analyses which
identified a number of brain regions whose response to food pictures
was positively related to participants’ ratings during the pleasantness
and self-control conditions (Fig. 6B). Regions positively associated
with both Pleasantness and Self-Control included reward-associated
regions such as the bilateral orbitofrontal cortex and ventral striatum,
along with other regions such as the ventromedial prefrontal cortex
(Tables S5 and S6). Some regions, such as the bilateral dorsal mid-
insula, ventral pallidum, and posterior cingulate cortex, were iden-
tified within the pleasantness but not the self-control contrast. Other
regions such as more lateral areas of OFC, were observed in the self-
control and not the pleasantness contrast (Fig. 6B, Table S6). Finally,
we contrasted the two conditions at the whole-brain level, and we
observed multiple regions within the prefrontal and parietal cortex,
including the IFG, MFG, IPS, and Pre-SMA, whose response was
significantly greater during the Self-Control than during the Plea-
santness condition (Fig. 6C, Table S7).

Supplemental analyses for effects of BMI, hunger, and satiety
We performed a series of supplemental analyses to examine whether the
Body-Mass-Index (BMI) of participants or their ratings of hunger or satiety
before scan sessions had a significant effect on our neuroimaging results. At
the univariate level, we observed no significant relationship between the
participants’ BMI, Hunger, or Satiety ratings and the response to food vs.
objects pictures, after statistical thresholding and correction for multiple
comparisons. At the multivariate level, we did not identify a significant effect
of BMI, Hunger, or Satiety (all p’s <0.25) or any significant factor-by-
network interactions in our RSA ROI analyses (p <0.51). In our whole-
brain analyses of the PSC task data, we also did not observe any brain regions
exhibiting a significant relationship with participant BMI, Hunger, or
Satiety.

Discussion

The present study was designed to examine how fine-grained food-property
information is represented in the brain. To accomplish this, we examined
the hemodynamic response to pictures of 36 foods (and non-food objects),
shown to subjects during fMRI as they performed an orthogonal repetition-
detection task. We identified a core set of brain regions frequently associated
with food responses and then compared the multivariate responses to food
images within these regions using a clustering method based on Repre-
sentational Similarity Analysis (RSA)". This allowed us to identify whether
these areas were representing the same type of information about these
foods equally, or whether there was some reliable difference in the infor-
mation represented across these regions. Our clustering analysis identified
two sub-networks exhibiting categorically different multivariate responses
to food pictures: a Prefrontal network of regions, including areas of the
dorsolateral prefrontal cortex (dIPFC), such as the bilateral inferior frontal
and medial frontal gyri, the Pre-Supplementary Motor Area (Pre-SMA), as
well as an area of the right intraparietal sulcus (IPS); and a Limbic network of
regions, including the bilateral insular cortex (mid-insula and ventral
anterior insula), orbitofrontal cortex (OFC), amygdala, and ventral stria-
tum. The Prefrontal sub-network regions largely overlap with the canonical

Communications Biology| (2025)8:270


www.nature.com/commsbio

https://doi.org/10.1038/s42003-025-07704-w

Article

A

Limbic

0.3

0.2

0.1

0.0

BOLD % signal change

ples selfctrl ples selfctrl

FWE-corrected

Pleasantness > Self-Control

-5

t-value

6 Pleasantness

X=-4

N

/ Self-Control

C

Fig. 6 | Prefrontal and limbic food networks exhibit differential relationships
across PSC task conditions. We examined how the neural response to food images
in the PSC task was modulated by participants’ ratings. A Neural responses within
the Prefrontal network were positively related to ratings during the Self-Control
condition, and negatively related to ratings during the Pleasantness condition. In
contrast, neural responses within the Limbic network were positively related to
ratings during both the Pleasantness and Self-Control conditions. Error bars
represent the standard error of the mean. Boxplot lines signify distribution medians.
Boxplot bottoms are distribution lower quartiles, and tops are upper quartiles.

B Whole-brain analyses of both task conditions identified a number of limbic

cortical and sub-cortical brain regions whose response to food pictures was posi-
tively related to ratings, though some regions such as the mid-insula, ventral palli-
dum, and lateral OFC were more active during one condition or another. NB: In this
panel, FWE-corrected brain regions are ‘highlighted’, and regions that did not meet
the statistical thresholds are shown for illustrative purposes only, to demonstrate the
similarity of response profiles across conditions™. C A whole-brain analysis con-
trasting the task conditions specifically identified regions of the prefrontal and
parietal cortex whose rating-modulated response to food pictures was significantly
greater during the Self-Control condition. vmPFC - ventromedial Prefrontal Cortex.
PCC - Posterior Cingulate Cortex.

Fronto-Parietal and Dorsal Attention Networks identified through wide-
scale analysis of resting-state functional connectivity’’. These regions have
variously been associated with goal-directed attention, behavioral response
inhibition, and self-control, and are implicated in the pathophysiology of
eating disorders™**, which points towards a role for this Prefrontal network
in the behavioral regulation of food consumption. In contrast, the Limbic
network regions largely overlap with the canonical Cingulo-Opercular and
Somatomotor resting-state networks™. As many of the regions composing
the Limbic sub-network were previously associated with appetitive pro-
cessing and the hedonic response to sensory stimuli”~"', we reasoned that
this sub-network would be relatively more involved in the representation of
hedonic information about food.

To test these possibilities, we analyzed the data from a second neu-
roimaging task, which was designed to dissociate purely hedonic estimates
of foods from estimates of the mental effort required to control food con-
sumption. During this task, our participants viewed another set of food
images during two task conditions, where they provided ratings of either the
expected pleasantness of eating those foods, or the degree of self-control
required to NOT eat those foods. Using parameter-modulated regression,
we examined the degree to which the neural response to food images during
those two task conditions was related to participants’ moment-to-moment
ratings. As expected, we observed that the hemodynamic response to food
pictures within the Limbic sub-network was positively related to participant
ratings during the pleasantness condition. Importantly, it was equally
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responsive to ratings during the self-control condition, indicating that the
response to food pictures in these regions was primarily related to the
hedonic value of foods, and was not sensitive to the difference in context
between task conditions. In contrast, the response to food pictures in the
Prefrontal network of regions was highly sensitive to task context, as it was
positively related to participant ratings in the self-control condition but
negatively related to those ratings during the pleasantness condition. A
contrast of the two conditions at the whole-brain level specifically identified
anetwork of prefrontal and parietal regions exhibiting a significantly greater
modulation during the self-control than the pleasantness condition, such as
the inferior frontal gyrus, medial frontal gyrus, left intraparietal sulcus, and
pre-SMA. The results of this second imaging task suggest that these food-
responsive sub-networks are not merely functionally distinct, but antago-
nist, acting as opponent processes involved in regulating approach and
avoidance behavior towards food.

Within these sub-networks, we performed RSA using behavioral data
from a recent online study using those food pictures'’, to examine the
information content automatically retrieved from within these distinct food
networks. This RSA indicated that neural similarity, primarily in the pre-
frontal food network, was significantly related to similarity along the first
principal component dimension of the food behavioral data. This principal
component was itself almost perfectly correlated with subjective ratings of
both how processed those foods were as well as how (un)healthful those
foods were'". This result suggests that, upon viewing images of food,
information about the relative degree of food processing is automatically
represented within a network of regions we identified as involved in the
inhibitory control of food consumption.

These results align with and extend previous research on the valuation
and regulation of food-related decision-making. Previous studies of this
behavioral domain™ have demonstrated that focusing attention on the
health attributes of foods can modulate neural activity in the ventromedial
prefrontal cortex and dorsolateral prefrontal cortex, leading to healthier
food choices. Similarly, our results indicate that the prefrontal network is not
only responsive to the healthfulness of foods but is also preferentially
engaged when participants simulate inhibitory control to resist eating cer-
tain foods. This suggests a broader role for the prefrontal network in inte-
grating health-related and self-control considerations, thereby enabling
adaptive decision-making in food-related contexts.

Notably, the lack of association between the Limbic network and the
behavioral food similarity matrix suggests that, in the context of the Food
Pictures task, this network primarily represents categorical distinctions (e.g.,
food vs. non-food) rather than fine-grained differences between individual
food items. However, the PSC task results show that this network does
distinguish between individual food items based on their hedonic value.
This suggests that the Limbic network’s responsiveness to food cues is
context-dependent, and the distinction between food items may only
become apparent in tasks where participants explicitly engage in hedonic
judgments or decision-making processes.

We additionally performed a searchlight RSA to identify other
regions in the wider brain also representing information related to the
healthfulness or artificiality of foods. In addition to the fronto-parietal
regions previously identified, we also identified several regions repre-
senting this information within the ventral occipitotemporal cortex
(VTC). This result is in accordance with studies that identified that the
response to food pictures within the VTC could be discriminated on the
basis of other food properties, specifically their taste-category’>*. This
general area of the brain is heavily involved in object perception and
recognition (see ref. 34 for review) and many of the regions identified in
our analysis are frequently associated with the processing of objects and
scenes. Accordingly, recent studies have suggested that the VT'C exhibits
a degree of selectivity for food images**, reasoning that the ecological
importance of food for survival would necessitate a degree of speciali-
zation in this area. The present results suggest that this apparent selec-
tivity might be related to the representation of information about the
level of food processing or artificiality.

The importance of this processed vs. unprocessed dimension to the
conceptual knowledge of food has been suggested by previous behavioral
and neuroscientific studies, possibly as an extension of a more general
distinction between living/non-living or animate/inanimate objects (see
refs. 17,18,35 for discussion). Neuropsychological studies have identified
patients with naming deficits that are specific to fruits and vegetables and
not processed foods™**. Behavioral studies have shown significantly better
recognition memory for processed vs. unprocessed foods in healthy
participants” and that naming accuracy for processed food is relatively
spared (compared to unprocessed foods) in patients with Alzheimer’s
Disease”, supporting the notion that these food types have distinct repre-
sentations within memory. EEG studies of visual-evoked responses to food
images have identified that the natural/processed food dimension can be
identified within the first 200 ms after stimulus onset, suggesting that it is
one of the first and most salient food properties recognized by the brain*"*".
The results of the present study serve to highlight the relevance of this
conceptual knowledge of food to eating behavior. In our modern food
environment, the inhibitory control of food is primarily relevant in regard to
foods that are highly processed, energy-dense, and of limited nutritional
value. Thus, the automatic representation of information about these food
properties within prefrontal food regions could serve a key function of
readying individuals to regulate their behavioral response to foods in the
environment, facilitating flexible approach or avoidance responses to foods,
based on their perceived nutritional content. Importantly, differential
responses to food stimuli in this network, such as those seen in anorexia
(heightened) and bulimia nervosa (decreased), in a recent meta-analysis of
neuroimaging studies of eating disorders®, could reflect differential repre-
sentation of this food-related information within these clinical populations.

The present findings provide novel insights into the neural
mechanisms underlying food-related cognition. Through the appli-
cation of data-driven analytic techniques, we identified distinct
neural networks—limbic and prefrontal—that encode com-
plementary aspects of food representation. Unlike traditional uni-
variate analyses that primarily differentiate food from non-food
stimuli, our Representational Similarity Analysis (RSA) and cluster-
ing methods revealed a functional dissociation between networks
encoding hedonic and regulatory processes. This dual-network
organization suggests that food-related decisions are guided by an
interplay between the hedonic valuation of stimuli and higher-order
regulatory control. Individually, these results demonstrate that the
prefrontal network preferentially encodes information related to food
healthfulness and processing, likely reflecting its role in supporting
self-control and goal-directed behavior. The limbic network, in
contrast, is tuned to the hedonic value of food, highlighting its role in
automatic, affective responses. Collectively, these findings underscore
the importance of integrating multiple analytical approaches to
capture the complexity of food-related neural representations.
Beyond simply categorizing food vs. non-food stimuli, these results
provide a framework for understanding how different types of food-
related information are represented, retrieved, and integrated to
guide behavior.

Methods

Participants

Forty-three healthy, native-English-speaking volunteers from the
greater Washington, DC metropolitan area were included in this
study (18 female; Age (SD): 31 (7.8). Range: 20-45; BMI (SD): 29.2
(7.9) kg/m’. Range: 20-45). All participants were right-handed non-
smokers. Participants were excluded from taking part in the study if
they had diabetes, or if they reported any recent weight changes
(>5kg) in the past 6 months, any allergies to food or local anes-
thetics, any involvement in regular vigorous exercise regimens, daily
use of alcohol or illicit drugs in the previous 6 months, or any strict
dietary concerns (vegetarian or kosher diet). Participants were also
excluded if they had any history of neurological injury, known
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genetic or medical disorders that may impact the results of cognitive
testing and/or neuroimaging, prenatal drug exposure, severely pre-
mature birth or birth trauma, past or present psychiatric conditions
(e.g., depression or anxiety disorders), current usage of psychotropic
medications, or any exclusion criteria for MRI. A subset of the
neuroimaging data from these participants was included separately in
previous studies’”****. The institutional review board of the National
Institutes of Health approved all procedures and written informed
consent was obtained for all subjects. All ethical regulations relevant
to human research participants were followed.

Experimental design

All participants were admitted as inpatients to the NIH Clinical Center
during scanning days. For at least 72 h prior to inpatient admission, parti-
cipants were provided a eucaloric standardized, balanced diet (50% carbo-
hydrate, 35% fat, and 15% protein), to stabilize body weight and standardize
nutrient input across participants. During their inpatient stay, participants
continued this eucaloric diet, with no access to outside food. Each partici-
pant’s total caloric intake was based on 3-day diet and activity records,
resting metabolic rate, and body size measurements made during subject
screening. At noon on the first day of fMRI scanning, each subject was
provided one of these meals, which were standardized for macronutrient
content. Subjects then entered the scanner at 14:00 during which they
received an anatomical MRI scan and performed the Food Pictures
fMRI task.

On the second day, subjects ate a standardized meal at 13:30, followed
by a blood draw at 17:30 and an fMRI scan at 18:00. During this scan,
participants received another structural MRI scan and a series of fMRI scans
during which they performed a resting-state task and the Food Pleasantness
and Self-Control fMRI task. Immediately before both scan sessions, subjects
completed interval scale measures indicating their level of hunger (0 =no
hunger, 10 = extremely hungry) and sensations of fullness (0 = not at all full,
10 = very full).

Food pictures fMRI task. During this task, subjects viewed a broad
selection of photographs of food and non-food objects. Food images
included foods high and low in both fat and sugar content (see Fig. 3). The
non-food photographs all depicted small, manipulable household and
office implements (e.g., hammers, staplers, pliers; N =9). Five exemplar
images of each food and non-food object were presented in this task, for a
total of 180 food and 45 non-food pictures were presented. The pictures
were normed in an earlier study to ensure that food and non-food picture
naming accuracy was at the ceiling and typicality ratings were not dif-
ferent between picture categories™. All pictures were presented for 2.5 s in
a pseudo-random order optimized for fMRI task design using optseq2
(http://surfer nmr.mgh.harvard.edu/optseq). Images were followed by
variable duration interstimulus intervals (ISI; 2.5-12.5 s), during which a
black fixation cross appeared against a gray background. Subjects were
instructed to press a button when two consecutive pictures contained
objects with the same name (for example, two consecutive donut images).

Food pleasantness and self-control (PSC) task. During this task,
subjects viewed pictures of various types of foods that varied in their
palatability, including both high-calorie highly palatable foods and less
palatable low-calorie foods (Fig. 5a). In one task condition, subjects were
asked to provide ratings of how pleasant it would be to eat the depicted
food at the present moment (Pleasantness condition). Subjects made
interval scale responses during rating periods using an MR-compatible
handheld scroll wheel, on a number line which ranged from 1 “Neutral”
to 7 “Extremely Pleasant”. Subjects rated foods that would be unpleasant
to eat with an “X”, which was located at the bottom of the number line. In
another task condition, subjects rated how much self-control it would
take to NOT eat the depicted food at the present moment (Self-Control
condition). Subjects rated the amount of self-control required on a
number line which ranged from 1 “Little Self-Control” to 7 “Extreme Self-

Control”. Food pictures were presented for 5s each, separated by the
presentation of fixation cross during a variable duration interstimulus
interval (mean ISI=3.7s; duration 2.5-7.5s). The PSC task used a
truncated 7-point scale, instead of the 10-point scale used for hunger and
fullness ratings. This was done to provide adequate space for the rating
boxes to be displayed clearly on screen and to facilitate participant
responses using the handheld scroll wheel, within the 5-s response per-
iod. Prior to the start of each 8-min run, a slide was presented for five
seconds reminding subjects of the instructions for the following task (i.e.,
“If given the opportunity right now, how pleasant would it be to eat
this food?”).

In total, subjects viewed 3 different exemplars of 48 types of food. These
foods ranged from highly palatable, high-calorie foods with high fat and/or
sugar content (e.g., cheeseburgers, french fries, pizza, cake, cinnamon rolls,
ice cream, etc.) to uncooked fruits and vegetables (grapes, strawberries,
cauliflower, broccoli, carrots, etc.). The depicted food items were prepared
by laboratory personnel, which allowed for high control of stimulus pre-
sentation, lighting, portion size, and a standard background (white plate
against a gray backdrop photographed within a photobox). Subjects saw
pictures of the same food items during both the pleasantness and self-
control portions of the experiment, but the photographs presented were
taken from different visual angles, which ensured that the subject never saw
the same photograph more than once. The task stimuli used in the present
study were independently normed for nameability, typicality, perceived fat,
and sugar content (see ref. 30 for more details).

Visual stimuli for both tasks were projected onto a screen located inside
the scanner bore and viewed through a mirror system mounted on the head
coil. Stimulus presentation was controlled using E-Prime 2.0 software
(Psychology Software Tools, Pittsburgh, PA).

fMRI imaging methods

fMRI data was collected at the NIMH fMRI core facility at the NTH Clinical
Center, using a General Electric MR750 3-Tesla MRI scanner (GE
Healthcare, Milwaukee, Wisconsin) and a Nova 16-channel receive-only
head coil. During the Food Pictures task, 139 echoplanar image (EPI)
volumes were acquired, which consisted of 44 2.8-mm axial slices (echo time
(TE) =27 ms, repetition time (TR) = 2500 ms, flip angle = 90 degrees, voxel
size = 3.4375 x 3.4375 x 2.8 mm). During the PSC task, 206 EPI volumes
were acquired per each scan, using identical imaging parameters. High-
resolution T1-weighted magnetization-prepared rapid acquisition gradient-
echo (MPRAGE) sequences were also collected (TE = 2.7 ms, TR = 7.24 ms,
flip angle =12 degrees, voxel size = 0.937 x 0.937 x 1.2 mm) and used as
anatomical reference images. All structural and functional images were
collected with a sensitivity encoding (SENSE) factor of 2, used to reduce
image collection time (for structural images) or minimize image distortions
(in functional images).

Image pre-processing. All image pre-processing was performed using
AFNI. Pre-processing steps are consistent with previous studies using
these task paradigms™ . The first 4 volumes of each EPI time course (the
first 3 volumes for the PSC task) were excluded from data analysis to allow
the fMRI signal to reach longitudinal equilibrium, and a slice timing
correction was then applied to the remaining volumes of each EPI scan. A
de-spiking interpolation algorithm (AFNT’s 3dDespike) was also used to
remove transient signal spikes from the EPI data. All EPI volumes were
then registered to a base EPI volume using a 6-parameter (3 translations,
3 rotations) motion correction algorithm, and the motion estimates were
saved for use as regressors in the subsequent statistical analyses. Volume
registration and spatial normalization to Talairach space were imple-
mented in the same transformation step, in order to minimize the
number of interpolation steps performed on EPI data. The final voxel
resolution was 2 x 2 x 2 mm”. Following this, smoothing with a 6 mm full
width at half maximum Gaussian kernel was performed, and the signal
intensity for each EPI volume was normalized to reflect the percent signal
change from each voxel’s mean intensity across the time course.
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Online behavioral study

The methods and results of the online behavioral study are described in full
detail in ref. 17. In brief, we recruited 487 native-English-speaking partici-
pants to perform an odd-one-out triplet detection task'®"® on the Amazon
Mechanical Turk platform. Within this task, participants selected which of
three images was the “odd one out” given a set of three food images (triplets).
The food images were selected from a set of 36 representative food images of
the 36 foods displayed in the Food Pictures task described above (Fig. 3a).
The images chosen for the online task were those selected, in a previous
study, to be the most typical exemplars of that type of food™. Each parti-
cipant completed 20 unique triplets so that in total, the full set of 7140
possible triplets was sampled at least once. The data from the task were
combined to create a 36 x 36 food similarity matrix by calculating, for each
pair of foods, the proportion of triplets containing those foods in which
neither food was selected as the “odd one out”. Principal Components
Analysis (PCA) was applied to this similarity matrix to determine the
dimensions accounting for the most variance in this similarity matrix.
Subsequently, K-means clustering was applied to the data plotted along the
first two principal component dimensions, which accounted for ~80% of the
variance in the data, which identified five sub-categories of foods (denoted as
‘fats’, ‘sweets’, ‘starches’, ‘fruits’, and ‘vegetables’; Fig. 3b). Further analysis of
the principal component dimensions, paired with separate online estimates
of specific food properties, identified that the first PC was most strongly
correlated with subjective interval scale ratings of how processed the foods
were (r=0.97) and their relative healthfulness (r = —0.96). The second PC
was most strongly related to subjective estimates of the sugar and fat content
of those foods (7* = 0.90).

Statistics and reproducibility

Test of behavioral measures included correlation tests (Pearson’s correla-
tions, performed in R) for associations between participants’ pleasantness
and self-control ratings during the PSC task. Group-level tests of fMRI beta
parameters utilized one-sample t-tests (versus 0) for the Food Pictures task
responses and paired ¢-tests when comparing conditions during the PSC
task. The sample size for Food Pictures task analyses was n = 43, and n = 42
for PSC analyses. Statistical tests for ROI analyses were performed in R,
using the Imer function from the Ime4 package, and the FDR procedure was
used to correct the results for multiple comparisons®. Detailed information
on procedures and statistical tests is provided in the specific
subsections below.

Food picture task univariate fMRI analyses

The Food Picture task data task was analyzed at the single-subject level using
multiple linear regression models in AFNI’s 3dDeconvolve. The regressors
for the food and non-food images in the Food Picture task were modeled
using a gamma-variate function beginning at the onset of the picture sti-
mulus from each image. For the standard univariate analysis, two regressors
were used, one for all food images and another for images of all non-food
objects. Subject-level regression models also included regressors of non-
interest to account for each run’s mean, linear, quadratic, and cubic signal
trends, as well as the 6 normalized motion parameters (3 translations,
3 rotations) computed during the volume registration pre-processing.

To identify brain regions specifically responsive to food images, a
whole-brain random effects, paired-sample t-test was performed to com-
pare the hemodynamic response to food images vs. the response to non-
food images. An initial p-value threshold of p <0.001 was applied to the
statistical map. A cluster-size correction of p < 0.05 was implemented using
AFNT’s 3dClustsim, separately within a whole-brain mask and via a small-
volume correction applied to a sub-cortical mask. The sub-cortical mask
was a single contiguous mask created from the union of multiple anatomical
regions of interest, which have previously been associated with the response
to food pictures'™ including bilateral regions of: the amygdala, hippo-
campus, corpus striatum, thalamus, and hypothalamus. Masks of these
regions were extracted from the DD Desai Maximum Probability Map
Atlas, based on probability maps generated for 35 cortical areas® and the

parcellation of cortical and sub-cortical structures generated by the Free-
Surfer program. This atlas is available in the AFNI software distribution
(http://afninimh.nih.gov). The combined sub-cortical mask was then
dilated by one voxel to fill any gaps between the atlas regions and resampled
to the final EPI resolution. With the whole-brain and sub-cortical maps, we
used revised versions of AFNT's 3dFWHMXx and 3dClustsim to generate
smoothness and cluster-size estimates using a spherical non-Gaussian
spatial autocorrelation function, which has been demonstrated to produce
corrected cluster-size values approximately equal to those achieved through
non-parametric permutation methods”.

Food picture task multivariate fMRI analyses

We used a series of multivariate analyses to examine the representation of
food-related information in the brain within regions preferentially
responsive to foods (vs. non-food objects). For these analyses, we applied a
second subject-level regression model to the data from the Food Pictures
task. This model included a separate regressor for each food and non-food
object (45 in total), in addition to the regressors of non-interest, described
previously. Using the results of the univariate contrast described above, we
selected the set of brain regions that exhibited a significant hemodynamic
response to food vs. non-food objects (Fig. 1; Table S1). As some of the
significant clusters in this analysis spanned multiple anatomical regions that
have shown distinct functions in previous studies (e.g., within the insular
cortex, see ref. 48), we increased the statistical threshold on this contrast
until those clusters broke up into multiple sub-clusters. The result of this
process created 17 separate food-responsive clusters which we used in the
region-of-interest analyses which follow (see Figs. 2 and 3).

ROI clustering and network analysis. We performed a network clus-
tering approach based on Representational Similarity Analysis (RSA").
Within those regions of interest (ROIs), we used the AFNI program
3dMaskdump to extract the voxel-wise beta coefficients for each of the 36
foods presented during the task, which we imported for further analysis
within the R statistical software package (https://www.r-project.org),
using custom code and functions (see “Data availability” and “Code
availability” sections for links). For each subject and ROI, the output of
this process was 36 columns x N rows matrix, with N being the number of
voxels within the ROI. We generated Representational Dissimilarity
Matrices (RDMs) for these ROIs by calculating the correlation distance of
each pair of columns of these matrices, generating a 36 x 36 dissimilarity
matrix. Next, we averaged these RDMs across subjects, in order to gen-
erate group average RDMs for each ROIL. We then generated a second-
level similarity matrix by calculating correlations of the (upper triangular
segment of the) RDMs from each pair of ROIs (Fig. 2).

We used a community detection algorithm (the cluster_optimal method
in the R package igraph®) to group together brain regions with similar
representational profiles. This algorithm finds the community structure
which will globally optimize network modularity, relative to all other possible
community structures. This clustering procedure was used both as a way of
identifying categorical differences in the representation of food-related
information in the brain, as well as a method of dimensionality reduction for
the analyses which followed. We confirmed the optimal number of clusters
for these data using the silhouette method, which involves the calculation of
the average silhouette coefficient, a measure of within vs. between cluster
similarity, for a range of possible cluster values. The optimal cluster value is
thus the value with the largest average silhouette coefficient™.

For the following analyses, we excluded the Early Visual Cortex (EVC)
ROI, as its representational profile was found to be a clear outlier. Its average
multivariate distance from the other ROIs was ~2-2.5 standard deviations
greater than the mean distance (scaled Mahalanobis distance z = 2.1, scaled
correlation distance: z = 2.0, scaled Euclidean distance: z = 2.5), likely due to
its role in representing the low-level visual features of the image stimuli.

RSA ROl analyses. Having clustered together our food-responsive ROIs
into two distinct networks, we next sought to examine the informational

Communications Biology| (2025)8:270


http://afni.nimh.nih.gov
https://www.r-project.org
www.nature.com/commsbio

https://doi.org/10.1038/s42003-025-07704-w

Article

content of these food networks. In particular, we examined whether the
information in these food networks reflected the similarity structure we
identified in our online behavioral study. To do this, we performed a
series of RSAs using the neural RDMs from our food-responsive ROIs
and RDMs created from this online behavioral data. The first RSA used
an RDM generated from the behavioral food similarity matrix (Fig. 3B).
Following this, we performed follow-up RSAs, using RDMs (simple
Euclidean distance matrices) generated from the first two Principal
Components of the food similarity matrix, to further identify which
underlying dimension of this behavioral data best accounted for the
neural data in these food networks.

These RSAs were performed by calculating the Spearman rank-order
correlations between subject-level neural RDMs and behavioral RDMs.
These subject-level correlation coefficients were transformed into z-scores
through a permutation testing procedure’, using a distribution of correla-
tion coefficients generated by randomly shuffling the neural RDMs 10,000
times. We used linear mixed-effects t-tests (two-sided) to compare the
average z-scores between the separate food ROI networks, and within both
networks against zero, using participant and brain region as random factors.
Statistical tests were performed in R, using the Imer function from the Ime4
package, and the FDR procedure was used to correct the results for multiple
comparisons™.

RSA searchlight analyses. We used a searchlight RSA procedure to
map the correlation between neural RDMs and target RDMs (the 2
RDMs generated from the first 2 principal components of the online food
similarity data) throughout the brain. We performed these searchlight
analyses using the CosmoMVPA Matlab toolbox'. Using the subject-
level regression coefficients for each food item, this process calculated the
correlation distance between each pair of foods (as in our ROI analyses
above) within each searchlight sphere (radius = 3 voxels) and compared
these searchlight neural RDMs to the target RDMs generated from the
first 2 principal components of the online behavioral data (in separate
analyses). For each searchlight, these comparisons involved calculating
the Spearman correlation between neural RDMs and Principal Compo-
nent RDMs and then recording the Fisher-transformed correlation
coefficient at each searchlight center. We combined the subject-level
searchlight maps generated by these procedures using a one-sample
t-test, implemented in AFNDs 3dttest + +, to identify brain regions
showing a significant relationship between neural similarity and target
similarity at the group level. We applied an initial FDR-corrected
threshold of p-FDR < 0.05 to the resulting statistical map and subse-
quently used AFNI’s 3dClustsim (an updated version employing non-
Gaussian spatial autocorrelation estimates) to perform cluster-size cor-
rection for multiple comparisons within a whole-brain mask.

PSC task univariate fMRI analyses

Subject-level (i.e., first-level) regression analyses of the fMRI task data were
performed in AFNTI’s 3dDeconvolve. The regression model included sepa-
rate regressors for the Pleasantness and Self-control conditions as well as the
instruction slides. These regressors were constructed by convolution of a
gamma-variate function with a canonical hemodynamic response function.
Importantly, the pleasantness and self-control conditions were modeled
using amplitude modulation regression in AFNI, which generates one
regressor for image onset and one additional regressor in which the height of
the hemodynamic response varies with the height of the associated beha-
vioral covariate. In this case, the predicted response to food picture pre-
sentation varied (linearly) as a function of subjects’ pleasantness or self-
control ratings. These regressors thus identified brain regions where the
response to food pictures was modulated by subjects’ moment-to-moment
inferences of the pleasantness or self-control associated with specific foods.
Additional regressors were included for the instruction slide times, any
missed response periods, and any food pictures that the subject indicated
were unpleasant. Finally, the regression model also included regressors of
non-interest to account for each run’s mean, linear, quadratic, and cubic

signal trends, as well as the 6 normalized motion parameters (3 translations,
3 rotations) computed during the volume registration pre-processing.

We used the AFNI program 3dROIstats to extract the average
amplitude-modulated beta coefficients for the PSC task within the
food-responsive ROIs defined previously, which we imported for
further analysis within the R software package. We performed a task-
by-condition ANOVA to compare those beta coefficients within the
food networks defined in the previous analyses, followed by post hoc
linear mixed-effects t-tests, as above, to examine the ANOVA results.
These analyses thus examined how much the response to food pic-
tures in those networks was modulated by subjects’ pleasantness or
self-control ratings. We also performed a whole-brain analysis using
AFNT’s 3dttest + + contrasting the pleasantness and self-control
conditions, which identified brain regions where the hemodynamic
response to food pictures showed a greater modulation by either
pleasantness or self-control ratings. We applied an initial threshold of
p<0.005 to the resulting statistical map and AFNTs 3dClustsim
(with non-Gaussian spatial autocorrelation estimates) to perform
cluster-size correction for multiple comparisons within a whole-
brain mask.

Supplemental analyses for effects of BMI

We additionally examined whether the neural response to food pic-
tures during our tasks was related to the BMI of our participants. We
also included BMI as a covariate in the RSAs using the principal
components of the food similarity matrix. At the whole-brain level,
each whole-brain analysis performed in this study included BMI as a
participant-level covariate using AFNI’s 3dttest++. This process
allowed us to both examine the effect of BMI on our condition of
interest and regress out that effect in a single step.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The statistical summary data and anonymized anatomical and fMRI data
for the current study’ have been placed in a public repository: https://doi.
0rg/10.17605/0OSE.I0/8DS7G. All other relevant files are available upon
reasonable request.

Code availability
The analysis code for the current study has been placed in a public

repository”’: https://doi.org/10.17605/OSF.I0/8DS7G.
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