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Rapid antibiotic susceptibility tests (ASTs) are an increasingly important part of clinical care as
antimicrobial resistance (AMR) becomes more common in bacterial infections. Here, we use the
spatial distribution of fluorescently labelled ribosomes to detect intracellular changes associated with
antibiotic susceptibility in E. coli cells using a convolutional neural network (CNN). By using ribosome-
targeting probes, one fluorescence image provides data for cell segmentation and susceptibility
phenotyping. Using 60,382 cells from an antibiotic-susceptible laboratory strain of E. coli, we showed
that antibiotics with different mechanisms of action result in distinct ribosome phenotypes, which can
be identified by a CNN with high accuracy (99%, 98%, 95%, and 99% for ciprofloxacin, gentamicin,
chloramphenicol, and carbenicillin). With 6 E. coli strains isolated from bloodstream infections, we
used 34,205 images of ribosome phenotypes to train a CNN that could classify susceptible cells with
91% accuracy and resistant cells with 99% accuracy. Such accuracies correspond to the ability to
differentiate susceptible and resistant sampleswith 99%confidencewith just 2 cells,meaning that this
method could eliminate lengthy culturing steps and could determine susceptibility with 30min of
antibiotic treatment. The ribosome phenotype method should also be able to identify phenotypes in
other strains and species.

Bacterial infections were associated with 14% of all global deaths and the
majority of sepsis-related deaths1 in 2019. The widespread use of antibiotics
in the treatment and prevention of these infections, in medicine and in
agriculture, has created a strong evolutionarypressure formicrobes resistant
to these compounds2. In 2019, antimicrobial resistance (AMR) in bacteria
caused 1.27 million deaths and was associated with 4.95 million deaths
worldwide3. Mortality is predicted to rise as high as 10 million deaths per
year by 2050 if no action is taken4. These challenges motivate the devel-
opment of new antimicrobial treatments and technologies to mitigate the
effects of resistant infections.

Antibiotic susceptibility tests (ASTs) are an essential tool for refining
treatment and minimising inappropriate antibiotic use. However, in most
clinical microbiology pathways, ASTs are performed after a bacterial

pathogen has been cultured and identified, with results available in 12–48 h
for common species5. This time delay is often too long to wait in life-
threatening infections6, leading clinicians to prescribe empirically and use
combinations of broad-spectrum antibiotics. In clinical trials, the use of
rapid ASTs improves clinical outcomes, decreases the use of broad-
spectrum antibiotics, and shortens the time between sample collection and
optimal targeted antibiotic treatment7,8.

The clinicalneed for rapidASTshasmotivated thedevelopmentof new
diagnostic technologies to identify the infecting species and characterise
susceptibility. Current growth-based ASTs quantify the Minimum Inhibi-
tory Concentration (MIC), a marker of the susceptibility of the isolated
organism to an antibiotic9, which is typically measured using turbidity.
Faster assays based on genotype and cellular morphology are being
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developed. The bioMerieux BioFire FilmArray system, for example, is a
commercial genotype-focused platform utilising multiplex polymerase
chain reaction (PCR) to detect species-specific and resistance-associated
genes in syndromic infections (e.g., respiratory, bloodstream, and joint)
within anhour10.However, PCRmethods cannot detectAMRgenes that are
not present in the PCR probe set, and resistance genes do not always cor-
relate with an isolate’s antibiotic response. A rapid phenotypic test that
directly measures the bacterial response may offer advantages over geno-
typic assays, especially in Gram-negative species which are more likely to
have polygenic and combinatorial mechanisms of resistance5,11.

Some of the discordances between the genotype and the phenotypic
susceptibility may be explained by phenotypic heterogeneity within a bac-
terial population, leading to phenomena such as persister cells12,13 and viable
but non-culturable cells14. Techniques that directly measure single-cell
antibiotic response are advantageous because they can capture this het-
erogeneity.Manymethodshavebeenproposed, includingusingmicroscopy
tomeasure growth rate15,16, antibiotic accumulation17, structural changes18,19,
filamentation20, or cell death21; flow cytometry22; Raman spectroscopy23; cell
impedance24; elastic light scattering25; and nanomotion classification26. An
example of a commercially available phenotypic system is the Accelerate
Diagnostics Pheno System, which combines fluorescence in situ hybridi-
sation (FISH) for species identification with monitoring of single-cell
growth rates to report antibiotic resistance within 7 h27.

Visually apparent changes to the intracellular structure of the bacterial
cells can also be used to measure the bacterial antibiotic response. When
antibiotics disrupt cellular physiology, long-recognised and characteristic
phenotypes develop, which have recently been characterised at scale with
high-content imaging28,29. Our group showed that such phenotypic effects
on the nucleoid and cell membrane can be visualised within 30min and
recognised by trained deep-learning models, and that this variability

correlates with clinical antibiotic susceptibility30. While many novel ASTs
have been proposed and developed5,15,16,18,19,21–27, by using single-cell imaging
data, we can rapidly and directly capture and assay the diversity of antibiotic
response within the cell population.

Here, we present a method for rapid identification of single-cell anti-
biotic susceptibility by detecting intracellular changes using ribosome-
bound FISH probes (Fig. 1a). First, bacteria from the clinical sample are
treated with an antibiotic that will induce phenotypic changes in bacteria
susceptible to the antibiotic. Following the antibiotic treatment, the cells are
fixed, permeabilised, and incubated with species-specific ribosome-target-
ing FISH probes. This protocol takes approximately 2 h, and can still be
further optimised for speed.

Because of the spatial anti-correlation between DNA and ribosome
density within the cell31, we reasoned that an image of a cell’s ribosome
distribution could be used like an inverse DNA stain to visualise structural
changes associatedwith the antibiotic response.We call this distribution the
ribosome phenotype. Images of the ribosome phenotypes are processed and
fed to a pre-trained neural network to classify the bacteria as antibiotic-
susceptible or antibiotic-resistant.

The antibiotic treatment concentrations were chosen as a multiple of
the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) breakpoint9 for Enterobacterales including E. coli, so that an
empirical benchmark could be applied to other strains. The EUCAST
breakpoint is a defined concentration of antibiotic used to classify a
microorganism as antibiotic susceptible or resistant, accounting for clinical
factors including antibiotic dosage, target infections, pharmacokinetics, and
resistance mechanisms. The MIC of a bacterial isolate can be compared to
the EUCAST breakpoint for a given antibiotic and bacterial species to
classify it as clinically susceptible (S) or resistant (R). The antibiotic con-
centration should be optimised depending on the antibiotic’smechanismof

Fig. 1 | Proposed workflow for using ribosome phenotypes in a rapid antibiotic
susceptibility test. aWorkflow: First the clinical isolate is treatedwith antibiotics at a
standard concentration for 30 min. Then, a standard FISH protocol is used to label
the ribosomes with ssDNA fluorescent probes; in this case, EUB338-Cy3 binds a
conserved region in the 30S subunit. The samples are imaged on a fluorescence
microscope before neural networks use the ribosome signal to segment and then
classify the cells as susceptible or resistant to the prescribed antibiotic treatment.
b Ribosome Phenotypes: Representative fluorescence images are shown of E. coli
MG1655 with and without antibiotic treatment (magenta, DNA stained with DAPI;

green, ribosomes labelled with EUB338-Cy3 probes; combined DNA and ribosome
signal). The scale bar is 2 µm. The ribosome density can be seen to anti-correlate with
the DNA-dense regions. The untreated panel shows fixed cells with no antibiotic
treatment. The chloramphenicol panel shows cells treated with 8 mg/L chlor-
amphenicol (1 × EUCAST breakpoint) for 30 min before fixation. The ciprofloxacin
panel shows the same, treated with 0.5 mg/L ciprofloxacin (1 × EUCAST break-
point). The gentamicin panel shows the same, treated with 40 mg/L gentamicin
(20 × EUCAST breakpoint). The carbenicillin panel shows the same, treated with
24 mg/L carbenicillin (3 × EUCAST breakpoint).
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action to induce differentiable phenotypes in susceptible and resistant
strains within the 30-min treatment period.

We found that a convolutional neural network (CNN) could learn to
recognise the distinct ribosomephenotypes ofE. coli treatedwith antibiotics
from four classes used to treatE. coli infectionswithdifferentmechanismsof
action (ciprofloxacin, a fluoroquinolone, targeting DNA gyrase/topoi-
somerases; gentamicin, an aminoglycoside, targeting the 30S ribosomal
subunit; chloramphenicol, an amphenicol, targeting the 50S ribosomal
subunit; and carbenicillin, a β-lactam targeting peptidoglycan synthesis).
We applied the ciprofloxacin CNN to classify three ciprofloxacin-
susceptible and three ciprofloxacin-resistant E. coli clinical isolates and
found that its accuracy decreased when the isolate’s antibiotic response
diverged from the lab strain’s phenotype. Therefore, we developed a CNN
trained on images of the clinical isolates, which was able to classify unseen,
holdout single-cell images as antibiotic-susceptible with >90% accuracy and
antibiotic-resistant with >99% accuracy based on their ribosome pheno-
types. Our method advances existing phenotypic ASTs because, when used
in combination with multiplexed FISH and species-specific probes, the
ribosome fluorescent profile can be used to segment single cells, identify
bacterial species, and characterise a cell’s antibiotic response in a single step.

Results
Characterisation of the E. coli antibiotic response by ribosome
subcellular distribution
To train a machine-learning model to classify antibiotic-resistant and
antibiotic-susceptible E. coli, we characterised the antibiotic response phe-
notypes of antibiotic-susceptible cells. Previous work has shown the suc-
cessful classification of antibiotic-susceptible and resistant E. coli by a CNN
trained to identify changes in DNA morphology30. It has also been shown
thatDNA-rich and ribosome-rich regions spatially anti-correlate inE. coli31.
Therefore, we reasoned that we may be able to use ribosome phenotypes to
classify a bacterium’s antimicrobial response. Because of their space-filling
properties, we also hypothesised that the ribosome signal should suffice for
both cell segmentation and phenotype analysis, eliminating the need for a
membrane dye for cell segmentation. Ribosome fluorescence images may
also provide richer spatial and intensity features throughout the cell than
images of the nucleoid morphology.

To test our hypothesis, we first characterised the sub-cellular ribosome
phenotypes of antibiotic-susceptible E. coliMG1655 (Fig. 1b). MG1655 is a
lab-adaptedK-12 derivative that is susceptible to each of the antibiotics used
in this work. After treatment with each of the 4 antibiotics individually for
30min, the cells were stained with fluorescent FISH probes to visualise the
effects of antibiotic treatmenton their internal structure. For this,weusedan
18-mer single-strand DNA probe with Cy3 dye conjugated to the
EUB338 sequence, which targets a region in the 16S ribosomal RNA con-
served in all members of the domain Bacteria32.

The biological effect of antibiotic treatment on the susceptibleMG1655
bacteria can be clearly seen within 30min. Fluorescence images of theDNA
and ribosomes show the characteristic changes in cell spatial organisation
that occur as the cell responds to the antibiotic (Fig. 1b). Comparing the
DNA and ribosome signals shows the anti-correlation between DNA and
ribosome density within the cell in untreated and antibiotic-treated con-
ditions. The nucleoid compaction caused by chloramphenicol, cipro-
floxacin, and gentamicin can be seen as clearly in the ribosome images as in
theDNA images. For carbenicillin, the cellfilamentation andmultipleDNA
regions with lower ribosome intensity can be seen. These images also show
how the ribosomes fill the cell, allowing the ribosome signal to be used for
both cell phenotyping and cell segmentation.

We characterised the ribosome phenotypes from four biological
replicates of E. coliMG1655 totalling 5286 untreated cells, 3215 cells treated
with ciprofloxacin (Cip) at 0.5 mg/L (1 × EUCAST breakpoint), 5935 cells
treated with gentamicin (Gent) at 40mg/L (20 × EUCAST breakpoint),
6439 cells treated with chloramphenicol (Cam) at 8mg/L (1 × EUCAST
breakpoint), and 1256 cells treated with carbenicillin (Carb) at 24mg/L
(3 × EUCAST breakpoint). For E. coli MG1655, treatment with

chloramphenicol or ciprofloxacin at 1 × EUCAST induced phenotypic
changeswithin30min, but gentamicin treatment concentrations lower than
20 × EUCAST and carbenicillin treatment concentrations lower than
3 × EUCAST did not induce phenotypic changes in most cells in this time
frame (Figs. S1, S2). These results for gentamicin and carbenicillin suggest
that the antibiotic treatment concentration should be optimised for each
antibiotic and its mechanism of action. This optimal treatment con-
centration can serve as a benchmark to characterise the magnitude of
response in other strains.

By inspecting the nucleoid and ribosomefluorescence signals along the
long axis of the cells, we can further characterise the treatment phenotypes.
In untreated E. coli, the highest ribosome density was seen in the centre of
the cell and in longer cells there were often two ribosome-poor nucleoid
regions (Figs. 1b; 2a). Ciprofloxacin treatment caused a central, compact
nucleoid region (Figs. 1b; 2a) and resulted in cells that were longer than
untreated cells (Fig. 2b). Gentamicin treatment led to a diffuse nucleoid
region following the long axis of the cell that was often rod-shaped (Figs. 1b;
2a). Chloramphenicol treatment caused nucleoid compaction compared to
the untreated phenotype, causing either a centralised DNA region or two
dense DNA regions (Figs. 1b; 2a). Carbenicillin treatment caused fila-
mentation with much longer cells (Fig. 2b) and four copies of the DNA in
the typical cell (Figs. 1b; 2a). All antibiotic treatments resulted in cells with
significantly different in average length and average width compared to the
untreated phenotype (Mann-Whitney non-parametric hypothesis test
p < 0.05) (Fig. 2b, c). The antibiotic treatment phenotypes in our images
aligned with those found in previous work33–35 and with the mechanism of
action of each antibiotic (Figs. 1b; 2). In the case of ciprofloxacin and
carbenicillin, the changes in cell length andmorphologymay be sufficient to
judge an antibiotic response19, but ribosome phenotypes provide data on
internal changes. Because these phenotypes are quantifiable by ribosome
fluorescence intensitymapping and identifiable by the human eye, it follows
that a neural network could be trained to associate them with an antibiotic
treatment response.

Antibiotic-susceptible ribosome phenotypes are identified
accurately by a neural network
To trainneural networks that can robustly identify the ribosomephenotypes
resulting from antibiotic treatments, our fluorescence images were pre-
processed prior to their use as training data. First, each single-channel image
was segmented by a custom CellPose36 model trained to segment E. coli by
ribosome fluorescence profiles. The segmentations were subsequently
curated to refine the outlines and remove cells that were outside of the field
of view, overlapping, or outside of the focal plane37. To regularise learning
and prevent overfitting, each segmentation was used to create a 64 × 64
zero-filled image with the ribosome fluorescence in the centre, and aug-
mentations (e.g., brightness normalisation, random noise, and geometric
transformations) were applied before each image was loaded into the
training dataset (Fig. S3). We tried augmentation strategies with and
without shearing and blurring, which could cause distortions of the ribo-
some phenotype and hinder learning. The mean balanced accuracy of the
gentamicin and chloramphenicol models improved when shearing and
blurring was removed (Fig. S4). For CNN training, long cells need to be
resized or cropped to a standard size (64 × 64). We trained models on
cropped cells and on resized cells with a mantained aspect ratio. Remark-
ably, resizing or cropping changed the accuracy of the ciprofloxacin and
carbenicillinmodels by less than 0.1%;we thus used the croppingmethod to
preserve the intracellular definition (Fig. S5).

To test the reliability and accuracy of the neural network in differ-
entiating the antibiotic-susceptible phenotypes from untreated E. coli
MG1655, a rotating holdout test was performed (Fig. 3a). For each
experiment, a model was independently trained and validated on data
from three of the biological replicates and tested on the fourth. The
validation and testing datasets were balanced to include an equal number
of untreated and antibiotic-treated cell images to minimise prediction
biases. The average balanced accuracy of the models on the four test
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datasets exceeded 95% for all antibiotics: ciprofloxacin~99 ± 1.5%, gen-
tamicin~98 ± 2.5%, chloramphenicol~95 ± 8.8%, carbenicillin~99 ± 1.6%
(Fig. 3b). Looking at the models’ predictions, the cells that were classified
with high confidence (Fig. S6) demonstrated the characteristic antibiotic
phenotypes (Fig. 2).

We then examined the confusion matrices for the four holdout data-
sets, summed together. The ciprofloxacin phenotype model was one of the
most accurate, with a very high average balanced accuracy of 98.9%, sen-
sitivity of 97.5%, and specificity of 99.5% (Fig. 3c). This may be because the
ciprofloxacin response causes two phenotypic changes – elongated cells and
condensed, central nucleoid – both ofwhich can be used by themodel in the
classification task (Fig. S7). The gentamicin phenotype model was also
highly accurate, achieving an average balanced accuracy of 99.0%, sensitivity
of 98.5%, and specificity of 99.5% (Fig. 3d). The chloramphenicol phenotype
model had a balanced accuracy of 95.8%, sensitivity of 93.1%, and specificity
of 98.5% (Fig. 3e). Inspection of the chloramphenicol-treated cells that were
misclassified as untreated suggests that this model’s increased number of
False Negative classifications was driven by cells that did not adopt the
expected chloramphenicol-treated phenotype within the antibiotic treat-
ment period, having multiple, diffuse nucleoid regions (Fig. S8a), whereas

False Positive classifications tended to have a central nucleoid region
(Fig. S8b). Finally, the carbenicillin phenotype model had a balanced
accuracy of 99.4%, sensitivity of 99.2%, and specificity of 99.6% (Fig. 3f). The
balanced accuracies of >95% reported here are for single cells and therefore
the cumulative accuracy of the classifier on a collection of cells is essentially
100%. Accuracy on a sample of cells is discussed further in the section on
clinical isolates.

Ribosome phenotypes can be used to classify ciprofloxacin-
resistant clinical E. coli isolates
Having demonstrated that antibiotic response phenotypes can be reliably
induced andclassifiedbyaCNN,wemoved to train amodel to classifyE. coli
isolated from clinical samples as susceptible or resistant to ciprofloxacin
using the ribosome phenotype. We called an isolate “resistant” if its mini-
mum inhibitory concentration (MIC, the concentration required to inhibit
overnight growth), was above the EUCAST breakpoint9. IsolateswithMICs
below the EUCAST breakpoint were called “susceptible”. We hypothesised
that a CNN could learn to identify ribosome phenotypes associated with
ciprofloxacin sensitivity or resistance, and that resistant cells would look
similar to untreated cells30 following ciprofloxacin exposure.

Fig. 2 | Ribosome intensity line profiles reveal ribosome-nucleoid anti-correla-
tion and characteristic phenotypes of antibiotic response. aAlong the long axis of
the cell, the mean normalised ribosome (Cy3, grey) and nucleoid (DAPI, magenta)
intensities are calculated for each of 100 bins. The shading shows ± 1 standard
deviation of the mean. The untreated E. coli line profiles show two nucleoid-rich
regions, correlated with decreased ribosome intensity. This figure is composed of
profiles from untreated E. coli MG1655 (N = 5286). The ciprofloxacin panel shows
the same, for E. coli MG1655 treated with 1 × EUCAST ciprofloxacin for 30 min
(N = 3215). The line profile shows a central, compact nucleoid region with greater
segregation from the ribosomes. The gentamicin panel shows the same, for E. coli
MG1655 treated with 20 × EUCAST gentamicin for 30 min (N = 5935). This line
profile shows a diffuse nucleoid region along the long axis of the cell with less
ribosome-nucleoid segregation. The chloramphenicol panel shows the same, for E.
coli MG1655 treated with 1 × EUCAST chloramphenicol (N = 6438). This line

profile shows nucleoid compaction compared to the untreated phenotype, with a
centralised DNA region or two dense DNA regions. The carbenicillin panel shows
the same, for E. coli MG1655 treated with 3 × EUCAST carbenicillin (N = 1256).
This line profile shows ~4 regions of DNA density, indicating that DNA replication
and cell growth has continued without cell division. b The cell lengths (μm) are
shown for untreated E. coliMG1655 and for each of the antibiotic treatments. The
box shows the 25–75% percentile range, the bars show the 1–99% percentile range,
and the line denotes the median. Each antibiotic results in a length distribution
statistically different from the untreated population with p < 0.05 by the Mann-
Whitney non-parametric test. c The cell widths (μm) are shown for untreated E. coli
MG1655 and for each of the antibiotic treatments. The box shows the 25–75%
percentile range, the bars show the 1–99% percentile range, and the line denotes the
median. Each antibiotic results in a width distribution statistically different from the
untreated population with p < 0.05 by the Mann-Whitney non-parametric test.
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To represent some of the variation present in pathogenic E. coli, we
chose three susceptible strains (S1, S2, S3) and three resistant strains (R1, R2,
R3), each with a different mutation in ciprofloxacin resistance-associated
genes (Table 1). Each of the susceptible strains have a mutation in one of
these genes, whereas the resistant strains all have three or more resistance-
associatedmutations. For example, strainR2has twomutations in theGyrA,
which encodes the A subunit of DNA gyrase; and three mutations in the
genes that encodeDNA topoisomerase IV (twomutations in parC, for theA
subunit; and one in parE, for the B subunit). Each of these mutations has
been associated with increased ciprofloxacin resistance in previous
work38–41. Each isolate was treated with ciprofloxacin at a concentration
previously determined to robustly induce phenotypic changes within
30minutes (10mg/L, 20 × EUCAST breakpoint)30.

Following ciprofloxacin treatment, all susceptible E. coli strains (S1, S2,
& S3) demonstrated a ribosome phenotype similar to ciprofloxacin-treated
E. coliMG1655, with a compact, central nucleoid region that we can detect
indirectly because it results in low ribosome density in the central region
(Figs. 4a: S1, S2, S3). Some also showed an elongated morphology (Figs. 4a:
S1, S3). While some cells from the resistant strains resembled untreated E.
coli MG1655, most cells from the resistant strains showed a different
ciprofloxacin response, wherein the cells were elongated but retained diffuse
nucleoid regions that spanned the cell length (Fig. 4a: R1, R2, R3).

In previous work, we have shown that a classifier trained on the
nucleoid phenotypes of untreated and ciprofloxacin-treatedE. coliMG1655
was able to classify susceptible and resistant clinical isolates accurately
because resistant clinical isolates resembled untreated MG1655, while sus-
ceptible clinical isolates resembled ciprofloxacin-treated MG165530. We

applied this method to our ribosome images, using the CNN trained on
ciprofloxacin-treated MG1655 to classify clinical isolates.

The MG1655 ciprofloxacin classifier had variable accuracy when
applied to ciprofloxacin-treated clinical isolates (Fig. S9). The classifier
recognised ciprofloxacin-susceptible phenotypes with high accuracy. For S1
and S3, it classified cells as ciprofloxacin-susceptible with 99.0 ± 1.0% and
95.4 ± 4.2% accuracy, respectively. The accuracy was lower for S2 cells
(81.2 ± 0.5%), possibly because these cells are less likely to be elongated than
ciprofloxacin-treated MG1655 (Mann-Whitney non-parametric hypoth-
esis test p < 0.05; Figs. 4a, S2 isolate). For resistant isolates, the MG1655
classifier was less reliable. Compared to untreated MG1655, the
ciprofloxacin-treated resistant isolates had similarly diffuse nucleoid regions
but were elongated (Fig. 4a: R1, R2, R3). The MG1655 classifier classified
95.2 ± 5.8% of R2 cells as ciprofloxacin-resistant, but only 54.0 ± 3.7% of R1
cells and 74.3 ± 1.9% of R3 cells (Fig. S9b). Representative cell images show
that the R1 cells that were misclassified as susceptible had an elongated cell
shape and a diffuse nucleoid (Fig. S6a: R1), whereas R2 cells that were
correctly classified as resistant had a shape and nucleoid phenotype more
similar to the untreated MG1655 (Fig. S6a, R2 isolate). The variability in
accuracies for R1, R2, and R3 clearly show that the ribosome phenotypes
resulting from 20 × EUCAST ciprofloxacin treatment are too diverse to be
reliably recognised by the MG1655 classifier, especially for resistant strains
that develop an elongated shape with a diffuse nucleoid.

Therefore, we hypothesised that a CNN trained on images of
ciprofloxacin-susceptible and resistant clinical E. coli isolates would be able
to learn these variable responses and would perform better at the classifi-
cation task. For this model, the training dataset was composed of 34,205 E.

Fig. 3 | Ribosome phenotype recognition is robust across biological replicates.
a Four biological replicates of E. coliMG1655 were tested for each antibiotic and for
the untreated condition. To test phenotype robustness and repeatability, a holdout
cross-validation was performed in which each model was trained and validated on
images from three of the biological replicates and tested on images from the fourth.
The training images received random data augmentations before being passed to the
model, whereas the holdout dataset was passed directly to the model for testing.
b The balanced accuracy of the ribosome phenotype classifier is shown for each
antibiotic. Each point represents a biological replicate. The mean balanced accuracy
is shown on each column and the error bars indicate the 95% confidence interval of
themean on the four biological replicates. cConfusionmatrices for the ciprofloxacin
(Cip) ribosome phenotype classifier. The total number of cells is a sum of the results

from four experiments, each with a model trained on three biological replicates and
tested on a fourth holdout replicate. The number of images in each class is shown,
along with the percentage of cells for each treatment condition. The treatment
condition is shown on the columns and themodel’s predicted classification is shown
on the rows. Right column: positive predictive value (PPV) and negative predictive
value (NPV) of the model’s predictions are shown. Bottom row: accuracy of the
model on antibiotic-treated cells (Sensitivity), accuracy of the model on untreated
cells (Specificity), and the Balanced Accuracy (Accuracy) are shown. See Accuracy
Metrics for details. d As in (c), for the gentamicin (Gent) ribosome phenotype
classifier. eAs in (c), for the chloramphenicol (Cam) ribosome phenotype classifier.
f As in (c), for the carbenicillin (Carb) ribosome phenotype classifier.

https://doi.org/10.1038/s42003-025-07740-6 Article

Communications Biology |           (2025) 8:319 5

www.nature.com/commsbio


coli cells from clinical isolates treated with ciprofloxacin, which were seg-
mented, zero-filled, and augmented as was done for the E. coli MG1655
model. We trained two six-strain models to check consistency on different
biological replicates. For each of the six-strain models, two biological
replicates were used for the training and validation datasets and one was
used for a holdout test to assess the model’s accuracy on unseen data. In

total, the testing dataset comprised 28,448 cells from three susceptible and
three resistant clinical isolates (Fig. 4b).

The susceptible-resistant CNN learned to identify phenotypes asso-
ciated with ciprofloxacin-treated susceptible and resistant strains with a
single-cell balanced accuracyof 95.0 ± 0.3%; across all strains, it displayedan
accuracy of 99.3 ± 0.2% in classifying resistant cells and an accuracy of

Fig. 4 | Susceptible (MIC < EUCAST breakpoint) and resistant (MIC > EUCAST
breakpoint) E. coli isolates can be differentiated by the fraction of cells called
resistant by the model. a The fraction of cells in the sample called resistant by the
susceptible-resistant classifier (Resistant Fraction) is plotted against the MIC of the
strain (mg/L) on a logarithmic scale, with each biological replicate represented as a
circle. The test dataset is composed of holdout images, previously unseen by the
classifier, from each clinical isolate. The EUCAST breakpoint (0.5 mg/L, green) and
the treatment condition (10 mg/L, blue) are shown with shaded vertical lines. All
strains with an MIC below the EUCAST breakpoint have a resistant fraction less
than or equal to 0.2, whereas the fraction classified resistant is nearly 1.00 for the
strains with an MIC above the EUCAST breakpoint. Representative, correctly
classified images of ribosome phenotypes from each of the clinical isolates are shown
for each point. Scale bar, 2 μm. b The confusion matrix for the ciprofloxacin-
resistant and ciprofloxacin-susceptible classifier trained on 6 strains on a holdout,
unseen dataset of those 6 strains.The testing dataset is composed of 28,448 images
from unseen biological replicates. See Accuracy Metrics for details on Accuracy,

Sensitivity, Specificity, PPV, and NPV. c The number of cells necessary to classify a
sample as coming from a population of susceptible or resistant bacteria with 99%
confidence. Simulated samples of different susceptible:resistant ratios (S:R) were
transformed through the sensitivity and specificity of the susceptible-resistant
classifier to determine theminimumnumber of cells necessary to differentiate them.
Here, we plot the mean Resistant Fraction and 99% confidence interval after 1000
trials with samples ranging from 1 to 40 cells sampled (N) for susceptible:resistant
ratios of 0:100 (purple triangles), 50:50 (blue circles), and 100:0 (green diamonds).
As the number of cells sampled increases, the confidence interval of the Resistant
Fraction narrows. Susceptible samples can be differentiated from resistant samples
with a sample of 2 cells (purple dotted line). A mixed sample can be differentiated
from a resistant sample with 7 cells (blue dotted line) or from a susceptible sample
with 12 cells (green dotted line). The confidence interval for resistant cells is nar-
rower than that of susceptible cells because the classifier is more sensitive than it is
specific.

Table 1 | E. coli clinical isolates with their MICs and AMR genotypes

E. coli Clinical Isolate Ciprofloxacin MIC (mg/L) Relevant genotype information

gyrA marR parC parE

Susceptible 1 (S1) 0.015 I355T

Susceptible 2 (S2) 0.25 S3N

Susceptible 3 (S3) 0.25 I529L

Resistant 1 (R1) 2 D87Y, S83L S80I

Resistant 2 (R2) 16 D87N, S83L E84V, S80I I529L

Resistant 3 (R3) 64 D87N, S83L S80I S458A

Resistant 4 (R4) 128 D87N, S83L S80I S458A

Each clinical isolate used in this project is listed with its MIC and relevant genotype information. All strains are Escherichia coli isolated from bloodstream infections in the United Kingdom, obtained and
whole-genome sequenced for a previous study57. MICs were determined by broth microdilution. (See Methods: Bacterial strains and sample preparation for details of MIC and sequencing methods).
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90.5 ± 0.5% in classifying susceptible cells (Fig. 4b). Because these high
accuracies were on a per-cell basis, wewere able to estimate the power of the
model to classify an unknown population of E. coli as antibiotic-susceptible,
antibiotic-resistant, or amixture of the two.We simulated cell samples with
100% resistant cells, 100% susceptible cells, or a 50-50 mixture, using the
sensitivity and specificity of our assay.

Given its high sensitivity (99.3%) and specificity (90.5%), our
susceptible-resistant classifier has the power to differentiate a 100%resistant
sample froma 100% susceptible samplewith 99% confidence after sampling
as few as 2 cells (Fig. 4c). With a reasonable sample size of 10-100 bacteria
isolated from a clinical specimen, the confidence level of our prediction
would increase. In the case of amixed infection or contaminated sample, we
could differentiate a mixed sample from a resistant sample (7 cells) or a

susceptible sample (12 cells) with the same level of confidence (Fig. 4c).
Stratifying the classifications by strain, we showed that our classification
accuracy remained greater than or equal to 80% for all six strains (Fig. S10).
When examining the relationship between a given strain’s MIC and the
fraction of cells classified as resistant, fewer than 20% of cells from strains
with an MIC less than the EUCAST breakpoint were called resistant,
whereas nearly 100% of cells from strains with anMIC above the EUCAST
breakpoint were called resistant (Fig. 4a). Compared to theMG1655model,
the susceptible-resistant model has similar or higher accuracy for all sus-
ceptible strains and is more accurate on all resistant strains (+ 44.8 ± 4.5%
for R1,+4.3 ± 1.6% for R2, +25.5 ± 2.1% for R3) (Fig. S11).

Ribosomephenotypescanbeused toclassifyunseenstrainsand
antibiotic concentrations
We then explored the generalisability of a CNN to previously unseen strains
and antibiotic concentrations. We trained another model on just one sus-
ceptible (S2) and one resistant strain (R4) treated with 1 × EUCAST
ciprofloxacin (0.5 mg/L) for 30min (Fig. 5a). This model was trained on a
dataset of 2888 cells with an 80:20 training-validation split and tested on the
sameholdout dataset as the six-strainmodel, composed of unseen cells from
the six clinical isolates treated at 20 × EUCAST (10mg/L) for 30min. The
1 × EUCAST model was tested on each of the 3 biological replicates and
performedwith an average accuracy of 73.8 ± 5.3%on cells from susceptible
strains and an accuracy of 89.6 ± 3.8% on cells from resistant strains
(Fig. 5b). Although lower in accuracy than the six-strain model, the two-
strain 1 × EUCAST model demonstrates an ability to reliably differentiate
susceptible and resistant cells with relatively high accuracy while classifying
cells from never-before-seen strains treated at a different concentration of
ciprofloxacin. The model’s ability to generalise on unseen clinical isolates
treated at a different antibiotic concentration demonstrates the robustness
of the ribosome phenotype classification method, so long as the model has
seen sufficiently similar training data. When the 20 × EUCAST clinical
isolate classifier was applied to the 1 × EUCAST isolates, it performed well
when classifying R4 (93.0 ± 12.3%), which had a similar phenotype to the
other resistant strains, but was unable to reliably classify S2 (52.3 ± 11.0%),
whichwasmuch less elongated than the susceptible strains treated at higher
antibiotic concentrations and had a less defined nucleoid region (Fig. S12).

Simultaneous identification of bacterial species and ribosome
phenotype
Compared to conventional fluorescent stains or bright-field imaging, one
advantage of the ribosomephenotypemethod is the potential to use species-
specific FISH probes to simultaneously visualise the ribosome distribution
and identify the bacterial species. We chose to demonstrate this with
Pseudomonas aeruginosa and Escherichia coli, both Gram negative bacilli
and 2 of the 6 leading pathogens associated with AMR deaths3. To test this
capability, we moved from using the EUB338 probe, which targets a
sequence conserved in all eubacteria, to FISH probes designed to target
species-specific regions of the 16S ribosomal RNA in E. coli42 and P.
aeruginosa43. A one-to-onemixture of fixed and permeabilisedE. coli andP.
aeruginosa cells was incubated in a hybridisation buffer with an equal
concentration of each species-specific probe (Fig. 6a). The E. coli probe was
labelled with ATTO-532 and the P. aeruginosa probe with Cy5. The E. coli
sample was treated with 1 × EUCAST ciprofloxacin for 30min to develop a
ciprofloxacin-treated phenotype whereas the P. aeruginosa sample had not
been exposed to antibiotics.

The E. coli ATTO-532 signal was highly specific for the elongated,
ciprofloxacin-treated E. coli cells (Fig. 6b). The characteristic ciprofloxacin
phenotype from nucleoid compaction can be visualised. The P. aeruginosa
Cy5 signal can be seen most clearly in the Pseudomonas cells, although the
probe can also be seen in the E. coli cells, at about half the fluorescence
intensity (Fig. 6c). Overall, the species-specific probes can be used to dif-
ferentiate E. coli and P. aeruginosa in a mixed sample (Fig. 6d).

When the E. coli cells imaged in this experiment were segmented from
the ATTO-532 image and put through the MG1655 1 × EUCAST

Fig. 5 | Model performs with >80% accuracy when trained on cells treated with
1 × EUCAST ciprofloxacin and tested on cells treated with 20 × EUCAST.
a Representative, correctly classified images of the ribosome phenotypes of strains
R4 and S2 treated at 1 × EUCAST (0.5 mg/L) for 30 min. Scale bar, 2 μm. b The
susceptible-resistant classifier trained on E. coli treated with 20 × EUCAST cipro-
floxacin (black circles) is compared to the classifier trained on E. coli treated at
1 × EUCAST (blue triangles). The 20 × EUCAST dataset is composed of 6 clinical
isolates (S1, S2, S3, R1, R2, R3) whereas the 1 × EUCAST dataset is composed of 2
clinical isolates (S2, R4). Each data point represents a biological replicate. The
20 × EUCAST model was tested on 28,448 holdout test images from 2 biological
replicates of the 6 clinical E. coli isolates treated at 20 × EUCAST ciprofloxacin for
30 min. The 1 × EUCAST model was tested on the same 20 × EUCAST dataset. For
every isolate, the 20 × EUCAST model is more likely to call resistant cells resistant
and less likely to call susceptible cells resistant. However, the 1 × EUCAST model
maintains an accuracy of 73.8 ± 5.3% on cells from susceptible strains and an
accuracy of 89.6 ± 3.8% on cells from resistant strains, despite being trained on
images of cells treated at a different concentration and classifying a previously
unseen strain (R4).
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ciprofloxacin phenotype classifier, the CNN identified them as
ciprofloxacin-treated with 97.1% balanced accuracy (1076 of 1108 cells).
Therefore, ribosome phenotyping can be used with FISH probes targeting
species-specific sequences to identify species and antibiotic phenotype from
the same image dataset.

Discussion
Wehave shown that ribosome-targetedFISHprobes can be used to visualise
intracellular antibiotic response phenotypes inE. coli that differ basedon the
mechanism of action of the antibiotic, and that these phenotypes can pro-
vide single-cell AST data with a single label. We demonstrated that distinct
ribosome antibiotic response phenotypes exist for four antibiotics from
clinically relevant classes, and that these canbe learnedby aCNNwith>95%
accuracy. In clinical isolates of E. coli, we found that the antibiotic response
can bemore complicated, and it cannot be assumed that the resistant strain
will always resemble the untreated phenotype. However, by using a model
trained to identify the phenotypes of clinical isolates, we achieved an average
single-cell classification accuracy of 94.9%. The ribosome phenotype clas-
sification method was also shown to extend to clinical strains not shown to
the model in the training data and treated at a different antibiotic con-
centration. If deployed in a real-world AST, as the CNNmodels have access
to training data from additional susceptible and resistant strains, the per-
formance of the ribosome phenotype classifier would only be expected to
improve.

In the context of a diagnostic test, our current single-cell accuracy
means that with only 2 cells, we can differentiate a susceptible from a

resistant sample with 99% confidence and can identify mixed infections
with a sample of 12 bacterial cells. On a realistic scale of between 10 to 100
bacteria captured from a dilute sample such as blood or cerebrospinal fluid,
this level of accuracy could enable confident diagnosis even in less ideal
imaging conditions. Together with the previous deep-learning-based AST30

based on nucleoid and cell membrane staining, our ribosomal method
achieves similar accuracywhile requiring only a singlefluorescent label.Our
results using the ribosome phenotyping method provide additional vali-
dation for the use of CNNs to detect single-cell changes associated with
antibiotic susceptibility.

The previous deep-learning-based AST also showed that it could
provide equivalent information to growth-based assays30 through the rela-
tionship between the proportion of cells classified as antibiotic-susceptible
and theMIC of the strain. Here, using the ribosome phenotype, we also find
a strong relationship between the MIC of the clinical isolate and its mor-
phology after antibiotic treatment with ciprofloxacin. While the previous
method used untreated lab-strain E. coli as a proxy for the resistant phe-
notype, we found that our MG1655-trained ribosome phenotype classifier
had low accuracy when classifying resistant strains with a diffuse nucleoid
but elongated cell shape. This could be because the MG1655 treated with
ciprofloxacin is longer than untreated cells, and the ribosome phenotype
classifier is classifying predominantly by cell length. Given the difference we
found between clinical-strain and lab-strain phenotypes, we recommend
that antibiotic response phenotypes are characterised in clinical isolates
when possible, although lab strains can be used as a starting point. Our
results applyingmodels to clinical isolates treated at different concentrations

Fig. 6 | Species-specific probes can be used for simultaneous species and ribosome
phenotype phenotype identification. a A one-to-one mixed sample of fixed and
permeabilised E. coli and P. aeruginosa cells was mixed and suspended in hybridi-
sation buffer with species-specific FISH probes targeting the 16S rRNA. The E. coli
cells had been treated with 1 × EUCAST ciprofloxacin for 30 min to develop a
ciprofloxacin-treated ribosome phenotype. The E. coli-specific probe was labelled
with an ATTO-532 fluorophore while the P. aeruginosa-specific probe was labelled
with a Cy5 fluorophore. After the sample was imaged on a fluorescence microscope,

the E. coli cells were segmented and passed to the ciprofloxacin phenotype classifier,
which identified them as ciprofloxacin-treated with 97.1% accuracy. b The E. coli
cells can be visualised with the ATTO-532 fluorophore (green), illuminated with
532 nm excitation. c The P. aeruginosa cells can be visualised with the Cy5 fluor-
ophore (magenta), illuminated with 647 nm excitation. There is some signal in the E.
coli cells, at approximately half the brightness of the P. aeruginosa cells. d The
composite image showing both ATTO-532 (green) and Cy5 (magenta) channels.
The scale bar (white) is 2 μm.
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than the training data show some transferability, but sufficiently similar
training data is required to have high accuracy.

The antibiotic response phenotypes of pathogenic E. coli are diverse,
and there are many insights that could be learned from the 47,704 high-
resolution single-cell images that were obtained for this study and are being
made available for research (seeDataAvailability section). Generating these
large, curated datasets of high-resolution bacterial images is time-intensive,
because many high-throughput systems are optimised for eukaryotic cells,
but they can be powerful in developing our understanding of bacterial
antibiotic response. Many mechanisms contribute to ciprofloxacin resis-
tance beyond mutations in target genes, such as the expression of efflux
pumps and plasmid-borne Qnr genes11,41,44 and the 7 clinical isolates we
tested represent a small fraction of the diversity present in pathogenic
Escherichia coli. Beyond the heterogeneity in response within a single
sample, we found that two isolates with the same MIC (0.25mg/L) but
different genotypes showed different morphologies and were classified as
resistant at different rates (6% vs. 18%). These divergent responses to
antibiotic treatment are an area of active research and are important for
reliable phenotypic detection of AMR45.

Compared to growth-based assays15,16,18, this method is limited to
assessing the ribosome phenotype at a single timepoint because of the
fixation and permeabilization steps necessary for FISH. Compared to gen-
otypic ASTs, a challenge of the ribosome phenotyping method is that it
requires separate interrogations for each antibiotic. This could be paralle-
lised but introduces complexity to the testing procedure. Using an imaging-
based phenotyping method also requires a microscopy platform and a
method for sample preparation. However, this method might be especially
valuable in deep learning-assisted drug discovery, and in studies deter-
mining the mechanism of action of antibiotics46. The advantages of the
ribosome-labelling FISH approach are the plethora of structural features
that are amenable to deep-learning-based classification and the potential for
simultaneous species ID with species-specific FISH probe sets, which has
been demonstrated for many species and contexts47–50. We have shown that
species-specific probes can be used to differentiateE. coli fromP. aeruginosa
while simultaneously classifying the ribosome phenotype. The combination
of live-cell growth rate and fixed-cell phenotypic data could be even more
powerful than what we have shown in assessing a cell’s antibiotic response.

Here, we demonstrate the accuracy of a ribosome phenotype classifier
on E. coli clinical isolates treated with ciprofloxacin. To have greater clinical
utility, this method will need to be extended to other bacterial species and
antibiotics. FISH probes targeting the ribosomal RNA have been used to
identify a variety of Gram positive and negative species for clinical
applications47,48,51. In the future, these probes could be combined with
ribosome phenotyping for many of these species. It is likely that the
extension of this method from E. coli to other Gram-negative bacilli will be
more straightforward, while the smaller size of cocci and lower permeability
of Gram-positive bacteria to FISH probes52,53 may be a greater challenge.
Similarly, we have shown that three antibiotics with intracellular targets
(ciprofloxacin, gentamicin, chloramphenicol) and one antibiotic targeting
the cell wall (carbenicillin) cause characteristic ribosome phenotypes that
can be identified by a CNN.We expect that this method can be extended to
other antibiotics, so long as they reliably induce a visible change in the
ribosome phenotype within the time scale of the test. As was shown for
gentamicin (Fig. S1) and carbenicillin (Fig. S2), the benchmark treatment
concentration may differ for each antibiotic. The length of antibiotic
treatmentmay also need to be adjusted, especially for slow-growing species.
Despite these challenges, when used in combination with bacterial geno-
typing, a single-cell imaging assay like this one could also be used to profile
new resistance-associated mutations. This work serves as a guide for how
deep learning can be used with fluorescence microscopy to learn intracel-
lular phenotypes with high levels of accuracy, which can be applied to
different species, and antibiotics, as well as to many biological, clinical and
biotechnological applications.

In the context of ultra-rapid ASTs, although cytological profiling with
classical statistics ormachine learning has advantages in interpretability18,29,

the expected diversity of ribosome phenotypes in response to antibiotic
treatment in different bacterial strains and species is one of the motivators
for a CNN-based phenotypic AST, because a CNN can be expected to
improve in performancewhen it is able to learn from additional, real-world
data54.

By combining our single-cell ribosome-based assay with highly effi-
cient microfluidic capture chips50, an AST could be performed on cells
captured directly from the clinical specimen, eliminating the need for
lengthy culture steps, and could use multiplex FISH probes that bind to
species-specific regions on the ribosomal RNA to report both the species ID
and antibiotic susceptibility data.

Methods
Bacterial strains and sample preparation
Escherichia coli MG1655, a lab-adapted non-pathogenic K-12 derivative,
was used as the reference strain for characterising antibiotic-susceptible
ribosomephenotypes.Clinical strainswere grown fromstoredblood culture
isolates obtained for diagnostic and research purposes by the Microbiology
Laboratory of the Oxford University Hospitals NHS Foundation Trust,
Oxford, UK. All clinical isolates had been sequenced on the Illumina plat-
form and AMR genotypes were assigned using the ResFinder55 database
with Abricate v0.9.856 (--min-id 95 –min-cov 95) as part of a previous
study57 (Table 1). A biological replicate was defined as a culture grown from
an individual colony on an agar plate.

The minimum inhibitory concentration (MIC) of each strain was
tested in biological duplicate according to the brothmicrodilutionmethod58

(Table 1, Table S1). The MIC was defined as the lowest antibiotic con-
centration inhibiting growthwhen the cultures were incubated overnight in
Mueller-Hinton broth at 37 °C.

Bacterial cultures were prepared in a shaking incubator at 37 °C in
5mL lysogeny broth (MG1655) or Mueller-Hinton broth (clinical isolates,
as is standard in clinical microbiology labs) until reaching logarithmic
growth, or OD600nm of 0.2. Then, antibiotics were added to reach the spe-
cified concentration (see EUCAST Breakout Points, Table S1) and the
samples were returned to the incubator for the 30-minute treatment period.
Samples were then fixed in 2%paraformaldehyde for 20min. After fixation,
the samples were centrifuged (3min) and the cell pellets were washed once
with PBS, then re-centrifuged (3min) and re-suspended in 5mLPBS before
being split into 1mL aliquots and permeabilised in 500 µL absolute ethanol
(20min) before being stored at−20 °C until use.

Before imaging, the cells were centrifuged (3min) to remove the
ethanol supernatant, washed with 500 µL PBS, and resuspended in hybri-
disation buffer (20%v/v formamide, 0.9MNaCl, 20mMTris pH7.5, 0.01%
SDS w/v). For labelling, 4’,6-diamidino-2-phenylindole (DAPI, 1 µg/mL)
and 25 nM EUB338-Cyanine3 were added to the solution and the sample
was incubated for 20min at room temperature. The ssDNA EUB338-
Cyanine3FISHprobehas the sequenceCyanine3–5’ –gct gcc tcc cgt agg agt
– 3’ (Sigma Aldrich). Following incubation, the samples were washed with
500 µLPBS and resuspended in 150 µL PBS. This FISH procedure results in
robust cell labelling (Fig. S13). From the start of antibiotic treatment to the
start of imaging, the protocol takes approximately 2 h.

For the species identification experiments, we used probe sequences
that had been used for the identification of E. coli42 and P. aeruginosa43. The
E. coliprobe has the sequenceATTO-532 – 5’ – gca aag gta tta act tta ctc cc–
3’ (SigmaAldrich). The P. aeruginosa probe has the sequence Cy5 – 5’ – gga
cgt tat ccc cca cta t – 3’ (Sigma Aldrich). These probes were incubated with
the sample at a higher concentration of 2μMaswas used in previouswork49.

Image acquisition
Sampleswere imagedon agarose pads preparedwith 1.5% (w/v) high-purity
agarose (Bio-Rad, catalogue number 1613101) in distilled water. Images
were collected on the Nanoimager-Smicroscope (ONI, Oxford, UK) with a
100 × oil-immersion objective in multi-acquisition mode. The DAPI stain
was illuminated by a 405 nm laser in epifluorescence mode at a laser power
of 5.1 kW/cm2 for an acquisition time of 20ms. The Cyanine 3 fluorophore
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was illuminated with a 532 nm laser in epifluorescence mode at a laser
power of 16.5 kW/cm2 for 20ms. For the species-specific probes, image
quality was improved with an acquisition time of 100ms. The ATTO-532
fluorophorewas illuminatedwith a 532 nm laser in epifluorescencemode at
a laser power of 16.5 kW/cm2 for 100ms and theCyanine 5fluorophorewas
illuminated with a 647 nm laser in epifluorescence mode at a laser power of
5 kW/cm2 for 100ms. For each replicate, we collected as many high-quality
fields of view aswas possible.No calculationwas carried out to pre-select the
sample size.

Image processing and segmentation
Each field of view was segmented using Napari-BacSeg37, a user-friendly
bacterial analysis platform that allows microscopy images to be segmented
usingmachine learningmodels, such as CellPose36 andOmniPose59. BacSeg
can also be used to train custom CellPose or OmniPose models to improve
segmentation performance and minimise the need to curate segmentations
or fix segmentation errors.Within the software, the resulting segmentations
can be easily curated and then exported in multiple formats to facilitate
downstream analysis. Descriptive statistics of the segmented bacteria can
also be computed and exported. The BacSegNapari60 plugin can be installed
from from the Napari Hub, the Python package manager PyPi, or GitHub
(https://github.com/piedrro/napari-bacseg).

For our segmentations, custom CellPose36 models were trained on our
532 nm ribosome data for 100 epochs using the standard Napari-BacSeg
hyperparameters to improve segmentation performance; these were then
used for cell segmentation. Cells on the edge of the image, overlapping cells,
vertical cells, or cells outside of the focal plane were removed from the final
dataset during the segmentation and curation process.

Cell phenotypes
From the curated segmentations, cell lengths, widths, and midlines
were generated using the ColiCoords61 plugin within Napari-BacSeg37

with 10 midline vertices. For each cell, the intensity in each channel
is normalised from 0 to 1 and the mean intensity is calculated for
each channel for 100 bins along this midline. For a population of
cells, the mean intensity and the standard deviation of the intensity is
calculated for each of these 100 bins. This provides a mean intensity
for each bin along the long axis of the cell. Because the cell lengths
cannot be assumed to be normally distributed, hypothesis testing was
conducted with the Mann-Whitney non-parametric test with a sig-
nificance value of 0.05 in Origin Pro 2021.

Neural network training
Images and segmentation maps were exported from Napari-BacSeg37 to
create standardised 64 × 64 pixel images of each cell zero-filled outside the
segmentation boundary in order to be passed to the CNN. For cells longer
than this size, we tested trained on cropped cells andmodels trained on cells
that were resized while maintaining the aspect ratio if the bounding box
length or width was greater than 64 pixels (Fig. S5). To preserve the intra-
cellular definition, models presented in the main Results are for models
without resizing. To account for different staining and illumination
brightness, histogramnormalisation was applied to each image. The images
were randomly rotated, flipped, and translated with geometric and noise
transforms from theAlbumentations package62 before being loaded into the
neural network (Fig. S4).

The convolutional neural network was built with PyTorch63. Each
model was run for 100 epochs with the batch size and learning rate opti-
mised byOptuna64 for the eachdataset. The trainingdatasetswere split 0.80/
0.20 into training andvalidationdatasets. Thevalidationand testingdatasets
were balanced by class to reduce classification bias. Because the task was a
single-label binary classification, EfficientNetB065 with the Cross-Entropy
loss functionwasusedas theneural network structure. TheAdam function66

was used for adaptive learning rates.
All accuracies reported are from holdout datasets, meaning that the

model was independently trained and validated on data from several

biological replicates and tested on images from a previously unseen biolo-
gical replicate.

Accuracy metrics and sample size simulation
Plots and phenotype statistics such as the Mann–Whitney non-parametric
test were done usingOrigin Pro 2021. TheMann–Whitney non-parametric
testwas chosen because the phenotypemeasurements cannot be assumed to
be normally distributed, as they are composed of cells at different stages of
the cell cycle. The cell classification simulation to determine sample sizewas
calculated using MATLAB R2022b.

1. Balanced Accuracy. All accuracies are reported with the 95% con-
fidence interval, ± 2σ. Here we define resistant cells as “Positives” and sus-
ceptible cells as “Negatives.” For a one-class binary classification task,

Accuracy ¼ TruePositives
TruePositivesþ FalseNegatives

For a two-class classification task, given that:

Sensitivity ¼ TruePositives
TruePositivesþ FalseNegatives

and

Specificity ¼ TrueNegatives
TrueNegativesþ FalsePositives

then

BalancedAccuracy ¼ 1
2
ðSensitivity þ SpecificityÞ:

PositivePredictiveValue ¼ TruePositives
NumberofPositiveCalls

NegativePredictiveValue ¼ TrueNegatives
NumberofNegativeCalls

2. Sample Size Simulation. Givena sample of cells of sizeN anda certain
proportion of susceptible and resistant cells (100:0, 50:50, 0:100), we
simulated themeasuredResistant Fraction and95%confidence interval.We
simulated random samples of 10,000 susceptible and resistant cells at the
defined proportions and transformed them into detected samples using the
accuracy of our susceptible-resistant classifier. A resistant cell was detected
as resistant 98.8%of the time (sensitivity) and a susceptible cell was detected
as susceptible 91.7% of the time (specificity). Random populations of
between 1 and 40 cells were sampled and the Resistant Fraction (resistant
cells/total cells)was calculated.After 1000 trials, themeanResistantFraction
and 99% confidence interval (2.58σ) was plotted for each sample size. We
defined theminimum sample size as the smallest sample for which the 99%
confidence intervals did not overlap.

Ethics
Ethical approval for the use of clinical isolates processed by the John Rad-
cliffe Hospital microbiology laboratory in the development of diagnostic
assays was granted by the UK’s Health Research Authority (London –
Queen Square Research Ethics Committee [REC reference17:/LO/1420]).

Data availability
Cell images,metadata, and source data for all figures are available at: https://
zenodo.org/records/11656505. All other data are available from the corre-
sponding author on reasonable request.
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Code availability
Code for model training is available at: https://github.com/KapanidisLab/
ribosome_phenotype_classification67.
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