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Structure-based drug design aims to create active compounds with favorable properties by analyzing
target structures. Recently, deep generative models have facilitated structure-specific molecular
generation. However, many methods are limited by inadequate pharmaceutical data, resulting in
suboptimal molecular properties and unstable conformations. Additionally, these approaches often
overlook binding pocket interactions and struggle with selective inhibitor design. To address these
challenges, we developed a framework called Coarse-grained and Multi-dimensional Data-driven
molecular generation (CMD-GEN). CMD-GEN bridges ligand-protein complexes with drug-like
molecules by utilizing coarse-grained pharmacophore points sampled fromdiffusionmodel, enriching
training data. Through a hierarchical architecture, it decomposes three-dimensional molecule
generation within the pocket into pharmacophore point sampling, chemical structure generation, and
conformation alignment, mitigating instability issues. CMD-GEN outperforms other methods in
benchmark tests and controls drug-likeness effectively. Furthermore, CMD-GEN excels in cases
across three synthetic lethal targets, and wet-lab validation with PARP1/2 inhibitors confirms its
potential in selective inhibitor design.

The persistent quest for drug discovery stands as an enduring theme in
the trajectory of human development. Relying solely on serendipitous
drug discovery and empirical design proves insufficient for the demands
of modern society. Within this context, the complex landscape of drug
discovery highlights the significance of uncovering lead compounds1.
Computational chemistry and bioinformatics have become the usual for
lead compound rational design in recent decades2–4. Nevertheless, the
intricate nature of biological systems poses a challenge in achieving
precise simplification in physical models or empirical formulas, which
could limit efficiency and result in false positives5. There is an urgent
need for new technologies to accelerate the discovery of lead compounds
and drive advances in drug development. The rise of artificial intelligence
in recent years has breathed new vitality into the field of drug discovery6,
particularly with models generated by deep learning technologies. These
models learn from the different types of pharmaceutical data to make
independent decisions for accomplishing specific objectives7. To a certain
extent, they may be likened to the experience held by experts in the field
of drug design. Hence, thoughtfully integrating artificial intelligence into

the rational design and optimization of lead compounds holds promising
potential.

In principle, the designof drugmolecules revolves around their specific
binding to target pockets, thereby influencing biological processes. There-
fore, a pivotal consideration lies in the generation of molecules precisely
tailored to bind to the cavity of these pockets8. In recent years, deep gen-
erativemodels have demonstrated impressive capabilities in addressing this
challenge. Multiple studies suggest that effective molecular generation can
greatly accelerate the identification of lead compounds9–11. The deep gen-
erative models for active molecule generation broadly divided into two
categories: ligand-based and structure-based. Ligand-based models require
learning compound space and fine-tuning the model using an active set of
molecules12. However, the fundamental limitation is the inability to incor-
porate structural information of proteins (novel target family), hindering
the generation of hits with unique binding patterns. In the field of structure-
based generative models, some researchers have considered incorporating
protein pockets as conditional into ligand-based model generation13–15.
Others, taking a more ambitious approach, aiming to generate binding
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molecular conformations within the pocket. Models like LiGAN16,
GraphBP17, and DiffSBDD18 aim to produce pocket-aware ligands with
topology and three-dimensional (3D) geometry directly within the pocket.
However, in tackling the complexity of molecular generation, the incor-
poration of conformational prediction introduces further intricacy. This
may lead tomolecular conformations that are non-optimal19, thereby failing
to guarantee the biological activity in generated molecules. To tackle
the aforementioned issues, some researchers have leveraged prior knowl-
edge as generative conditions. These encompass molecular fragments20,21,
pharmacophores22, interactions between molecules and targets23, and var-
ious molecular properties24. This approach steers the model towards
approximating molecules with “biological activity” during the generation
process.

However, The physical meaning of the molecular conformations
produced under these conditions is unclear and they often deviate from the
crystal conformation19. Moreover, these models may not handle more
specialized design challenges well, such as generating dual-target inhibitors
or highly selective inhibitors. The crux of the issue lies in the scarcity and
substantial noise inherent in pharmaceutical data. Directly transferring the
logic of text generation and image recognition, whichhas proven effective in
other domains25, to drug design becomes problematic. Simultaneously,
current models seem to be trained on the same and single dataset, limiting
thepotential of advancedalgorithms, as shown inTable S1.Reflectingon the
success of AlphaFold226, its success stems from considering a co-
evolutionary strategy and integrating multi-dimensional data. In the
realm of pioneering drug design, it is crucial to incorporate the scientific
concepts into AI, such as physical models, and leverage multi-dimensional
data27. Therefore, devising a overarching architecture and workflow that
goes beyond the algorithms themselves has become a key challenge for
advancing the field of deep learning in drug discovery.

Considering the strengths and limitations of existing methodologies
and drawing inspiration from coarse-grained molecular dynamics
approaches, we introduce an innovative, structure-based 3D molecular
generation framework. By decomposing the complex problem into sub-
tasks, we transform molecules into pharmacophore point clouds and use
pharmacophores as intermediaries, combined with diffusion model28 and
transformer encoder-decoder, to establish associations between a finite
number of 3D protein-ligand complex structures and a large number of
drug molecule sequences. This hierarchical approach facilitates the incre-
mental generation of molecules with potential biological activity. Con-
currently, through iterativemodel training integratingmolecular properties
as conditions, molecular docking, and fine-tuning techniques, we achieve
the generation of specific, active and drug-like molecules tailored for pre-
defined target points. Leveraging pharmacophore point clouds, the gener-
ated molecular entities seamlessly align with target pockets, yielding
physically meaningful three-dimensional molecules. Furthermore, by
incorporating matching analysis of pharmacophore point clouds, Our
model has performed capability in tasks such as generating selective inhi-
bitors or dual-target inhibitors. Our approach complements the state-of-
the-art structure-based molecular generation models in terms of model
architecture. In this study, we present extensive experimental evidence,
including wet-lab validations in designing highly effective PARP1/2 selec-
tive inhibitors, demonstrating that CMD-GEN is a powerful tool for
addressing diverse drug design challenges and yielding practical outcomes.
Our framework contributes to the existing drug discovery toolbox, pro-
viding new insights for both generation and prediction.

Results and discussion
Model architecture of CMD-GEN
The overall model architecture of CMD-GEN is shown in Fig. 1, which
mainly includes a coarse-grained three-dimensional pharmacophore sam-
pling module to the generation of coarse-grained ligand three-dimensional
pharmacophore points under the constraint of protein pockets, a molecule
generation module based on gating condition mechanism and pharmaco-
phore constraints (GCPG) to convert the sampled important

pharmacophore point cloud into a chemical structure, and a conformation
prediction module based on pharmacophore alignment to align the phar-
macophore point cloud sampled by diffphar with the chemical structure
sampled by the GCPG module in three dimensions. The details of each
module can be found in the methods section, and the training and gen-
eration process flowchart of the framework can be found in the Fig. S1.

Performance of pocket-conditioned pharmacophore sampling
We trained our module on the crossdocked dataset, analysing protein
pocket descriptions using two methods: considering all atoms except
hydrogen and focusing only on alpha carbon (Cα) atoms within residues. A
comparison of the two models on the test set revealed distributions for
pharmacophore types, maximum distances between features, and distances
between pharmacophore centroids, as shown in Fig. 2.

Figure 2a demonstrates that the sampled distributions of three-
dimensional pharmacophore types on the test set exhibit a good fit,
regardless of whether the pocket residue representation is based on full
atoms or Cα atoms. The distributions closely match those observed in the
training set. The trained models exhibit matching distributions of max-
imum distances between pharmacophores, whether based on full-atom or
Cα-atom representations, when compared with the original distances
within the pockets (Fig. 2b). As shown in Fig. 2c, distances between the
sampled pharmacophore point cloud centers and the original pharmaco-
phore centers in complexes are compared, revealing that ourmodel not only
extends the spatial range of pharmacophore generation by learning the
distribution within the pocket but also maintains proximity to the pocket
without undue deviation.

In addition to validating the pharmacophore sampling module on the
test set, we conducted analyses in real-world scenarios. Poly [ADP-ribose]
polymerase 1 (PARP1)29 emerges as a crucial target in cancer therapy. Its
inhibitors aim to disrupt the function of Poly(ADP-ribose) polymerase,
utilizing a “synthetic lethality” mechanism for cancer cell treatment.
Ubiquitin-specific protease 1 (USP1) is part of the Ubiquitin-specific pro-
tease family. ML323 is a selective inhibitor that likely interacts allosterically
withUSP1. In 2022, Rennie andWalden30 used cryo-electronmicroscopy to
study the assembly of the USP1-ML323 enzyme-substrate-inhibitor com-
plex. Additionally, the Ataxia telangiectasia mutated (ATM)31 target falls
under the kinase category, and most of its inhibitors, including the clinical
Phase I candidateM4076, bind to the kinase domain.We applied thismodel
to these three targets of cancer drug development, which are PARP1 (PDB
ID: 7ONS29), USP1 (PDB ID: 8A9K30), and ATM (PDB ID: 7NI432),
respectively. The sampled and visualized pharmacophore models are pre-
sented in Fig. 2d–l. The results reveal that the sampled pharmacophore
features resemble the binding modes of ligands in the original crystal
complexes. For instance, the pharmacophore model in Fig. 2d–f accurately
captures the atomization, hydrogen bonding acceptor, and donor phar-
macophore combination of the Isocarbostyril core. Simultaneously, the
sampled PosIonizable pharmacophore and hydrophobic pharmacophore
also fall within a reasonable spatial range. This underscores the significance
of the pharmacophore sampling approach under the concept of virtual
coarse-grained dynamics. Additionally, our approach enables rapid sam-
pling of various combinations of pharmacophores and shows the phar-
macophore models from five runs for each target, allowing generation
modules to use them later (Supporting Information Table S2).

Performance of GCPGmodule
Aligned with the aforementioned pharmacophore sampling module, we
benchmark our designed GCPGmodule against alternative SMILES-based
generation methodologies, encompassing ORGAN33, VAE34, SMILES
LSTM35, Syntalinker36, and PGMG22. This comparative analysis serves to
evaluate the performance of our model in molecular generation tasks. The
assessment of molecular generation performance involves four keymetrics:
effectiveness, novelty, uniqueness, and the ratio of usable molecules. The
comparison results are summarized in Table 1.We have trained the GCPG
module and its other test models on the ChEMBL dataset37 based on the
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train-test split used in the GuacaMol dataset38. During testing, this module,
relying on pharmacophore-conditioned constraints, generatesmolecules by
approximating the distribution of conditioned compounds through ran-
dom pharmacophore feature sampling. Simultaneously, a gating mechan-
ism is employed to control molecular weight (MW) at 400, LogP at 3, QED
at 0.6, and SAat 2,while closing the gating channels forRotaNumBonds and
TPSA. This setup enables a comparison with the unconditional GCPG
model, and the results are also collectively presented in Table 1.

As shown in Table 1, the GCPG exhibits superior performance in
novelty and the ratio of available molecules, particularly when leveraging
EAGT to capture pharmacophore features. The GCPG_noC_EGAT
module has yielded advancements surpassing the original PGMG across
four key metrics, notably achieving a 1.5% increase in the ratio of available
molecules. Furthermore, the comprehensive GCPG, integrating a gating
condition mechanism, attains further refinements in generating novelty,
uniqueness, and the ratio of available molecules. The available molecule
ratio exceeds PGMG by approximately 1.8%, all while maintaining a
comparable level of validity and uniqueness to other leadingmodels, such as
Syntalinker and SMILES LSTM. In contrast, incorporating EGAT for
embedding pharmacophore features consistently yields superior results,

potentially attributed to the significance of edge in pharmacophore graph
within graph neural network, which can find some concurrence in recent
literature39.

Moreover, we employed thematch score to evaluate themodel’s ability
to generatemolecules corresponding to pharmacophores, the results shown
in Supporting Information Fig. S2. It indicates that the non-gating-
condition “GCPG_noC_EGAT” achieved matching ratio of 78.25%, sur-
passing the 77.45% achieved by PGMG. Nevertheless, we observed a mar-
ginal decline in the matching ratio to 74.48% upon the introduction of the
gating condition mechanism in GCPG. This decrease may be attributed to
the heightened training complexity associated with the additional gating
condition. Nevertheless, the marginal reduction in matching ratio brings
about significant advantages. The supplementary gating condition enhances
our ability to control parameters influencingmolecule generation, andwhen
combined with the fine-tuning method, it enables the optimization of
computable property.

Figure 3 shows the comparison of the distribution of physicochemical
properties between the ChEMBL training set and molecules generated by
GCPGwith and without the gating condition mechanism. It is evident that
the GCPG with gating condition can adeptly reproduce the distribution of

Fig. 1 | The overall architecture of CMD-GEN. It comprises a series of closely
integrated modules: pocket-conditioned three-dimensional pharmacophore sam-
pling module, space and feature-based gaussian mixture density clustering module,

gating condition mechanism and pharmacophore-based molecular generation
module and binding conformation generation module based on pharmacophore
alignment.
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theChEMBL training set (Fig. 3). In contrast, theGCPGmodulewithout the
gating condition mechanism tends to generate molecules that align closely
with the specified parameters, as evident in MW, SAS, QED, and LogP.
Notably, properties unaffected by the gating channel, such as Rota-
NumBonds andTPSA,maintain distributions that closely resemble those of
the ChEMBL training set. Those underscore the robust generative

capabilities of our gating condition and pharmacophore-constrained
module, showcasing not only its prowess in pharmacophore-based mole-
cule generation but also our ability to control the properties of the generated
molecules through parameter settings. Such multi-parameter control and
optimization methods are highly beneficial for specific tasks, such as
designing brain-permeable or low-toxicity molecules.

Fig. 2 | Evaluation and visualization of the pharmacophore sampling module.
a The probability distribution of sampled pharmacophore types with respect to the
original ligands. b Distributions of maximum distances between sampled and
reference pharmacophores. c Distance Distribution between the centroids of sam-
pled pharmacophores and reference pharmacophores.d–fVisualization of clustered
sampled pharmacophore model within the PARP1 domain (PDB ID: 7ONS). The

Figure also showcases the most probable pharmacophore types along with their
corresponding frequency values. Additionally, a comparative visualization is pro-
vided with known active complexes in the pocket. g–i Visualization of clustered
sampled pharmacophore model within the USP1 domain (PDB ID: 8A9K). j–l
Visualization of clustered sampled pharmacophore model within the ATM domain
(PDB ID: 7NI4).
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Structure-based drug design for specific targets using
CMD-GEN
The ultimate objective in the development of structure-based deep mole-
cular generation models is their application to real systems. Here, we con-
tinue to focus on the three synthetically lethal targets, PARP1, USP1, and
ATM, to explore the performance of the CMD-GEN model in real-world
drug design projects within these specific targets.

As a comparative analysis, we focused on state-of-the-art (SOTA)
models for structure-based molecular generation, including pocket2mol40,
ResGen41, and Surfgen19. These models have previously demonstrated
superior affinity score predictions compared to experimentally validated
active molecules. Specifically, we conducted dedicated testing on the
molecular generation results of CMD-GEN after fine-tuning the scoring
values, solely controlling the scoring throughagating conditionmechanism,
referred to as CMD-GEN(R1). Detailed settings are provided in the
Methods section. The version directly controlling physicochemical prop-
erties is termed CMD-GEN(R2). In each of the three target molecules, we
sampled five pharmacophore models which can be find in Supporting
Information Table S2. Based on these models, we generated 100 molecules
for each, resulting in a total of 500molecules.The remainingmodels, Pocket,
ResGen, and Surfgen, underwent two rounds of generation, producing 250
molecules in each round and totaling 500 molecules.

We compared and analyzed the top 50 scored molecules from each
model, presenting the results in Fig. 4. From the boxplot in Fig. 4a, it can
be observed that the CMD-GEN(R2) model, governing the drug-like
properties of gate molecules, achieves comparable scores across all three
targets. It only slightly trails behind ResGen at the ATM and PARP1
targets. After fine-tuning the docking score through the gating
mechanism, the CMD-GEN(R1) model surpasses all other models in the
score distribution of generated molecules, showcasing the success of
the fine-tuning strategy employed in CMD-GEN. As shown in Fig. 4b,
the CMD-GEN(R2) model maintains a control value of 0.6 for QED. As a
result, the QED scores of generated molecules consistently maintain a
high level, with median values surpassing 0.6. Notably, the Pocket2mol
model performs better in QED, maintaining high levels across all three

Fig. 3 | Distribution of the physicochemical properties for the ChEMBL training
set and molecules generated by GCPG module with and without the gating
condition mechanism. It Includes synthetic accessibility score (SAS, 0–10 range);
Molecule weight (MW); number of rotatable bonds (NRB); quantitative estimate of
druglikeness (QED), the Wildman–Crippen partition coefficient (LogP) and

topological polar surface area (TPSA). The GCPG generated molecules include a total
of 100,000 molecules from random pharmacophore hypotheses and the ChEMBL
molecules comprise 100,000 molecules randomly sampled from the ChEMBL training
datasets. In the gating condition mechanism, SAS is set to 2, MW is set to 400, QED is
set to 0.6, and LogP is set to 3, with no restrictions on NRB and TPSA.

Table 1 | Performance of GCPG and other SMILES-based
models

Methods Validity" Uniqueness" Novelty" Ratio of
available
molecules"

ORGAN 0.379 0.841 0.687 21.9%

VAE 0.870 0.999 0.974 84.7%

SMILES LSTM 0.959 1.000 0.912 87.5%

Syntalinker 1.000 0.880 0.903 79.5%

PGMG 0.982 0.979 0.976 93.8%

GCPG_noC_GT 0.992 0.973 0.970 93.5%

GCPG_noC_EGAT 0.989 0.986 0.977 95.3%

GCPG_noC_GINE 0.986 0.982 0.972 94.2%

GCPG_GatedGCN 0.980 0.997 0.969 94.8%

GCPG_EGAT 0.975 0.998 0.983 95.6%

An upward arrow next to each metric indicates that higher values represent better performance.
The best performance among all methods for each metric is shown in bold.
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targets. However, it displays instability in the weight of generated
molecules, with big variations between the three targets, as shown in
Fig. 4c. A similar trend is observed with SurfGen, which can only sample
molecules with a molecular weight of around 100 on PARP1 and USP1
targets, showing relatively better performance on ATM. Resgen tends to
produce compounds with larger molecular weights, averaging over 600 in
the ATM target. Conversely, CMD-GEN(R1) and CMD-GEN(R2)
exhibit a smaller distribution around 400, attributed to the presence of
the gating mechanism. Furthermore, we are pleased to observe that the
presence of the gating mechanism enables the CMD-GEN model to
precisely control the number of rotatable bonds, a parameter reflecting
molecular flexibility. The CMD-GEN(R2) model, without undergoing
score fine-tuning, demonstrates superior control over parameters.
Similar results are evident in the comparison of LogP in Fig. 4e and other
drug-like properties. While the SAscore of all molecules in Fig. 4f
remains favorable, it is important to note that the molecular con-
formation after docking from previous generative models significantly
worsened, as depicted in Supporting Information Fig. S3. In comparing
the conformations of directly generated molecules and after docking, we
observed the emergence of multiple chiral centers, increasing synthetic
challenges. This could be attributed to the generated molecular bond
lengths and angles adopting unrealistic patterns19,42, causing the docking
software to misinterpret them as chiral centers during the docking

process. Contrarily, our CMD-GEN model avoids such issues due to the
designed architecture. The initial conformation is directly generated
based on RDKit43, merely aligning into the sampled coarse-grained
pharmacophores.

In Fig. 5, we present the highest-scoring molecular structures for
each model and re-docked the original PDB, confirming their ability to
replicate the native bindingmodes for these three targets. This affirms the
reference value of the scoring results. Consistent with the above, mole-
cular structures generated by Pocket2mol and SurfGen are relatively
small, while those from ResGen are larger. In most cases, the scoring
values of generated molecules can surpass those of the reference ligands.
However, it is noteworthy that the highest-scoring molecules for these
three models are predominantly multi-ring structures (four rings and
above), with this tendency being particularly prominent in ResGen.
Adding polycyclic structures is an easy way to increase docking scores.
This strategy was probably used by these models, which favored the
generation of polycyclic compounds. However, polycyclic aryl fused rings
can easily cause safety issues and belong to a class of structural alerts44–46.
In CMD-GEN(R1) and CMD-GEN(R2), the highest-scoring molecules
do not adopt this strategy. Our gating mechanism limits the generation of
excessively large molecules, and constraints on properties like QED and
LogP provide implicit guidance, discouraging the blind generation of
high-scoring molecules.

Fig. 4 | The boxplot of top 50 molecules for each model in three targets mean
binding energies and drug-likeness properties. a The docking score (#) compar-
ison. b The QED (") comparison. c The MW comparison. d The rotatable bonds
comparison. e The LogP comparison. f The SAscore (") comparison. Calculation of

drug-likeness properties uses molecular structures directly generated by the models.
In the gating condition mechanism of CMD-GEN(R1), the docking score is fixed at
−13 kcal/mol. For CMD-GEN(R2), the gating conditions include setting SAS to 4,
MW to 400, QED to 0.6, LogP to 4, and rotatable bonds to 4.
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Ablation experiment
We further conducted ablation experiments to confirm that theCMD-GEN
model, after explicitly specifying pharmacophores, outperforms the PGMG
model. Additionally, we demonstrated the capability of our pocket-
conditioned pharmacophore sampling. The results are depicted in Fig. 6.
Beyond PGMG, we observed that both CMD-GEN(R1) and CMD-
GEN(R2) generally achieve better docking performancewhenutilizing their
own sampled coarse-grained pharmacophores, as shown in Fig. 6a. In
contrast, PGMGobtains superior scoreswhen employing interaction-based
pharmacophores, particularly in theATMandPARP1 targets. Interestingly,
across all three targets, PGMG generated molecules even outscore our fine-
tuned docking model CMD-GEN(R1). To further investigate the reasons
behind this result, we analyzed the molecular weights of generated mole-
cules, as depicted inFig. 6b. It becomes evident thatPGMGtends togenerate
excessively large molecules. Molecules with MW greater than 700 were
detected in the three targets. Additionally looked into ligand efficiency in
docking, and the findings show that the CMD-GEN model has a better

ligand efficiency distribution than the PGMG model. It can be concluded
that larger molecules are typically produced in PGMG, which results in
higher docking scores, because there is no gating condition mechanism in
place. This emphasizes how crucial gating condition mechanisms are to
realistic generative models of drug design. In addition, molecules generated
by the diffuse pharmacophore of CMD-GEN generally showed higher
ligand efficiency than those generated by known complex interaction
pharmacophore models. This supports the validity of our coarse-grained
pharmacophore sampling based on the diffusion model.

CMD-GEN can generate physically meaningful binding con-
formations of molecules
In the context of CMD-GEN’s ability to generate high-quality molecules
and adeptly avoid inaccuracies conformation in three-dimensional gen-
erativemodels regardingbond lengths andangles,we investigate the efficacy
of CMD-GEN in generating molecular binding conformations. Given that
the structural molecular generation models discussed above are trained on

Fig. 5 | Docking conformations of the reference ligand and the top-scoring
molecules in 500 sampled molecules from each model. Displayed with the blue
background for the ATM, the green background for the PARP1, and the orange
background for the USP1.Molecules from Pocket2mol are displayed in blue, Resgen

in orange, surfgen in green, CMD-GEN(R1) in pink, and CMD-GEN(R2) in purple.
Re-docking was conducted to validate the authenticity of the reference scoring. The
docking conformations of reference molecules are highlighted in yellow, with their
crystal structure conformations in white.

Fig. 6 | Violin plot of top 50molecules generated using different pharmacophore
models in three targets. a The docking score (#) comparison. b The MW com-
parison. c The ligand efficiency (") comparison. “IP” refers to the interaction

pharmacophore model of the reference complex, and “DP” refers to the pharma-
cophore model obtained by the pocket-conditioned pharmacophore sampling
module of the CMD-GEN model.
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crossdocked docking structure datasets, it becomes interesting to explore
whether the binding conformations ofmolecules generated by thesemodels
possess physical significance. Calculating the RMSD values of the over-
lapped conformations between the generated structures and the docking
conformations for the aforementioned top 50 molecules, the results are
depicted in Fig. 7. The SurfGen model exhibits excellent performance,
particularly evident in PARP1, displaying nearly coincident RMSD values.
The Pocket2Mol model demonstrates stable performance across all three
targets, achieving favorablematching.However, theperformanceofResGen
is less satisfactory across all targets, primarily due to the largermolecular size
and structural complexity, leading to suboptimal RMSD results. Addi-
tionally, its model architecture, based on a flow-based model, may con-
tribute to differences between the generated molecules and the docking
conformations. Alternatively, our CMD-GEN model samples the global
pharmacophore and thenaligns themoleculeswith thepharmacophore. It is
evident that our CMD-GEN model, guided by this strategy, consistently
performs well across all three targets. The conformations generated by the
CMD-GEN (R2) model within less than 2 Å exceeded 75% on all three
targets. This success is attributed to accurate pharmacophore sampling and
the design of tolerance parameters (refer to the Methods description),
allowing our molecule generation model to produce multiple possible
binding conformations, in contrast to othermodels generating only a single
conformation. The above illustrates that our molecular generation model
can generate conformations with certain physical meaning.

CMD-GENmodel exhibits a fast molecular generation speed
TheCMD-GENmodel demonstratesa significant advantage in runtimedue
to its hierarchical design, where the final molecule generation relies on the
globalmolecular structuredecodedbyTransformer, as shown inSupporting
InformationTable S3. In comparison toflow-basedmodels likeResGen, our
model achieves much higher efficiency. Calculations indicate that, after
sampling pharmacophores, generating molecules, and aligning binding
conformations, an average time of only 1.2 s is required for onemolecule in
CMD-GEN. In contrast, Resgen takes approximately 50–70 s. This rapid
generation speed positions our model for widespread application in drug
design processes, expediting drug development.

CMD-GEN can be employed for the development of selective
inhibitor molecules
Interestingly, due to the hierarchical design of the CMD-GEN framework,
our model not only achieves the common task of generating three-
dimensional molecules within a pocket given a structure, but also can
dealing withmore complex drug design scenarios, such as the development
of selective inhibitors. In this process, the model integrates core pharma-
cophore features and ‘selective’ pharmacophore points to enhance selec-
tivity, thus improving the specificity of the molecule-target interaction.
Here,we take thedevelopment of selective inhibitors forPARP1andPARP2
as an example. Both PARP1 and PARP2 share a significant homology in the
C-terminal catalytic domain structure47,48. Currently, all approved PARP

inhibitors (PARPi) are classified as ‘first-generation’ clinical PARPi, exhi-
biting non-selective binding and inhibitory effects on both PARP1 and
PARP249. However, it has been demonstrated that selectively inhibiting
PARP1 alone is sufficient to induce cell death in homologous
recombination-deficient cancer cells, while inhibiting PARP2 is associated
with hematological toxicity50. Therefore, there is an urgent need for the
development of selective inhibitors targeting PARP1.

In this task, point cloud representations of the coarse-grained phar-
macophores from both pockets were aligned using a point cloud matching
algorithm. A straightforward strategy considered points outside the geo-
metric shape formed by the pharmacophore sampled for PARP1 compared
toPARP2.Themostprobablepharmacophore features for thesepointswere
identified using a density-basedDBSCAN51 clustering approach. Results are
illustrated in Fig. 8a, b. In Fig. 8c, we showcase the binding mode of one
compound generated by the CMD-GEN model with PARP1 and PARP2,
while Fig. 8d displays its chemical structure.We observe the generation of a
methyl group at the site of the selective hydrophobic pharmacophore in
Fig. 8e. The structural presence of Gln332 in PARP2 conflicts with the
methyl group in our molecule. Additionally, glutamine belongs to hydro-
philic residues, substantiating the effectiveness of sampling the hydrophobic
pharmacophore. This critical residue was similarly highlighted in studies by
Hu et al. 52 and Wang et al. 53 when investigating the selective inhibition
mechanismofNMS-P118 for PARP1/2. At another position, represented in
Fig. 8f, corresponds to the sampled H-bond acceptor pharmacophore. We
observe conflicts in terms of both charge and position with Arg878. In
contrast, the different orientation ofArg444 inPARP1 avoids these conflicts
while forming a hydrophobic pocket with Leu76954. Those confirms the
validity of the sampled selective pharmacophore.We also employed a set of
100 molecules and assessed the in-situ scoring variations to ensure the
results are not incidental, shown in Fig. S4.Over half had a gap of 2 kcal/mol
or more, while PARP1-based configurations lacked selectivity.

Because the CMD-GEN model integrates the design advantages of
pharmacophore models, it can also be adapted for multi-target drug design
strategies, as shown in Fig. S5. Although CMD-GEN’s pharmacophores,
derived from static crystal structures, can capture ‘selective’ conformations
for semi-flexible docking tasks, it is important to consider that real-world
target proteins are dynamic, often necessitating molecular dynamics
simulations. Nevertheless, the strength of our model lies in its ability to
translate residue differences into novel selective inhibitors.

Real-World Applications of CMD-GEN in Developing PARP1/2
Selective Inhibitors
Given the limitedwet-lab validation of generativemodels, we aim to further
assess CMD-GEN’s potential in practical drug development. Asmentioned
above, we validated the CMD-GEN model across multiple experiments,
highlighting its ability to generate potential inhibitors targeting specific sites.
We also explored its capacity for selective inhibitor development. Con-
tinuing our focus on selective PARP1/2 inhibitors, we first investigated the
selectivity mechanisms of AZD5305, a second-generation PARP1/2

Fig. 7 | The rootmean square deviation (RMSD) values of the generated conformations by themodels and the docking conformations across all three targets. aRMSD
comparison in ATM. b RMSD comparison in PARP1. c RMSD comparison in USP1.
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inhibitor currently in Phase III clinical trials. AZD5305 underwent 1000 ns
molecular dynamics simulations within the binding pockets of PARP1 and
PARP2, followed by residue-based free energy decomposition, with results
presented in Supplementary Fig. S6. Energy analysis revealed that
AZD5305’s selectivity is primarily driven by a hydrophobic pocket formed
by LEU769, ARG878, and PRO881 residues, which favor binding, whereas
the analogous pocket is absent in PARP2 due to GLY338 and HIS447. This
finding is consistent with CMD-GEN’s pharmacophore point cloud com-
parison for PARP1/2, as shown in Fig. 8a.

Based on the integrated analysis of CMD-GEN’s structure-based
pharmacophore and the dynamic selectivity mechanisms of AZD5305,
we set two development modes to assess the practical utility of the model.
The first mode involves de novo design based on target structure, eval-
uating the model’s capability in generating novel molecules from struc-
tural information. The second mode employs a more conservative
optimization strategy, retaining the AZD5305’s N-methyl-5-(piperazin-
1-yl)picolinamide scaffold while generating other motifs of the molecule
to assess the model’s optimization potential. Through a generation-and-
screening process, 110 molecules were identified from 10,000 generated
compounds using binding mode analysis and visual inspection (Fig. S7).
Details are provided in the section “The setting of generation and
screening process” in Supplementary Information. We have depicted all
currently approved PARPi, including Olaparib, Rucaparib, Niraparib,
and Talazoparib and a reported selective PARP1 inhibitors AZD5305. In
addition, CMD-GEN successfully generated several “drug-likeness”
structures consistent with these reported inhibitors (considering motifs
with lactam ring systems), as shown in molecules 1–19. On this basis, the
CMD-GEN model demonstrated its ability to generate more novel
structures (molecule numbers 20–110), which were classified by us into
10 innovative strategies containing pharmacologized thinking, namely:
single-ring strategy (lactam); single-ring strategy (isosterism); Double-
ring Strategy (lactam); Double-ring Strategy (isosterism); Three-ring
Strategy (lactam); Three-ring Strategy (isosterism); Four-ring Strategy;
Ring-opening strategy; Macrocyclization strategy; and Other strategy.
Subsequently, we considered to identify the most promising candidates
among various strategies and practical factors such as patent rights and
synthetic feasibility, selecting 12 molecules from two modes for

molecular dynamics simulations to assess their binding stability, as
illustrated in Table S4. For all selected molecules, we conducted 100 ns
molecular dynamics simulations with both PARP1 and PARP2, with
results shown in Figs. S8 and 9 and Table S5. The results demonstrated
that all molecules remained stably bound within the pocket of PARP1
domain in the initial binding mode, as shown in Fig. S8. Free energy
calculations revealed that molecules exhibited more favorable binding
energies with PARP1 compared to PARP2. This indicates that CMD-
GEN, by capturing receptor interaction pharmacophore patterns, gen-
erates molecules with a degree of dynamic stability and selective binding
towards PARP1 from an energetic perspective.

We synthesized eightmolecules fromdenovo design and optimization
mode, as shown in Table 2. ELISA assays were performed to evaluate their
biological activity against PARP1 and PARP2 at the protein level, as shown
in Table 2 and Figs. S11 and 12. Of the eight synthesized molecules, six
exhibitednotable biological activity, demonstrating themodel’s capability in
structure-based inhibitor design and optimization. All molecules from the
optimizationmode displayed biological activity, withY5 achieving an IC50
of 12.7 nM, approaching drug-like levels. Additionally, both de novo
designed and optimized molecules demonstrated selectivity, with Y5
showing the highest selectivity ratio, exceeding 787-fold. These results
validate our model’s ability to effectively distinguish protein pocket differ-
ences and integrate simulation and existing inhibitor knowledge, enhancing
drug design efficiency.

Notably, theY6molecule shows optimal binding activity, with an IC50
of 6 nM for PARP1, but exhibits even higher inhibitory activity against
PARP2 (IC50 of 2.4 nM). We hypothesize that this lack of selectivity arises
from structural sampling diverging to a critical pharmacophoric point
beyond the established parameters. CMD-GEN pharmacophore sampling
analysis identified keydivergences betweenPARP1andPARP2, particularly
near GLU763 (GLN332), with Region 1 recognized as a promising site for
PARP2 selectivity (see Fig. S13 and supported by selective PARP2 inhibitor
UPF1069). Incorporating these insights,weperformed ‘AROM’ sampling in
this region during the generation process and get the R-series compounds
(see Tables S4 and S6 and Fig. S14). The synthesized molecules R1 and R2
exhibited enhanced inhibitory activity against PARP2 relative to PARP1,
with R1 showing an IC50 of 255 nM and a 13-fold selectivity for PARP2,

Fig. 8 | Illustration of the development of selective inhibitors based on the CMD-
GEN model. aMatching pharmacophore point clouds. b Pharmacophore identi-
fication for selective features. c Binding landscape of the case molecule on the entire

PARP1 (PDB ID: 7ONS) and PARP2 protein (PDB ID: 7R5972). d The chemical
structure of case molecule. e, f Binding details of example ligand in the region of the
selective pharmacophore.
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underscoring the model’s potential in elucidating target selectivity
mechanisms.

It must be acknowledged that the pharmacophore-based approach
entails a degree of uncontrollability, as the number of initially defined
pharmacophores is typically less than the total present in themolecule. Even
whenall set pharmacophores are satisfied, themodelmay still expanddue to
chemical structure sampling. In the future, we will consider more localized
molecular optimization strategies, such as scaffold hopping and R-group
substitutions, to more precisely control the generation and optimization of
compounds.

Discussion
Within the broader context of AI for Science, we believe that AI-contained
domain knowledge is equally crucial for drug development. Undoubtedly,
this approach will bring new solutions or perspectives to many challenging
problems. Our study introduces the CMD-GEN framework, which con-
nects 3D complexes with 2D drug-like molecule data through coarse-
grained pharmacophore points. This model enriches generative training

data with 2D drug-like molecules and 3D protein-ligand complexes infor-
mation. The CMD-GEN framework decomposes the generation process of
three-dimensional molecules within active pockets into three modules: the
pocket-conditioned three-dimensional pharmacophore sampling module,
the gating condition mechanism and pharmacophore-based molecular
generation module, and the molecular binding conformation generation
based on pharmacophore alignment. This approach effectively tackles the
instability issue of molecular conformations that may arise in current
generative models. Comprehensive analysis through benchmark experi-
ments and real-world drug design tasks shows that the model preserves
drug-like properties and produces meaningful binding conformations.
Optimization of molecule properties is achieved via fine-tuning with our
gating conditionmechanism, accommodatingmulti-parameter constraints.
The model surpasses other state-of-the-art methods in molecular genera-
tion efficiency and excels in complex drug design tasks, such as generating
high-selectivity or multi-target inhibitors, facilitated by point cloud
matching algorithms. Wet-lab experiments confirm the model’s effective-
ness, exemplified byY5, which shows over 787-fold selectivity for PARP1/2.

Table 2 | Biological activity and selectivity of PARP1-selective molecules generated by CMD-GEN

Entry Structure PARP1 Enzyme PARP2 Enzyme Selectivity PARP-
2/1

% control
@ 0.01 μMa

% control
@ 10 μMa

IC50 (nM)b % control
@ 0.01 μMa

% control
@ 1 μMa

IC50 (nM)b

Z2* 29.6 99.2 20.9 3.9 100.3 282.1 13.49

Z5 7.3 12.7 >10000 −0.8 1.1 >10000

Z6* 16.3 62.8 6789 6.5 2.0 >10000 >1.47

Y1* 28.1 97.7 42.6 3.6 2.8 >10000 >234.74

Y2 −0.1 47.4 9800 2.3 −1.8 >10000 >1.02

Y4 20.7 99.0 86.5 −1.6 99.0 741.4 8.57

Y5 46.0 98.8 12.7 1.4 16.4 >10000 >787.4

Y6 70.5 99.1 6.0 87.6 101.3 2.4 0.4

Olaparib 0.7 1.4
a% control, The inhibitory activity was evaluated at the compound.
bIC50, compound’sconcentration required to inhibit PARP1/2enzymeactivity by50%;To improvepractical synthetic accessibility, someselectedmoleculeswere structurally simplifiedandannotatedwith
* (Fig. S10).
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This validates CMD-GEN’s capability to produce highly specific drug-like
molecules and underscores its practical utility in drug development. CMD-
GEN broadens the scope of drug design models, offering significant pro-
spects for future research.

Although CMD-GEN performs optimally with static holo protein
structures, static structures may exhibit inaccuracies due to resolution
limitations, and many target proteins may only have apo conformations
available. Future work will incorporate more domain knowledge in the
CMD-GEN framework, e.g., by considering incorporating pocket dynam-
ics. We believe that this framework, which integrates scientific principles
with model design under conditions of limited pharmaceutical data,
embodies the concept of ‘Science into AI’ and will offer new insights and
opportunities for developing advanced AI-driven drug design models.

Methods
Dataset preparation
The training dataset for pocket-conditioned three-dimensional pharma-
cophore samplingmodule of CMD-GEN is derived fromCrossDock202055,
a substantial collection of small molecules interacting with receptors. The
initial assembly of this dataset comprises over 22 million protein-ligand
pairs, clustered based on a 40% sequence similarity as per the original paper.
Following the Pocket2mol40, conformationswith an rmsd exceeding 2 Å are
disregarded.While this reduces the dataset size, the screening ensures high-
quality conformations, preserving the model’s ability to learn key phar-
macophore features effectively.The training and testing datasets are sepa-
rated to ensure a fair comparison in terms of model performance, with
sequence similarity limited to less than 40%. Consequently, the remaining
training set encompasses approximately 100,000 protein-ligand pairs, while
the testing set comprises 100 protein pockets.

For the gating condition mechanism and pharmacophore-based
molecular generation Module of CMD-GEN, we retrieved over 2 million
unique SMILES (Simplified Molecular Input Line Entry System) format
molecules from the ChEMBL 31 database37. To ensure data quality, pre-
processing steps were implemented, including filtering molecules with a
molecular weight exceeding 800, removal of small fragments and metals,
and elimination of duplicate and invalid SMILES.

Pocket-conditioned three-dimensional pharmacophore
sampling module
The first segment of CMD-GEN is dedicated to the generation of coarse-
grained ligand three-dimensional pharmacophore points under the con-
straint of protein pockets. Following previous workHoogeboom et al. 56 and
Schneuing et al.18, we employ an expanded equivariant DenoisingDiffusion
Probabilistic Model57 which inspired by non-equilibrium thermodynamics
to sample latent three-dimensional coordinates of ligand pharmacophores
within the pocket. In our settings, we provide protein pocket nodes
zPdataðxP; hPÞ with 3D geometric coordinates xP 2 RNP × 3 categorical
features hP 2 RNP × dP , where NP is the number of protein pocket point
cloud, as fixed three-dimensional context in each step of the denoising
process and dP corresponds to the type feature dimensions. This supple-
ments the coarse-grained ligand pharmacophore point cloud zCdataðxC; hCÞ
with 3D geometric coordinates xC 2 RNC × 3 pharmacophore categorical
features hC 2 RNC × dC , refining the samples throughout the denoising
process. dC refers to the number of pharmacophoric categories. In this
study, eight pharmacophoric categories were set: Aromatic, Hydrophobic,
Localizable, Negativable, Acceptor, Donor, LumpedHydrophobe and
Others.Afixednoise process addnoise to thezCdata, yielding latent noisyzt at
each time step t.

qðzt jzCdataÞ ¼ NðztjαtzCdata; σ2t IÞ ð1Þ

When employing a variance-preserving noising process with
αt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2t

p
58, and considering the noising process to beMarkovian, we

can write the denoising transition from time step t to s < t in closed form as

qðzsjzCdata; ztÞ ¼ N zsj
αtjsσ

2
s

σ2t
zt þ

αsσ
2
tjs

σ2t
zCdata;

σ2tjsσ
2
s

σ2t
I

� �
ð2Þ

where αtjs ¼ αt=αs, and σtjs ¼ σt=σs. The true denoising process depends
on the sample ẑCdata. Instead, we reparameterize Eq. (1) andparameterize the
noise predictor as indicated in Eq. (4) to directly predict Gaussian noise for
obtaining approximation of the real samples, ẑCdata. We parameterize the
noise predictor with an E(n) Equivariant Graph Neural Networks
(EGNN)59.

zt ¼ αtz
C
data þ σtϵ; ϵ 2 Nð0; IÞ; ð3Þ

ϵ̂θ ¼ ϕθ zt; z
P
data; t

� �
; ð4Þ

ẑCdata ¼
1
αt
zt �

σt
αt
ϵ̂θ ð5Þ

The neural network is trained to maximise the likelihood of
observed data by optimizing a variational lower bound on the data,
which is equivalent to the simplified training objective60,61

as L1 ¼ 1
2 jjϵ� ϕθ zt ; z

P
data; t

� �jj2.
Space and feature-based Gaussian mixture density clustering
algorithm
To integrate with the coarse-grained pharmacophore sampling algorithm,
we developed a Gaussian Mixture Models (GMM)-based algorithm62 for
clustering pharmacophoric points in three-dimensional space. By com-
bining spatial coordinates and feature information, the algorithm identifies
themost probable pharmacophoric feature clusters within pharmacophoric
point clouds obtained through multiple samplings. The algorithm begins
with three-dimensional coordinate clustering using GMM. It then deter-
mines the most probable pharmacophoric feature within each cluster by
jointly considering the overall feature probability and its likelihood within a
specific cluster.

Max prob feature for clusteri ¼ argmaxf
X

Pðf jsample 2 CiÞ
� �

ð6Þ

Pðf Þ represents the probability of feature f in the overall pharmaco-
phoric point cloud. Pðf jsample 2 CiÞ signifies the probability that a given
data point has feature f given that it belongs to cluster Ci.This concise yet
effective approach allows us to capture the spatial distribution of pharma-
cophoric features while identifying the dominant features within distinct
clusters.

Gating condition mechanism and pharmacophore-based mole-
cular generation module (GCPG)
Expanding on the methodologies implemented in the prior modules, using
pharmacophores as a bridge, we have developed a sequence-based mole-
cular generationmodule termedGCPG.Thismodule integrates conditional
gating and pharmacophore constraints to generate molecules with “high
activity” and “high drug-likeness” for effective target binding. Following the
approach of PGMG22, we have implemented a Transformer encoder-
decoder architecture to handle the intricate many-to-many mappings
between pharmacophores andmolecules within the latent variable space. In
order to further constrain the pharmacokinetics properties of the generated
molecules, an additional gating mechanism has been incorporated into the
model. This mechanism aims to optimizemolecular properties or fine-tune
any user-specified property, thereby enhancing the practical utility and
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efficiency of the molecule generation process.The form is as follows:

Pðxjcphar; gðcfeatÞÞ ¼
Z

Pðxjcphar; gðcfeatÞÞPðzjcphar; gðcfeatÞÞdz ð7Þ

Where g �ð Þ denotes the gating condition mechanism, applied at the latent
state level to control how conditional embeddings and pharmacophore
features influence the latent space z. Specifically, we have adopted a network
frameworkbasedon theTransformerencoder-decoder63, where the encoder
network, denoted as Pϕðzjccom; xÞ to approximate PðzjccomÞ indirectly.
Instead, the decoder network Pϕðxjccom; zÞ approximate Pðxjccom; zÞ, where
ccom the combined condition vector between betweencphar and gðcfeatÞ. In
our configuration, we embed molecules in the SMILES format into dense
feature vectors and utilize the EGAT64, a graph attention network, with the
best-tested performance to embed pharmacophore features. We also tested
other graph neural network layers such as Graph Transformer (GT)65 and
GINE66.

The loss function in this module consists of three different terms, KL
Loss, LM Loss, and the mapping loss. The first two terms are the negative
evidence lower bound of the log likelihood log PθðxjccomÞ.

L2 ¼ �KLðPφðzjccom; xÞjjPðzjccomÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
KLLoss

þ logPθðxjz; ccomÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
LM Loss

þMapping Loss

ð8Þ
Where KL Loss denotes the Kullback-Leibler divergence and we assume
PðzjccomÞ the prior distribution of z follows a standard Gaussian Nð0; IÞ.
The LM Loss represents the reconstruction loss for language modeling,
considering that x takes the form of a SMILES string. The mapping loss
evaluates the model’s performance in predicting the mapping between the
heavy atoms and pharmacophore elements, following the original
configuration in PGMG. Importantly, it incorporates the use of the shortest
pathdistance on themolecular graph representedby SMILES, as a substitute
for the Euclidean distance assumed between two pharmacophore features22.

Molecular binding conformation generation based on pharma-
cophore alignment
CMD-GEN aims to generate three-dimensional molecular binding con-
formations based on structure, utilizing a two-part approach involving
pharmacophore sampling in the initial phase and property-constrained
molecular generation in the second phase. Consequently, a straightforward
overlay strategy is employed to attain the predicted binding conformations.
In practical scenarios, the inherent stochastic errors in the model may
prevent perfect alignment with pharmacophores. To address this, we
introduce a tolerance parameter; for instance, a value of 1 indicates the
model can tolerate one unmatched pharmacophore point in the current
pharmacophoremodel. This flexible approach allows our generationmodel
to potentially yield multiple computationally feasible ligand binding con-
formations, a capability not achievable by other structure-based generative
models.

Point cloud registration algorithm
Our hierarchically designed CMD-GEN is versatile, catering to specialized
applications such as the generation of highly selective inhibitors for closely
related targets and the generation of dual-target inhibitors. In both cases, the
model can align the pharmacophores sampled for two targets by overlaying
their point clouds67. In this study, we utilized the Kabsch 3D best-fit
algorithm68 to maximize the alignment of pharmacophore point clouds
from two pockets. For the generation of selectively inhibiting compounds,
we consider the space sampled by the target pocket after overlaying, which
was not sampled by the homologous target. This spatial pharmacophore
point information facilitates the design of inhibitors with selective proper-
ties. In the development of dual-target inhibitors, the approach of pre-
aligning point clouds followed by cluster sampling aids in facilitating amore
comprehensive analysis of shared pharmacophore features for users.

Evaluation
In the assessment of the pocket-conditioned three-dimensional pharma-
cophore sampling module, we conducted evaluations on a test set com-
prising 100 complexes. For each protein, the sampling involved a random
number of pharmacophores. Evaluation metrics encompassed comparing
sampled pharmacophore types’ probability distribution to the original
ligands, analyzing maximum distance distributions between sampled and
original ligand pharmacophores, and assessing centroid distance. These
metrics collectively provide a comprehensive analysis of the model’s per-
formance on the test set.

The gating condition mechanism and pharmacophore-based mole-
cular generation module’s molecular outputs undergo assessment using
four key metrics: validity, uniqueness, novelty, and the ratio of available
molecules. Validity measures the percentage of chemically valid molecules,
while uniqueness evaluates non-repetition among valid molecules. Novelty
gauges the percentage of chemically valid molecules not found in the
training set, and the ratio of available molecules indicates the proportion of
novel molecules in all generated results. Additionally, a match score22 is
employed to assess the alignment between generated molecules and a spe-
cified pharmacophore.

AutoDock Vina69 docking scores proxy the binding activity of gener-
atedmolecules to target.We conduct semiflexible docking using AutoDock
Vina with default parameters, considering ligand flexibility against a rigid
receptor.Additionally,we employwidely-usedmetrics70 to assess the quality
of our generated molecules: QED (Quantitative Estimate of Druglikeness),
MW (molecular weight), SAS (synthetic accessibility score), logP (the
Wildman–Crippen partition coefficient), RotaNumBonds (number of
rotatable bonds), andTPSA (topological polar surface area) are employed as
standard metrics to gauge the drug-likeness, molecular weight, synthetic
accessibility, lipophilicity, flexibility, and polar surface area of the generated
molecules, respectively. In the case of Structure-Based Drug Design for
Specific Targets using CMD-GEN, the PDB structures used are ATM
(7NI4), PARP1 (7ONS), and USP1 (8A9K). The CMD-GEN (R2) model
employs five parameters, includingMW, LogP,QED, SAS, and the number
of rotatable bonds, as gating conditions. For fine-tuning the scoring model
CMD-GEN (R1), molecular generation is conducted by controlling para-
meter ranges: MW (325–425), LogP (1–4), QED (0.4–0.8), SAS (1–5), and
the number of rotatable bonds (4–6). Subsequently, docking scores are
obtained for the top 50,000 generatedmolecules. These scoring values serve
as gating conditions for fine-tuning the model, wherein only the scoring
parameter is considered during the fine-tuning training process.

Concerning the generation of three-dimensional conformations,
given the model’s training on a dataset rich in complex docking infor-
mation, we compute the Root Mean Square Deviation (RMSD) between
the generated ligand conformations and the highest-scoring con-
formation from the docking results. This serves as an indicator of the
meaningfulness of the conformational generation process in capturing
physical relevance. for the context of designing selective inhibitors,
where considerations extend to molecular distinctions within two dis-
tinct pockets, we introduce an in-situ scoring approach based on
AutoDock Vina to directly assess the affinity of generated conforma-
tions within homologous proteins.

Statistics and reproducibility
In CMD-GEN, the pocket-conditioned 3D pharmacophore sampling
module runs 500 diffusion steps with gradient clipping, using the Adam1
optimizer (learning rate 1e–4, batch size 16). The EGNN for noise predic-
tion has a 6 Å cutoff, 256 dimensions, and 5 stacked layers. Training spans
1000 epochs, with “Full-atom” and “Cα-atom” representations showing
optimal performance at epochs 281 and 472, respectively. The sampling
process is repeated 5 times to ensure it is not a random event. The
pharmacophore-based molecular generation module uses noise injection
via an infilling scheme and a 384 hidden dimension with 8 transformer
blocks. TheAdamoptimizer (learning rate 3e–4, weight decay 1e–6) is used,
with cyclic cosine annealing every 4 epochs. Training lasts 32 epochs on a
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setupwith 10 Intel XeonGold 6240RCPUs and 1NVIDIAA100GPU. The
sampling process for this module also samples 100 molecules per iteration
and is repeated 5 times. Data and code are provided for reproducibility
purposes.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The sourcedataset used to train andevaluate theoverallmodel is provided at
Zenodo71. Source Data for Figs. 2–4 and Figs. 6 and 7 are provided in
Supplementary Data 1. For the drug discovery case studies, the PDB and
ligand files of 7ONS, 8A9K, 7NI4, and 7R59 are downloaded from RCSB
Protein Data Bank.

Code availability
The source code of CMD-GEN is available at https://github.com/
zyrlia1018/CMD-GEN. We also deposit the data and codes of CMD-
GEN in Zenodo with DOI71.
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