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Improved cohesin HiChlIP protocol and
bioinformatic analysis for robust detection
of chromatin loops and stripes
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Chromosome Conformation Capture (3 C) methods, including Hi-C (a high-throughput variation of
3 C), detect pairwise interactions between DNA regions, enabling the reconstruction of chromatin
architecture in the nucleus. HiChIP is a modification of the Hi-C experiment that includes a chromatin
immunoprecipitation (ChlIP) step, allowing genome-wide identification of chromatin contacts
mediated by a protein of interest. In mammalian cells, cohesin protein complex is one of the major
players in the establishment of chromatin loops. We present an improved cohesin HiChIP
experimental protocol. Using comprehensive bioinformatic analysis, we show that a dual chromatin
fixation method compared to the standard formaldehyde-only method, results in a substantially better
signal-to-noise ratio, increased ChlP efficiency and improved detection of chromatin loops and
architectural stripes. Additionally, we propose an automated pipeline called nf-HiChlIP (https://github.
com/SFGLab/hichip-nf-pipeline) for processing HiChlP samples starting from raw sequencing reads
data and ending with a set of significant chromatin interactions (loops), which allows efficient and
timely analysis of multiple samples in parallel, without requiring additional ChIP-seq experiments.
Finally, using advanced approaches for biophysical modelling and stripe calling we generate accurate
loop extrusion polymer models for a region of interest and provide a detailed picture of architectural

stripes, respectively.

Genome folding is a complex process that efficiently packs roughly two-
metre-long human DNA into a cell nucleus that is only a few micrometres in
diameter. Importantly, it does not serve only structural purposes, but must
be tightly coordinated with fundamental processes occurring in the nucleus,
such as DNA replication, transcription, or DNA repair. Despite significant
progress in 3D genomics in recent years, our understanding of the rela-
tionship between genome structure and function is still largely elusive and
requires further investigation. There is a need for improved methods to
detect chromatin contacts at different resolutions and for bioinformatic
pipelines that comprehensively and efficiently analyse complex experi-
mental data.

Studies of DNA structure in the nucleus using 3C-based technologies
and microscopic imaging methods have shown that in mammals chromatin
is folded at different levels of organisation in the nucleus. At the lower scale,
interphase chromosomes occupy discrete regions within the nucleus called

chromosome territories'”. They are partitioned into alternating multi-
megabase scale regions called compartments of two types, A and B, corre-
sponding to euchromatin and heterochromatin, respectively’. Within the
compartments, the 10 nm chromatin fibre folds into loops connecting
elements that may be distant in the linear genome, such as promoters and
enhancers. A subset of chromatin loops form larger structures called
Topologically Associated Domains (TADs) or domains, which are sub-
megabase regions that have stronger contacts within themselves than with
other regions*™.

In mammalian cells, the major factors involved in loop formation are
the evolutionarily conserved proteins cohesin and CCTC-binding factor
(CTCEF). Cohesin is a ring-shaped protein complex composed of four
subunits: two structural maintenance of chromosomes (SMC) proteins,
SMC1 and SMC3, and two non-SMC proteins: RAD21 and stromal antigen
(SA) that in vertebrates comes in two versions STAG1 (SA1) or STAG2
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(SA2, reviewed in’). Cohesin association with the DNA is dynamic: it
encircles the DNA upon loading® and is able to slide along the DNA™". The
sites of cohesin loading differ from the sites of its final genomic localisation'".
The transcription process was shown to translocate cohesin along the DNA
over long distances'*'”. CTCF is a sequence-specific DNA binding protein
that contains a highly conserved 11 zinc finger domain. CTCF, together with
cohesin, is enriched at TAD boundaries*” and at the majority of loop
anchors™. In mammalian cells, cohesin colocalises with CTCF in most of its
binding sites""*.

It was proposed'*™"” that loops are formed by a loop extrusion process,
in which cohesin uses its ATP-dependent motor function to move along the
DNA, causing active loop enlargement until it encounters a physical barrier,
such as the CTCF protein, or until it dissociates from chromatin'**’. By
stopping the extrusion process, CTCF acts as a chromatin loop anchor. It
restricts the contacts occurring within the TADs and prevents them from
crossing their borders. During the extrusion process promoters can be
brought into contact with long clusters of enhancers'.

3 C techniques, including Hi-C, detect interactions between different
DNA regions, enabling the reconstruction of the chromatin architecture in
the nucleus (reviewed in’'). A standard Hi-C procedure involves chromatin
structure fixation, restriction enzyme digestion, end repair, and ligation of
fragments localised close to each other in the nuclear space. The DNA is
then fragmented to generate linear chimeric fragments, which is followed by
genomic library preparation, high-throughput sequencing, and bioinfor-
matic analysis. Modifications of Hi-C experiments, such as HiChIP”,
PLAC-seq”, similar to the ChIA-PET** method introduced in 2009, use a
chromatin immunoprecipitation (ChIP) step, for genome-wide detection of
interactions mediated by a specific protein. In the HiChIP approach, ChIP
with the antibody of interest is performed after the Hi-C ligation step
(Fig. 1A). An important advantage of the HiChIP approach over the stan-
dard Hi-C is that a higher resolution can be achieved with a lower
sequencing depth.

HiChIP experiments require a extensive computational analysis to
determine chromatin structure features such as: (a) HiChIP peaks detected
from the signal of aligned sequencing reads, (b) chromatin interaction
matrices showing all contacts detected in a given sample, (c) significant
DNA interactions (loops) corresponding to the most frequent chromatin
interactions present in the cell population, and finally (d) architectural
stripes appearing on the contact matrices as horizontal or vertical lines'’.
Similar to loops and TADS, stripes are the population average representa-
tion of loop extrusion as detected by the 3C-based methods, where one loop
(stripe) anchor is held in place, and the other loop anchor moves through the
stripe domain until the loop is fully extruded™*.

Dedicated methods have been developed to analyse specific 3 C
experiments, such as Juicer” for Hi-C, MAPS™ for HiChIP and PLAC-seq
data, and ChIA-PIPE” for ChIA-PET. In this study, we tested all three
pipelines to analyse and compare our improved HiChIP protocol with
publicly available HiChIP datasets. We also used two different stripe-calling
algorithms: Stripenn™, a state-of-the art tool operating on contact matrices,
and the novel tool called gStripe, which is specifically designed to analyse
sparse data using graph methods (see Methods for a description).

We observed that the quality of the cohesin HiChIP data is significantly
lower compared to the CTCF HiChIP. This could be due to the more
dynamic, mobile nature of the cohesin complex compared to CTCF, as
discussed above. In this study, we present a modified version of the cohesin
HiChIP protocol that significantly improves signal-to-noise ratio and loop
detection efficiency. Importantly, we propose an automated pipeline “nf-
HiChIP”, based on the Nextflow system™, for efficient and timely analysis of
HiChIP samples starting from raw sequencing reads and ending with a set of
significant chromatin interactions (loops). This pipeline can be easily
deployed on a local workstation, a high performance computing system, or
cloud-based computing environments. Finally, using high-quality cohesin
HiChIP data obtained with improved protocol and a novel biophysical
modelling approach for loop extrusion™, we simulated dynamic 3D models
of loop extrusion for a region of interest.

Results

Standard cohesin HiChIP protocol yields results with low signal-
to-noise ratio

This study primarily investigates human lymphoblastoid cell lines (LCLs)
from the 1000 Genome Project”’. We observed that publicly available
cohesin (SMC1) HiChIP for the GM12878 LCL* exhibits a much lower
signal-to-noise ratio than the CTCF HiChIP performed for GM12878" and
HG00731 (this study) LCLs (Fig. 1B, lanes 2, 6, 7; Supplementary Fig. 1A). A
similar low signal-to-noise ratio was also observed in cohesin (SMCI1)
HiChIP experiments performed on the REC-1 and HCC1599 cell lines
(ref. 35, Fig. 1B, lanes 3 and 4). Visual comparison between cohesin HiChIP
and cohesin (SA1) ChIP-seq* signal in GM12878 further suggests limited
enrichment of sequencing reads around cohesin ChIP-seq peaks in HiChIP
experiments (Fig. 1B, lanes 2 and 5). We used SA1 ChIP-seq dataset” for
comparative analysis because of two reasons: (1) SAl ChIP-seq data
recovered over 90% of the SMC3 ChIP-seq peaks™ used for the cohesin
HiChIP analysis by Mumbach et al.”*, while also identifying nearly 30000
additional binding sites (Supplementary Fig. 1B), and (2) the corresponding
CTCEF ChIP-seq was available for the same experimental setup enhancing
the reliability of our comparative analyses by reducing potential batch
effects. The summary of the HiChIP and ChIP-seq experiments used in this
study is provided in Supplementary Table 1.

Dual cross-linking protocol improves cohesin ChiP efficiency
and enables successful detection of cohesin HiChIP peaks

To improve the quality of the cohesin HiChIP experiment, we tested a
modified HiChIP protocol (Supplementary Fig. 1C) that includes an
additional cross-linking agent to formaldehyde (FA) - ethylene glycol
bis(succinimidyl succinate) (EGS), which previously improved signal-to-
noise ratio in ChIP experiments”*’. The dual cross-linking protocol was also
used for the ChIA-PET experiments™', and it was recently shown to
improve the quality of the Hi-C experiment*. For clarity, we have referred to
the modified HiChIP protocol as FA-EGS HiChIP or dual cross-linking
HiChIP (dcHiChIP) to distinguish it from the standard protocol. We per-
formed cohesin FA-EGS HiChIP experiments for the HG00731 LCL in two
biological replicates. By visual inspection in the genome browser and using
the Pearson correlation coefficient, we confirmed a high reproducibility
between two replicates for the following experiments: (1) cohesin FA-EGS
HiChIP for HG00731, (2) CTCF HiChIP for HG00731, (3) cohesin® and (4)
CTCF* HiChIP for GM12878 (Supplementary Fig. 1A and D). Therefore,
we pulled both replicates for further analysis. Cohesin HiChIP experiments
in REC-1 and HCC1599 cell lines™ were performed in one replicate and, as
such, were used in the following analysis.

Genome browser inspection revealed a higher signal-to-noise ratio in
cohesin FA-EGS HiChIP compared to cohesin FA HiChIP experiments,
achieving comparable signal-to-noise levels to CTCF HiChIP data (Fig. 1B,
Supplementary Fig. 1A). To further assess the quality of the dcHiChlIP data,
we also compared it with cohesin and CTCF ChIP-seq experiments for
GM12878 LCL, as ChIP-seq data were not available for HG00731 LCL.
Analysis using the Pearson correlation coefficient (Fig. 1C) showed the
strongest correlations between cohesin and CTCF HiChIP or cohesin and
CTCF ChIP-seq data from the same cell line (GM12878 and HG00731).
Interestingly, HG00731 cohesin FA-EGS HiChIP correlated better with
GM12878 cohesin ChIP-seq (r = 0.70) than with GM 12878 cohesin HiChIP
(r=0.46), despite differences in LCL sources. Moderate correlation was also
found between HG00731 cohesin dcHiChIP and GM 12878 cohesin HiChIP
(r=0.46), while lower correlations were observed with REC-1 and
HCC1599 cohesin HiChIP (0.24 and 0.14, respectively). These findings
suggest that dual cross-linking improves cohesin HiChIP signal quality.
Limited correlation between cohesin dcHiChIP and standard HiChlIP is
likely due to lower signal-to-noise in the latter.

To better understand the difference between dcHiChIP and standard
cohesin HiChIP we performed peak calling using the MACS3 algorithm. As
no input sample is generated in the HiChIP experiment, the MACS3
function for calculating the local background of the HiChIP sample (Ajocar)
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was used for peak enrichment analysis. The high overlap between peaks,
called in separate replicates further confirmed the reproducibility of the
HiChIP experiments (Supplementary Fig. 2). Over 600000 and nearly
100000 peaks were detected for cohesin HiChIP (GM12878) and FA-EGS
HiChIP (HGO00731), respectively. For the cohesin HiChIP experiment
performed in REC-1 and HCC1599 a much lower number of peaks was

found (34,379 and 21,281, respectively). For comparison, MACS3 algorithm
detected for cohesin and CTCF ChIP-seqs in GM12878 LCL ~60,000 and
67,000 peaks, respectively (Supplementary Table 2). We attribute the dif-
ference in peak counts between the HiChIP and ChIP-seq experiments to
the biases of the 3 C step, which is not present in the regular ChIP-seq
experiment. We were surprised by the high number of peaks detected for
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Fig. 1 | FA-EGS crosslinking improves the quality of the cohesin HiChIP
experiment. A Schematic of the HiChIP experiment and its data representation.
B IGV browser coverage tracks of the HiChiP and ChIP-seq experiments analysed in
this study. The following example genomic regions are shown: (1) 300 kb window -
chr19:45,417,401-45,717,713; (2) 150 kb window - chr19:43,508,033-43,658,922; (3)
50 kb window - chr17:49,677,416-49,727,883. C Heatmap showing Pearson corre-
lation coefficient between the samples processed in this study. D IGV browser
coverage tracks and called peaks for the indicated cohesin HiChIP (SMC1) and
ChIP-seq (SA1) experiments. The following example genomic regions are shown:
(1) 300 kb window - chr5:150,332,698-150,635,698; (2) 150 kb window -
chr7:55,939,000-56,089,000; (3) 50 kb window - chr17:40,160,000-40,210,000.

E Venn diagrams showing common peaks between SMC1 HiChIP HG00731 and

SA1 ChIP-seq GM12878. F Venn diagrams showing common peaks between SMC1
HiChIP GM12878 and SA1 ChIP-seq GM12878. G Heatmap showing the dis-
tribution of SMC1 FA-EGS HiChIP HG00731 reads and SMC1 HiChIP GM12878
reads within a 20 kb window centred on the cohesin (SA1) ChIP-seq GM128787
peaks. H Distribution of -log(10) qvalue of peaks called by MACS3 in the indicated
cohesin HiChIP and ChIP-seq samples. The horizontal red line inside each boxplot
indicates the median. The bottom edge of the box marks the first quartile, and the top
edge marks the third quartile and the whiskers extend to the minimum and max-
imum values, excluding outliers, which are not shown. I Fingerprint analysis plot
(45) showing the comparison of ChIP enrichment in the indicated cohesin HiChIP
and ChIP-seq samples.

cohesin HiChIP in GM12878% despite a rather low signal-to-noise ratio.
Indeed, the genome browser view shows that some of the peaks are located
in the regions that are not very distinct from the noise (Fig. 1D, lane 2). This
was not the case for the FA-EGS HiChIP protocol, where peaks are distinct
from the background noise (Fig. 1, lane 1). We hypothesise that the com-
bination of the low signal-to-noise ratio of the data and the lack of input
control may be a reason why the MACS algorithm detected so many peaks
in this particular HiChIP experiment.

Importantly, 74% of the cohesin ChIP-seq peaks overlapped with the
cohesin FA-EGS HiChIP peaks (Fig. 1E). We consider this a significant
overlap taking into account that the experiment was performed in different
LCLs (GM12878 vs. HG00731) and using different experimental protocols
and antibodies targeting different cohesin subunits (SA1 vs. SMC1). For
comparison, the overlap between cohesin HiChIP and ChIP-seq peaks for
the GM12878 cell line was slightly lower (70%), although data were derived
from the same cell line and that the number of HiChIP peaks was much
higher (Fig. 1F). From this analysis we conclude that SMC1 dcHiChIP
accurately detects cohesin binding sites. Moreover, this analysis indicates
that when HiChIP data have a high signal-to-noise ratio, as is the case for the
cohesin FA-EGS HiChlIP, the lack of input control is not an obstacle to
reliable HiChIP peak detection by the MACS peak calling algorithm.

To verify the influence of dual cross-linking on ChIP step efficiency in
the HiChIP protocol, we analysed the enrichment of cohesin (SMC1)
GM12878 HiChIP and HG00731 FA-EGS HiChIP reads around cohesin
(SA1) GM12878 ChIP-seq peaks™. Strikingly, the enrichment of cohesin
HG00731 FA-EGS HiChIP reads around GM12878 cohesin ChIP-seq
peaks was substantially higher compared to GM12878 cohesin HiChIP
(Fig. 1G). Furthermore, the significance levels of the set of peaks measured
using the q-value parameter (MACS3) showed the highest score for FA-EGS
HiChIP compared to other HiChIP samples (Fig. 1H). We also performed
Fingerprint analysis">*'. According to this tool the better the quality of the
ChIP sample is, the smaller the area under the curve (AUC) and the higher
the elbow point it presents. As a reference we used the cohesin ChIP-seq
experiment which, as expected, showed the highest quality. The FA-EGS
HiChIP showed the best quality among the cohesin HiChIP examined
(Fig. 1I). These results indicate that the efficiency of the ChIP step in the
cohesin FA HiChIP protocol is limited and that the dual cross-linking step
improves it. Our results confirm that HiChIP provides reliable information
about cohesin binding to DNA, as previously reported””. We conclude that
FA-EGS cross-linking improves the signal-to-noise ratio, increases the
efficiency of ChIP step in cohesin HiChIP experiment and enables reliable
detection of HiChIP peaks.

Dual cross-linking HiChlIP protocol improves detection of
cohesin-mediated loops

In order to detect loops (significant interactions) connecting two distant
genomic fragments (anchors), we used three independent algorithms: (1)
nf-HiChIP and (2) ChIA-PIPE”, tools specifically designed to process
experiments targeting protein-mediated interactions (such as HiChIP,
PLAC-seq or ChIA-PET) as well as, (3) Juicer”’, an algorithm originally
developed for Hi-C samples. The first algorithm, nf-HiChIP, is based on
MAPS*—an algorithm used for loop calling - which takes as input mapped,

paired and filtered reads, as well as the binding site information of the
protein of interest (usually ChIP-seq experiment). The nf-HiChIP extends
the algorithm by allowing the input to be raw sequences, calculating all the
necessary preprocessing steps automatically. Identified interactions have at
least one anchor that is enriched in a given protein factor. Juicer, on the other
hand, generates interaction matrices (contact maps) which are then pro-
cessed by a loop-calling algorithm (HiCCUPS). It identifies interactions by
detecting groups of pixels representing the most frequent interactions,
visible as “dots” on the contact maps. Therefore, loop detection by Juicer is
independent of ChIP-seq peaks. ChIA-PIPE takes paired-end reads and
provides clusters of the paired-end tags (PETs). It then merges overlapping
PETs to determine the PET counts of potential chromatin contacts (or
“looping”) frequency between two anchor loci involved in chromatin
interaction to estimate the strength of the loop.

We developed a multipurpose, Nextflow-based’ pipeline called nf-
HiChIP  (https://github.com/SFGLab/nf-hichip) designed for NGS
sequencing data analysis which performs (i) peak calling for ChIP-Seq and
HiChIP data (ii) loop calling (i.e., identification of significant contacts) from
HiChIP data and (iv) 2D contact matrix (i.e. hic file) (Supplementary Fig. 3).
The nf-HiChIP pipeline is compatible with multiple samples and replicates,
streamlining the analysis of large datasets through automation. Imple-
mented in Python3* and using Nextflow, the pipeline excels at managing
complex data workflows. Nextflow facilitates task scheduling and depen-
dency resolution while providing robust error handling mechanisms—
essential for large-scale analyses. The pipeline is structured into well-defined
tasks, allowing for efficient error correction and resumption of the process
from the last successfully completed task, eliminating the need to restart the
analysis from scratch. The use of the pipeline is straightforward—installing
can be done using 3 commands as shown in Nextflow documentation,
and running HiChIP pipeline requires a sample design file. The rest of the
workflow is fully automated, so the only input required is a.csv file
describing the experiment and fastq files.

In our pipeline, in the loop calling step, we decided to use HiChIP
peaks instead of ChIP-seq peaks. We reasoned that this solution would
be particularly advantageous when the (1) ChIP-seq data is not available
for the cell line and/or antibody of interest, (2) the available ChIP-seq data
is of poor quality, or (3) the particular cell line has a slow proliferation
rate and it is difficult to grow sufficient cell number for ChIP-seq and
HiChIP experiments in parallel. To test whether this approach reliably
detects chromatin interactions, we analysed the CTCF HiChIP (GM12878)
sample, which has a high signal-to-noise ratio and for which CTCF ChIP-
seq peaks are publicly available. We compared loops detected by the nf-
HiChIP algorithm with CTCF ChIP-seq or CTCF HiChIP peaks and found
that the overlap reached 98% (Supplementary Table 3). Additionally, we
tested the similarity between nf-HiChIP loops (peak-dependent algorithm)
and HiCCUPS loops, which are independent of peaks. For the HiICHIP
samples analysed in this study, we have found that approximately 75% to
90% of nf-HiChIP loops were common with HICCUPS loops (Supple-
mentary Table 4, Supplementary Fig. 4) further validating the reliability of
loops detected by nf-HiChIP using HiChIP peaks instead of ChIP-seq peaks.
This confirms that when a HiChIP sample has a high signal-to-noise
ratio, loop-calling analysis with nf-HiChIP can be performed using HiChIP
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peaks from the same sample instead of using ChIP-seq peaks from addi-
tional experiments.

Visual inspection in the IGV and Juicebox genome browsers shows
that all three algorithms detected more chromatin interactions in the FA-
EGS HiChIP sample, compared to the other cohesin HiChIP samples
analysed (Fig. 2A, B, Supplementary Figs. 5A, B, 6A, Band 7A, B). Indeed, in
cohesin dcHiChIP (HG00731), the number of detected loops was at least
twice as high as in the other cohesin HiChIP experiments analysed and was
80487, 43148 and 179516 for nf-HiChIP, HiCCUPS and ChIA-PIPE,
respectively (Supplementary Table 5). The enrichment score of detected
loops was calculated using aggregate peak analysis (APA,°) with nf-HiChIP,
Juicer, and ChIA-PIPE loops based on interaction maps generated by Juicer
software. In cohesin FA-EGS HiChIP, the aggregate loop strength was
significantly better as compared to the remaining cohesin HiChIP experi-
ments. It was comparable (in some cases even better) to the APA scores
obtained for CTCF HiChIP experiments (Fig. 2C, Supplementary
Figs. 5C and 6C). Therefore, in the cohesin HiChIP experiment, dual cross-
linking improves loop detection in terms of loop number and strength in
comparison to the FA cross-linking. To assess the robustness of our results
across different loop-calling algorithms, we repeated our analyses using
hichipper*, FitHiChIP¥, and cLoops2*. We achieved a comparable num-
ber of identified interactions (Supplementary Table 5) and APA scores for
the cohesin FA-EGS HiChIP experiment (Supplementary Fig. 8), indicating
the reliability of our method across different loop-calling algorithms.

Visual examination of the loops in the genome browser identified from
nf-HiChIP and HICCUPS with the fixed anchor size of 5 kb suggested that,
despite the differences in the number of contacts detected (Supplementary
Table 5), there is a high degree of concordance in contact localisation
between cohesin FA-EGS HiChIP and other cohesin HiChIP experiments
analysed (Fig. 2A, B, Supplementary Fig. 5A, B). Whereas in ChIA-PIPE the
identified loops are with flexible anchor size and number of cohesin FA-EGS
HiChIP loops was quite high as compared to other cohesin HiChIP samples
(Supplementary Table 5) and ChIA-PIPE loops were more densely packed
(Supplementary Fig. 6A, B). Indeed, using the nf-HiChIP pipeline, the loop
overlap between cohesin FA-EGS HiChIP (HG00731) and cohesin HiChIP
obtained for GM12878, REC-1 and HCC1599 was 95%, 80% and 85%
respectively (Fig. 2D). We observed similar concordance in HiCCUPS
interactions (Supplementary Fig. 5D). Within the interactions identified
from ChIA-PIPE we identified similar behaviour but with lower overlap
percentage with the short read sequencing samples HCC1599 and REC-1
(Supplementary Fig. 6D). This confirms the reliability of the improved
HiChIP protocol and indicates that it allows for the generation of more
complex maps of cohesin-mediated chromatin contacts than the standard
one. The comparison between cohesin FA-EGS HiChIP and FA HiChIP
shows that the general pattern of the sequencing signal on the interaction
matrices is similar between experiments, but standard protocol produces a
more diffused signal (Fig. 2B and Supplementary Figs. 5B, 6B and 7A, B).

Of note, not all peaks called from the raw sequencing data will be
involved in chromatin interactions. Analysis of the proportion of HiChIP
peaks that localise inside the loop anchors (3D peaks) detected by nf-
HiChIP revealed that this percentage was the highest for cohesin FA-EGS
HiChIP (51%), followed by cohesin HiChIP in HCC1599 and CTCF
HiChIP in GM12878 (39% and 28% respectively). The lowest proportion of
the 3D peaks within HiChIP anchors was observed for both CTCF and
cohesin HiChIP peaks in GM12878 LCL and cohesin HiChIP in REC-1
which are 15%, 11% and 17% respectively (Supplementary Table 2).
Interestingly, 3D peaks present higher cohesin or CTCF enrichment than
peaks that are not involved in chromatin interactions (Supplementary
Fig. 9A). As expected, the analysis of CTCF motif orientation within loop
anchors revealed that CTCF motifs are positioned predominantly in con-
vergent orientation for all the HiChIP experiments analysed (Supplemen-
tary Fig. 9B, Supplementary Table 6). Additionally, Chromatin loops were
identified and categorized as Enhancer-Promoter (EP) or Promoter-
Promoter (PP) across different cell lines using three loop-calling methods
(Supplementary Table 7). Approximately 40-50% of the loops identified by

nf-HiChIP and HiCCUPS were classified as EP or PP, whereas the pro-
portion was slightly lower for ChIA-PIPE (around 20-35%), likely due to
the higher overall number of loops identified by this method. These findings
provide deeper insights into the biological relevance of these loops.

Dual cross-linking HiChIP protocol reveals architectural stripes

in more detail

To assess the quality of the FA-EGS HiChIP data with respect to the
detection of structures above the loop level, we perform the calling of
architectural stripes. Stripe calling was performed on the cohesin HiChIP
datasets using the Stripenn tool”, which is based on image processing, and a
novel method recently developed in our laboratory called gStripe, based on
graph analysis (see Materials and Methods for details). Stripenn uses as
input the heatmaps generated by Juicer, while gStripe operates on loops
obtained in previous steps from either nf-HiChIP, HICCUPS or ChIA-
PIPE tools.

First, we compared how many stripes could be extracted from each
dataset. The number of stripes called by Stripenn in the cohesin FA-EGS
HiChIP sample (HG00731) is 8% lower than in the cohesin HiChIP
(GM12878) sample (3603 vs 3908), but more than two and three times
higher in comparison to REC-1 and HCC1599 cohesin HiChIP samples,
respectively (Fig. 3A, Supplementary Table 8). On the other hand, gStripe
consistently detected many more stripes in cohesin datasets derived from
FA-EGS HiChIP, regardless of the loop-calling tool used. In particular,
gStripe detected two to four times more stripes for cohesin FA-EGS HiChIP
compared to standard cohesin HiChIP (GM12878) using nf-HiChIP,
HiCCUPS and ChIA-PIPE input loops.

To get a more complete picture, we visually compared the stripe
regions obtained from both protocols, and constructed pileup plots of the
stripe domains in line with the methodology used in Stripenn™. The plots
show the interaction matrix signal averaged over the stripe domains in each
dataset (Supplementary Fig. 10). Crucially, we observed that the plots for
cohesin FA-EGS HiChIP (HG00731) have sharper and more distinct stripe
features than those obtained from cohesin FA HiChIP (GM12878),
regardless of the stripe calling method. Moving further to visual inspection
of individual stripes, we noticed, that often what appears as a smooth stripe
signal in the standard HiChIP, often contains chains of distinct dots (loops)
in FA-EGS HiChIP, (see e.g. the uppermost stripe in Fig. 3B or Supple-
mentary Fig. 11A). Indeed, the Stripenn stripes in cohesin FA-EGS HiChIP
(HG00731) contain 1.5, 1.8 and 2.6 times (for HICCUPS, nf-HiChIP and
ChIA-PIPE loops respectively) more loops per unit of area on the heatmap,
than in cohesin FA HiChIP (GM12878, see Supplementary Table 9). As the
image processing based Stripenn method expects a smooth signal, some of
these stripes may be disturbed. However, they can be recovered by gStripe.
This is consistent with the pileup plots, where the Stripenn stripes appear as
wide, blurry flares, while gStripe stripes are thin and sharp. Likewise, it is in
agreement with our preliminary observation that the FA-EGS HiChIP data
appear to be more sensitive to changes in the parameters of Stripenn: within
the same set of parameters of stripe calling, the ratio of the highest to lowest
number of stripes called was 15.3 for HG00731 and only 2.5 for GM12878
(see Supplementary Table 9 for the full summary).

Next, we investigated how the stripes are situated in relation to each
other, by calculating the proportion of stripes located within the domain of
another, larger stripe (see Fig. 3B for an example). The stripe domain is
defined as the range of coordinates from the stripe anchor to the end of the
stripe. We found that a substantial proportion of the gStripe stripes are
located within the domain of a larger stripe (between 57% when using nf-
HiChIP loops, to up to 86% for ChIA-PIPE loops in cohesin FA-EGS
HiChIP in HG00731 and between 38% and 70% for cohesin FA HiChIP in
GM12878 respectively). We can therefore conclude that they often colo-
calise. On the other hand, the percentage of colocalized Stripenn stripes is
lower: 21% for cohesin FA-EGS HiChIP (HG00731) and 31% for cohesin
standard HiChIP (GM12878). In summary, the additional stripes detected
by gStripe in cohesin dcHiChIP (HG00731) are smaller and more often
colocalized within larger ones, especially when using a dense loop set such as
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Fig. 2 | FA-EGS crosslinking HiChIP protocol improves cohesin-mediated loop
detection. A IGV browser coverage tracks and nf-HiChIP loops of the indicated
HiChIP samples and read coverage tracks for SA1 and CTCF GM12878 ChIP-seq
experiments. B Juicebox interaction maps at 5 kb resolution of the example region
for the indicated cohesin HiChIP samples. Loops (nf-HiChIP) are shown as green
(SMC1 HiChIP HG00731) or blue (SMC1 HiChIP GM12878) rectangles. C APA
analysis performed using loops identified by nf-HiChIP for the indicated cohesin

and CTCF HiChIP samples. The APA score P2LL (peak to left lower corner) is the
ratio of the central bin to the average of the lower left corner and indicates the
strength of the loop. D Overlap between loops (with 15 kb tolerance) called by nf-
HiChIP in the indicated datasets. A single cell in the matrix represents the percentage
of loops in the row sample that overlap with one or more loops from the column
sample. Note that the matrix is not symmetric, as one-to-many overlaps are possible.
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Fig. 3 | FA-EGS crosslinking HiChIP protocol improves stripe detection and
enables the building of accurate loop extrusion models. A Number of stripes called
by Stripenn and gStripe for the cohesin HiChIP datasets analysed in this study.
gStripe results were calculated using nf-HiChIP, HICCUPS or ChIA-PIPE loops as
an input. B Juicebox interaction maps at 5 kb resolution and the stripes of the
exemplary region (chré: 15,550,000-16,850,000) for the cohesin HiChIP samples.
Lower (below diagonal) and upper (above diagonal) corners present SMC1 FA-EGS
HiChIP (HG00731) and SMC1 HiChIP (GM12878), respectively. Stripes were called
by the algorithms indicated above the maps. Each stripe set is shown on top of data

Genomic distance (mb)

Simulation Units

used to generate it: the interaction heatmap and, in the case of gStripe, the nf-
HiChIP, HiCCUPS or ChIA-PIPE loop set (blue dots). C IGV browser view of the
example region for SMC1 HG00731 FA-EGS HiChIP sample used for loop extrusion
modelling. The first three tracks show the output of the nf-HiChIP pipeline: read
coverage, peaks called by MACS3 and loops called by nf-HiChIP. The fourth track
shows the stripes identified by gStripes (with the nf-HiChIP loop set). D Final
structure obtained after running LoopSage simulation for the region and sample
indicated in panel (C). E Experimental (above diagonal) versus simulated(below
diagonal) heatmaps (at the 5 kb resolution) for the region and data shown in panel C.

the ChIA-PIPE, in comparison to standard cohesin HiChIP (Fig. 3B and
Supplementary Fig. 11A).

Moreover, to assess the reliability of the stripe detection, we check how
many stripes from one dataset can be found in other sets. We look both at
the overlap of individual stripe anchors and whole stripe domains. In the
cohesin FA-EGS HiChIP (HG00731) Stripenn found approximately 49% of
the stripes and 74% of the stripe domains detected in GM 12878, 52% stripes

and 78% domains from REC-1 HiChIP, and 43% stripes and 76% domains
from HCC1599. For the gStripe algorithm, the degree of stripe overlap
depends on the input loops set, but in general the overlap of stripes with the
FA-EGS HiChIP (HG00731) was higher for cohesin HiChIP in GM12878
(e.g. 75% for nf-HiChIP loops) than for REC-1 and HCC1599 loops (e.g.
59% and 51% respectively, for nf-HiChIP). In the case of stripe domains, the
overlap is very high: from 82% of HCC1599 domains recovered in HG00731
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(using the HICCUPS loop set) up to 98% of GM 12878 domains (also for the
HiCCUPS loops). The high overlap confirms the validity of the detected
stripes.

Importantly, gStripe is able to recover a substantial number of
GM12878 stripes (up to 88% when using HiCCUPS loop set) and stripe
domains (98%, also for the HICCUPS loop set) Since gStripe detected more
stripes in FA-EGS HiChIP (HG00731), we can say that in this data, the set of
visible stripes and stripe domains is extended, as compared to GM12878. A
complete set of overlap statistics between stripe anchors and stripe domains
are shown in Supplementary Fig. 11B and Supplementary Fig. 11C,
respectively. Taken together, our results suggest that the FA-EGS HiChIP
experiment provides similar quality of detection for stronger, more uniform
stripes using an established image-driven method, Stripenn, while having an
advantage in revealing finer, colocalized, stripes and uneven stripe structure
when using a graph-based algorithm, gStripe.

Finally, we evaluate the suitability of the three loop callers (nf-HiChIP,
HiCCUPS and ChIA-PIPE) for use with gStripe on FA-EGS HiChIP data.
While ChIA-PIPE identifies the largest number of stripes, they frequently
occupy overlapping domains (86% in the FA-EGS HiChIP sample vs. 57%
for nf-HiChIP, see above), which may not always be desirable. In contrast,
nf-HiChIP stripes exhibit the highest consistency across datasets, with 51%-
75% stripes from GM12878 also present in HG00731, and they show the
strongest pile-up plot signal among the gStripe results (Supplementary
Fig. 10). Thus, while specific research goals may influence the choice of loop
calling method, we generally recommend nf-HiChIP for generating input
for gStripe, unless densely packed stripes in large numbers are needed, in
which case ChIA-PIPE is a viable alternative.

Dual cross-linking HiChIP protocol allows us to build accurate
loop extrusion models

Finally, we aimed to generate biophysical models of the loop extrusion
process to gain deeper insight into the role of cohesin dynamics in chro-
matin organization. By integrating biophysical modelling with experimental
data, we aim to bridge the gap between observed chromatin interactions and
the mechanisms that drive them. Usually, to simulate loop extrusion, sto-
chastic models are used'>*>***', where the cohesin proteins on the chro-
matin fibre perform one-dimensional random walk motion, and they may
unload or load in different regions of chromatin stochastically. For the
purpose of this work, we used our recently developed method, LoopSage™,
which combines stochastic simulation and molecular dynamics with
OpenMM. In this model, cohesin rings play the role of loop extruders, and
they follow a random walk diffusive motion, whereas CTCF acts as
orientation-dependent barriers for its motion'’*”. It also assumes that the
position of CTCF proteins is more stable in comparison to cohesin
complex”*,

Importantly, inspired by the report by Gibcus et al.”, and publications
of Samejima et al.”, Hildebrand et al. *°, Dekker and Mirny (2024)*” we have
refined our original LoopSage method by introducing two different classes
of loop extrusion protein complexes with different speeds. Specifically, we
added a second population of faster-moving extruding factors (cohesin
complexes) in addition to the slower-moving ones initially modelled. The
fast-moving cohesin complexes are fewer in number but can form long-
range loops more rapidly, capturing distant interactions observed in the
experimental data. For a more detailed description of the biophysical
modelling please refer to material and methods. This adjustment improved
the alignment between our simulations and the experimental heatmaps, as
demonstrated in the Supplementary Fig. 12A, B.

We performed a simulation for the SMC1 FA-EGS HiCHIP sample
(HG00731) for a region of chromosome 1 (Fig. 3C). Loop set from nf-
HiChIP and the CTCF orientation at the loops anchors was taken as an
input. Cohesin rings are then distributed according to their binding pre-
ferences. As the temperature decreases, we end up with a dynamical tra-
jectory of 3D structures, where we assume that the final structure is the most
representative one (Fig. 3D). We observe that the final polymer is condensed
into two dominant clusters of loops, which correspond to the two squares in

the experimental and reconstructed simulation heatmaps (Fig. 3E). Com-
parison between the simulated heatmap, which is averaged over the
ensembles of 3D structures and the experimental SMC1 dcHiChIP heatmap
shows that loop and stripe patterns are well reconstructed (loop-strength
correlation between experimental and simulated map is 98.4% and the
overall heatmap correlation was 81%, Fig. 3E and Supplementary Fig. 12B),
indicating that our biophysical assumptions were valid. Some discrepancies
still arise due to the model limitations and its stochastic nature.

In conclusion, by integrating dcHiChIP data and refining LoopSage
parameters, we verified assumptions such as cohesin diffusion, its stochastic
binding and unbinding from the DNA. We also advanced the ability of
LoopSage to simulate realistic 3D chromatin architecture. These results
emphasise the importance of combining experimental data with compu-
tational modelling to improve our biophysical understanding of chromatin
organisation.

Discussion

In this study, using a comprehensive bioinformatics approach (summarised
in the Fig. 4), we show that the cohesin HiChIP performed with the
sequential (FA-EGS) cross-linking protocol improves the signal-to-noise
ratio and ChIP efficiency in comparison to the standard one* and enhances
the detection of chromatin loops and stripes in human lymphoblastoid cells.
We have developed nf-HiChIP pipeline that combines the analytical
approach designed for ChIP-seq data processing (mapping, filtering, peak
calling, coverage tracks calculations) with HiChIP-specific analysis (MAPS
pipeline™) to facilitate the user the comprehensive and timely analysis of
many HiChIP datasets in parallel, without the need to perform additional
ChIP-seq experiments. Furthermore we show that the data derived from the
improved cohesin HiChIP protocol can be combined with the recently
developed energy-based modelling approach LoopSage™ to generate accu-
rate biophysical models of the loop extrusion process.

Dual cross-linking was previously reported to improve the signal-to-
noise ratio and increase the sensitivity of the ChIP assay in the case of
proteins with hyperdynamic exchange with DNA or indirectly DNA-bound
proteins™***. Cohesin also exhibits a dynamic association with DNA. We
report that dual cross-linking improves the quality of cohesin HiChIP,
which subsequently results in higher sensitivity of the experiment compared
to standard cohesin HiChIP. Importantly, our results suggest that the
increased efficiency of the 3 C step of the protocol may be another factor
contributing to the improved detection of 3D chromatin features such as
loops and stripes. The use of dual cross-linking (EGS or DGS and FA) has
been shown to reduce the experimental noise by decreasing the number of
random Hi-C ligation events, leading to the improved loop detection**”.
Similarly, we observed more looping interactions in FA-EGS HiChIP,
compared to cohesin FA HiChIP and these interactions were stronger.
Importantly, the use of the FA-EGS HiChIP method allows the detection of
2-3 times more loops in human cells with 4-6.5 less sequencing depth
compared to dual cross-linking Hi-C*, indicating that the former method
may be a more suitable and economical choice for studies focusing on the
3D chromatin structure at the resolution of loops. However, it is important
to note that the influence of the cross-linking procedure on the quality of
cohesin HiChIP quality might be cell type specific. For example, in the case
of the undifferentiated cell line, human embryonic stem cells®, a high signal-
to-noise was obtained for the cohesin HiChIP experiment despite the use of
only one cross-linking agent (FA) for fixation.

Our aim was to thoroughly investigate the results that can be obtained
from HiChIP sample processing. Commonly used HiChIP data analysis
tools like Juicer, HiC-Pro, and Fit-Hi-C, which were not specifically
designed for HiChIP, may use normalisation and loop calling methods
appropriate for Hi-C datasets. These methods may overlook the specific
interactions in HiChIP. Unlike Hi-C, where a sparse interaction matrix is
undesirable and is corrected using techniques such as Knight-Ruiz (KR)
normalisation*”*" to account for experimental bias, HiChIP interactions
typically yield a sparser matrix. Using HiChIP-specific tools such as
MAPS*, we identified interactions that are undetectable when using KR-
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Fig. 4 | Systematic representation of the bioin-
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normalised interaction maps for loop calling. We also experimented with
replacing KR-normalised maps with Vanilla Coverage (VC) normalisation®
in the Juicer pipeline. Integrating VC normalisation, which unlike KR, does
not assume a uniform distribution of interaction frequencies and thus
preserves unique HiChIP-specific interactions, improved the consistency of
our results. However, image-based loop calling tools such as HICCUPS”
may exclude closely positioned loops or those that start or end within the
same matrix pixel, potentially indicating loop extrusion processes, that are
important in the context of cohesin HiChIP data. These loops however,
could be captured by direct processing of interaction pairs in HiChIP-
focused approaches such as MAPS.

nf-HiChIP pipeline includes ChIP-seg-specific steps, including (1) a
mapping approach that differs from the Hi-C mapping approach, (2)
coverage track generation, and (3) peak calling that can be applied to both
HiChIP and corresponding ChIP-seq samples, allowing dual analysis of
HiChIP samples - both as ChIP-seq and HiChIP datasets. This dual
approach provides more comprehensive outputs: peaks, coverage, and
loops, from a single sample, increasing the data richness compared to tra-
ditional methods that require separate, manual analyses. This adaptability
enhances the personalisation of analyses based on the experimental data
available. Our results suggest that if the HiChIP experiment has a high
signal-to-noise ratio, additional ChIP-seq is not required for subsequent
data analysis. Such an approach may be particularly advantageous for
projects investigating differences in 3D chromatin structure between many
individuals or under various experimental treatment conditions in parallel
(e.g. use of different sources of cellular stress). In such an experimental setup,
each additional high-throughput experiment such as ChIP-seq, which must
be performed in at least two replicates for each condition/sample, sig-
nificantly increases the financial and labour costs of the project. However, it
is important to note that for HiChIP data with poorer signal-to-noise ratio,
this strategy may not be optimal and an additional ChIP-seq experiment
may be required. Importantly, our pipeline also supports the integration of
ChIP-seq data in such cases.

Importantly, nf-HiChIP is scalable and automated. Unlike conven-
tional tools nf-HiChIP can process multiple samples simultaneously,
making efficient use of available computational resources. The pipeline
automates the processing of individual and pooled biological replicates,

and offers extensive customization options. Users can add personalised
steps, select different peak calling tools, or adjust filtering processes, to
meet the specific needs of their research. The integration of Nextflow”
and Docker*” technologies facilitates computational tasks on clusters
and could be extended to analysis on cloud services such as AWS. In the
future, we plan to extend the capabilities of nf-HiChIP by including
more sophisticated post-processing features, such as correlation analysis
between different samples and replicates, and automated generation
of statistical plots. These enhancements will further streamline the
workflow and provide deeper insights into the dynamics of chromatin
interactions.

The visibility of architectural stripes depends on the characteristics and
quality of the heatmaps obtained. In FA-EGS cohesin HiChIP the heatmap
view is sharper and has less noise in comparison to cohesin FA HiChIP.
Consequently, in FA-EGS HiChIP we can see finer arrangements of stripes
and chains of distinct interactions in locations where standard HiChIP
shows a smooth signal. These patterns can be interpreted as obstacles in the
extrusion process (intermediate states of the looping process) or as a finer
arrangement of loops. Similar stripes appearance is also seen in deeply
sequenced Micro-C data™®, but not in standard Hi-C data, where stripes
are more uniform'>'®. Therefore, we believe that cohesin dcHiChIP provides
more detailed dynamics of the loop extrusion process and a more complete
picture of the interaction structure than the standard one. This allows the
gStripe algorithm, which benefits from stronger and more numerous loops,
to detect more stripes than the classical approach exemplified by the Stri-
penn tool, for which targets a smooth signal®. Overall, the greater detail of
the FA-EGS heatmap data improves the distinguishability of finer stripes in
the cohesin HiChIP experiment. The detection of stripes is important, as
beside its relevance for loop extrusion and super-enhancer activity, they can
be associated with certain pathological phenomena, such as incorrect
expression of genes™ and increased topoisomerase activity'®, which can
potentially promote cancer.

We believe that our findings will be a valuable resource for researchers
who encounter difficulties in their ChIP-based and high-throughput 3C-
based experiments and who are looking for tools to improve and complete
their bioinformatic analysis of chromatin spatial organisation data.
Importantly, the use of LoopSage 3D modelling to visualise a region of

Communications Biology | (2025)8:437


www.nature.com/commsbio

https://doi.org/10.1038/s42003-025-07847-w

Article

interest ensures biological realism by representing combinations of con-
formations that can occur in individual cells. We also demonstrate the dual
interaction between polymer simulations and experimental dcHiChIP data:
the loop extrusion model provides insight into the biophysical mechanisms
responsible for the formation of experimentally observed structures, while
the dcHiChIP data aid model validation of the computational model. Our
approach can support studies that focus on the relationship between
chromatin structure and the processes that occur in the nucleus such as
DNA replication, transcription or DNA repair in which cohesin is an
important player.

Methods

Cell line and culture conditions

Human HG00731 lymphoblastoid cell line, purchased from Coriell Institute
for Medical Research, was grown in RPMI 1640 (Biowest) with 15% foetal
bovine albumin (Biowest) and 2mM L-glutamine (Gibco). Cells were cul-
tured at 37 °C in a humid environment containing 5% CO,.

Cell fixation

Cross-linking was performed using cells grown to a density of around 0.8
millions per 1 mL of culture medium at a volume of 1 ml of cross-linking
solution per 1 million of cells. FA cross-linking. Pelleted cells were resus-
pended in a pre-warmed (37°C) RPMI1640 (Biowest) with 1% for-
maldehyde (Sigma, 252549) and incubated for 10 min with agitation. Next
glycine was added to a final 0.2 M concentration to quench the cross-linking
reaction and the samples were incubated for 5 min with agitation at room
temperature (RT). Fixed cells were then washed twice in DPBS, snap frozen
in liquid nitrogen and cell pellets were stored at -80 °C. FA-EGS cross-
linking. Pelleted cells were resuspended in a pre-warmed (37 °C) RPMI
1640 (Biowest) with 1% formaldehyde and incubated for 15 min with agi-
tation (RT). Next glycine was added to a final 0.2 M concentration to quench
the cross-linking reaction and incubated for 5 min with agitation (RT). After
washing once in DPBS, cells were resuspended in pre-warmed (37 °C) DPBS
with 2 mM EGS [Thermo Scientific] agitated for 45 min at RT, quenched
with 0.2 M glycine and incubated with agitation for 5 min FA-EGS-fixed
cells were then washed twice in DPBS, snap frozen in liquid nitrogen and cell
pellets were stored at -80 °C.

HiChIP

HiChIP assay was performed according to previously described protocol
(Mumbach et al.”?) with modifications. The combination of chromatin
immunoprecipitation step with HiChIP library preparation was carried
out based on ChiPmentation protocol” as recently reported®. The 150
million of crosslinked cells were resuspended in ice-cold 1.5 ml of Hi-C
lysis buffer (10 mM Tris-HCI pH 8.0, 10 mM NaCl, 0.2% NP-40) sup-
plemented with 1x protease inhibitors (PI; Roche, 04693116001), incu-
bated on ice for 20 min and centrifuged at 1200 rpm, 5 min, 4 °C. After
discarding the supernatant the pellet was resuspended in 1.5 ml Hi-C
lysis buffer with 1 x PI, centrifuged at 1200 rpm, 5 min, 4 °C. Then
supernatant was removed and the cell pellet was resuspended in 150ul of
pre-warmed (65 °C) 0.5% SDS. After 5 min incubation at 65 °C, 435 ul of
water and 75 pl of 10% Triton X-100 (Promega HP142) was added and
15min (37°C) incubation was carried out. Next, 75ul of NEBuffer™
DpnlI (NEB, B0543S) and 600U of DpnlI (R0543M) were added to the
sample and incubated for 1h at 37°C. To inactivate the restriction
enzyme, the reaction was incubated at 65 °C for 5 min and then cooled
down to RT. To perform end repair and biotinylation the following
master mix was added: 67.5 ul of water, 4.5 ul of 10 mM dTTP (NEB,
N0443S), 4.5 pl of 10 mM dATP (NEB, N0440S), 4.5 pl of 10 mM dGTP
(NEB, N0442S), 45 ul of 1 mM biotin-16-dCTP (Jena Bioscience NU-
809-BIO16-S), 24 pl of 5U/ul DNA polymerase I Large (Klenow; NEB,
MO0210L) and the samples were incubated for 1 h at 37 °C with rotation,
Ligation was performed by addition to the sample of Ligation master mix
(2007 pl of water, 300 pl of 10% Triton X-100, 18 pul of 10 mg/ml BSA
(NEB, B9000S), 360 pl 10x T4 DNA ligase buffer (NEB, B0202), 15 pl of

400 U/pl T4 DNA ligase (NEB, M0202L), followed by 4 h incubation at
RT with gentle rocking). Samples were then centrifuged for 5min at
1200 rpm, at 4 °C. The nuclei pellet was resuspended in 1 ml of Nuclear
Lysis buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1%SDS, 1 x PI) and
incubated on ice for 15 min. Sonication was carried out on Covaris $220
device in 1 ml miliTube (Covaris, 520135) using the following settings:
peak power =140, duty factor=5, cycle burst=200, time=120s,
temp. = 4-8 °C. After DNA shearing, the chromatin was transferred to a
new tube and 100 pl of 10% Triton-X was added. To remove cell debris,
samples were centrifuged for 20 min, at 4 °C, at 16000xg. The super-
natant was transferred to a new tube and diluted 5x in ChIP dilution
buffer (1% Triton-X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl
pH 8.0). Next, the chromatin was pre-cleared by incubating with
Dynabeads Protein A (Invitrogen, 10002D) coated with 10 ug of IgG
(Abcam, AB171870) for 30min at 4°C, rotating. The chromatin
immunoprecipitation was carried out by overnight incubation of pre-
cleared chromatin with Dynabeads Protein A coated with 10 ug of SMC1
(Bethyl Laboratories, A300-055A) or 10 ug CTCF (Abclonal, A1133)
antibody at 4 °C with rotation. Supernatant was then removed and the
beads were washed: twice with 1 ml of Low Salt Wash Buffer (0.1% SDS,
1% Triton-X-100, 2mM EDTA, 20mM Tris-HCl pH 8.0, 150 mM
NaCl), once with 1 ml of High Salt Wash Buffer (0.1% SDS, 1% Triton-X-
100, 2mM EDTA, 20 mM Tris-HCl p.H 8.0, 500 mM NaCl) and twice
with 1 ml of 10 mM Tris pH 8.0. After careful removal of any residual
10mM Tris pH 8.0, the tagmentation reaction was carried out by
resuspending the beads in tagmentation mix (15 ul 2xTD buffer, 14 ul
water), adding of 1 pl of Tn5 enzyme (TTE Mix V50, Vazyme, TD501)
and incubation of the reaction for 10 min at 37 °C, with 530 rpm shaking,
Next tagmentation reaction was removed and the beads were washed
subsequently with 1 ml of Low Salt Wash Buffer, 1 ml of High Salt Wash
Buffer, 1 ml of LiCl Wash Buffer (10 mM Tris-HCI pH 8.0, 250 mM LiCl,
1% NP-40, 1% Sodium Deoxycholate, 1 mmM EDTA) and 1ml of
10 mM Tris pH 8.0. To elute the DNA. The beads were then resuspended
in 400 ul of freshly prepared DNA Elution Buffer (50 mM NaHCO3, 1%
SDS), incubated for 15 min at 65 °C. The supernatant was then trans-
ferred to a new tube and reverse crosslinking and RNA digestion was
performed by adding 44 pl of mix consisting of: 20 ul 5 M NaCl, 8 ul 0.5
EDTA, 16 pl Tris 1 M pH 8.0 as well as 8 pl of 10 mg/ml RNAse (Thermo
Scientific, EN0531) and incubation for 6 h at 65 °C. Proteins were then
digested by 1h incubation at 55 °C with 4 pl of 20 mg/ml Proteinase K
(Ambion, AM2546). DNA was then recovered by phenol/chloroform
extraction and ethanol precipitation. The DNA pellet was resuspended in
21yl of 10mM Tris pH 8.0, the concentration was measured with
Quantus Quantifluor ONE dsDNA system (Promega, E4870) and the
sample volume was increased up to 100 pl with 10 mM Tris pH 8.0. Next,
10 pl of MyOne Streptavidin C1 Beads (Invitrogen, 65001) were washed
twice with 400 ul of Tween Wash Buffer (5mM Tris-HCL pH 7.5,
0.5mM EDTA, 1 M NaCl, 0.05% Tween-20), resuspended in 100 pl of 2x
Biotin Binding Buffer (10 mM Tris-Hcl pH 7.5, IMM EDTA, 2 M NaCl),
mixed with the DNA sample and incubated for 20 min with rotation at
RT. The beads were then washed (1) twice with 600 ul of Tween Wash
Buffer, (2) once with 100 ul 10 mM Tris pH 8.0, (3) once with 50 ul
10 mM Tris pH 8.0 and resuspended in 23 pl of 10 mM Tris pH 8.0. To
prepare sequencing libraries on-bead PCR amplification was performed
with a total of 12 PCR cycles using Trueprep indexes for Illumina
(Vazyme, TD202). The libraries were then sequenced on Illumina
NovaSeq 6000 platform at the Genomics Core Facility, CeNT, University
of Warsaw.

nf-HiChlIP pipeline

Both HiChIP and ChIP-seq datasets were processed using the nf-HiChIP
pipeline. The initial stage of the pipeline mirrors a ChIP-seq analysis fra-
mework. Sequencing reads were first aligned to the hg38 reference genome
employing the BWA-MEM algorithm (version v0.7.17)*". Subsequently,
SAMtools™ was utilised to filter the aligned reads, retaining only those with a
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mapping quality (MapQ) score >30. This step was followed by deduplica-
tion of reads to eliminate potential biases arising from PCR amplification.
BAM files were converted to normalised read coverage tracks (bigwig for-
mat) using the program bamCoverage in the deepTools package" with the
binSize parameter set to default and using the reads per kilobase per million
mapped reads (RPKM) normalisation option. Coverage tracks were gen-
erated using the deepTools package, facilitating the visualisation and ana-
lysis of read depth across genomic regions.

Peak calling was performed with the MACS3 software (version
v3.0.1)* adopting a stringent q-value cutoff of 0.01 with the ‘no model’
option and using default value of 200 for ‘extsize’ parameter for the HiChIP
and ChIP-seq samples to identify regions of significant enrichment. The
outcomes of peak calling, applied to both ChIP-seq and HiChIP data, served
as input for the MAPS algorithmzx, which delineates the final list of chro-
matin interactions with the anchor width of 5 kilobase (kb) from each
sample. 2D contact matrix file (-hic) were calculated using Juicer tools” pre
module from MAPS results. This analysis was conducted individually for
each replicate before pooling data to create a comprehensive dataset for each
sample, whereupon the entire analysis was reiterated to ensure robustness
and accuracy.

Final outputs generated by the pipeline encompass a range of files for
each replicate and sample, including: (i) coverage tracks, (ii) identified
peaks, (iii) comprehensive MAPS output detailing the called pairwise
interactions and, (iv) interaction maps compatible with the Juicebox viewer.
This structured approach ensures a systematic and reproducible analysis
pipeline, facilitating the in-depth exploration of chromatin dynamics and
interactions. All the intermediate files (reads mapped to the reference
genome, indexed BAM files, coverage tracks) can be easily accessed too.

Juicer

All HiChIP samples were processed using the Juicer pipeline (Version
1.22.01)”, a standard for Hi-C and HiChIP data analysis. Notably, the
commonly used Knight-Ruiz normalisation (KRnorm) for Hi-C data was
found inadequate for HiChIP datasets, often obscuring characteristic
interactions and stripes. Consequently, VCnorm normalisation was
employed with Juicer’s HICCUPS for interaction calling, circumventing the
aforementioned issues. HICCUPS uses an image processing based approach
to identify loops from chromatin interaction maps, calling loops at three
different resolutions: 5 kb, 10 kb, and 25 kb. This multi-resolution strategy
affects the size and definition of loop anchors. Additionally, the Juicer
pipeline, which includes HICCUPS, merges nearby loops based on pre-
defined thresholds, resulting in broader loop anchors that may encompass
multiple interaction sites.

Aggregate peak analysis (APA) was conducted to assess the quality of
loop calling by nf-HiChIP, HICCUPS and ChIA-PIPE across samples. This
analysis, performed via the Juicer apa function, was visualised using Mat-
plotlib, providing a detailed comparison of loop calling efficacy. For each
plot, we used the P2LL as APA score to determine enrichment of the signal
to the lower left corners.

HiChIP quality analysis and data visualisation

Post-analysis involved comprehensive sample comparisons through cus-
tom scripts in Jupyter notebook”, utilising Numpy’* and Pandas’ for basic
analysis, with Matplotlib and matplotlib_venn for visualisations. Sample
correlation, peak enrichment, and fingerprint analysis employed
deepTools”, while genomic tracks and interaction maps were visualised
using IGV™ and Juicebox”, respectively.

The Pearson correlation was computed for the coverage files using the
multiBigwigSummary module of deeptools™, employing default parameters
to determine the average scores across various genomic regions from the
provided set of bigwig files. The resulting data was then utilised by the
plotCorrelation module to generate correlation coefficients, which were
subsequently visualised using Matplotlib as a clustered heatmap. In this
representation, the colours signify the correlation coefficients, while the
clusters are formed using complete linkage.

Loop and stripe overlap analysis

Two loops are considered overlapping if both of their anchors overlap by at
least 1 base pair (bp). To allow for a 15 kb tolerance in overlap detection, the
start position of one loop’s anchor is extended 15 kb upstream, and its end
position is extended 15 kb downstream. An overlap of at least 1 bp between
the adjusted anchor of one loop and the anchor of the other loop is then
checked to confirm the overlap. Similarly, two stripes are considered
overlapping if (1) they have the same orientation (horizontal or vertical) and
(2) their anchor regions (i.e. the 1D regions containing the coordinate where
the visible stripe intersects with the diagonal) are no more than 10 kb apart.
Finally, two striping domains (1D regions containing the whole extent of the
stripe) are considered overlapping, if they overlap by at least 1bp after
expanding kb in both directions. These calculations are performed using
custom in-house scripts and are performed for stripes, and stripe domains
between all HiChIP samples.

When calculating overlaps between two sets of 1D regions (let us call
them A and B), such as loop anchors, stripe anchors, domains etc., one-to-
many overlaps are possible (i.e. a situation, where multiple regions from set
A intersect one large region in set B, or vice versa). Therefore, to properly
quantify the overlaps, we report both the number of elements from set A, for
which at least one overlapping region was found in set B, and the reverse—
number of elements in set B that were matched to at least one region in set A.
We report this in the form of a matrix, which in the general case would not
be symmetrical.

ChlA-PIPE

The ChIA-PIPE” pipeline was used to process and map the CTCF HiChIP
and Cohesin HiChIP data to the human hg38 reference genome. First, the
reads were looked for the ligated restriction enzyme site (called a pseudo
linker in HiChIP), and only the sequences that had the pseudo linker were
kept for linker trimming. The flanking sequences were then mapped to the
human reference genome (hg38) by Burrows Wheeler alignment (BWA),
and only uniquely aligned sequences (MAPQ = 30) were kept for dedupli-
cation. Next, reads with a linker sequence detected with both ends having
genomic tags are used for the detection of interaction loops. These reads are
categorised as self-ligation PET (both ends of the same DNA fragment) or
inter-ligation PET (both ends from two different DNA fragments in the
same chromatin complex). Inter-ligation PETs with a genomic span of
>8 kb are illustrated to represent the long-range interactions of interest,
further subdivided into intra- and inter-chromosomal PET clusters. Lastly,
different PET clusters in the same protein factor’s binding peak region were
joined together with 500 bp extensions to make merged anchors. Only loops
with both anchors supported by peaks identified by nf-HiChIP pipeline
were retained for each sample. Only clustered and merged intra-
chromosomal PETs with a PET count >3 and a genomic span <1 MB
were retained as reflecting the chromatin interactions of interest.

hichipper

HiChIP paired-end reads were mapped to the hg38 reference genome using
the HiC-Pro pipeline (version 3.1.0). Default settings were used to align
paired reads to identify valid interactions and generate contact maps
matrices. Then, HiChIP loops were called using hichipper (version 0.7.7)
using valid HiChIP read pairs with the parameter to use pre-identified peaks
by nf-HiChIP pipeline.

FitHiChIP

Statistically significant contacts (5 kb bin size, max size 2 Mb, min size 10 kb,
FDR 0.05) were identified using Hi-C Pro’s allValidPairs file as input for
FitHiChIP v11.0. Peaks identified by nf-hichip were used as a reference set of
peaks in the FitHiChIP pipeline and default values for the remaining
options.

cLoops2
Raw paired-end reads mapped to hg38 were processed using the tracPre2.py
script in the cLoops2 package. Loops were then identified with the cLoops2
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callLoops module, using parameters -eps 200,500,1000, -minPts 10 and -cut
1000, requiring a minimum of 3 PETs to support each confident loop.

CTCF motifs

To obtain CTCF motifs, we have taken a two-way approach. The first one is
plainly using the motifs module from Biopython. We use it to obtain, e.g.
anchors that have motifs (with a certain score - usually 7.0) in their
sequence. However, to produce more detailed models, we have also intro-
duced probabilistic motifs. In that case, we are taking all the signals of motif
presence available, and we are calculating the probability of the motif being
upstream or downstream-oriented using the following formula:

right—oriented motifs motif score

P

right = Z“” motifs motif score

In the equation, we are taking all scores (that are in log2 form) of all
motifs present in the sequence, and we convert them back from log2 form to
regular one. Then, we sum the scores for the right/left orientation, and divide
it by all scores from both right and left-oriented motifs. That way, we can say,
e.g. that the probabilistic score of the motif being left is 30%, and right is 70%.
That approach is useful for modelling and simulations.

Annotation of loops to enhancer and promoter

To perform annotation, we downloaded cell-type-specific enhancer and
promoter regions from ChromHMM chromatin state calls® for the
GM12878 cell line from ENCODE"”. The loop anchors were then separated
into right and left anchors. Each anchor file was subsequently intersected
with the enhancer and promoter files using Bedtools. Following the inter-
sections, custom scripts were used to categorize the loops as Enhancer-
Promoter (EP) or Promoter-Promoter (PP) interactions.

Calling architectural stripes

Stripe calling was performed using two tools: the Stripenn™, which operates
on heatmap data, and gStripe, which was developed for calling stripes from
sets of discrete interactions, such as loops obtained from other tools. The
Stripenn is based on image analysis and computer vision methods. It pro-
cesses the contact matrix obtained from a 3 C experiment using a series of
computer vision techniques, most importantly the canny edge detection, to
select regions with high “stripeness” scores, i.e. those that are visually con-
sistent with a horizontal or vertical stripe. It also calculates the p-value of a
stripe, based on the distribution of the values taken from the same heatmap,
and this provides the final significant stripe set. To ensure our analyses
reflect the best possible extraction of useful information from each dataset,
we tuned two of Stripenn’s parameters (the Canny edge detection parameter
and the kernel size of the mean filter) to obtain the maximum number of
stripes in each dataset. This was done by a simple grid search centred around
the values suggested by the authors.

As an alternative to image processing methods, we also include the
results from our own tool, gStripe, designed specifically for sparse data. In
contrast to contact matrix-based methods, gStripe operates on sets of loops
obtained from other tools, in our case nf-HiChIP, HICCUPS and ChIA-
PIPE. The algorithm can be divided into three parts: preprocessing of input
data, identification of candidate stripes, and selection of final stripes. During
preprocessing all input loop anchor coordinates are binned at 5 kb resolu-
tion, to avoid any bias introduced by comparison between binned and non-
binned input data. Next, a graph representation of the chromatin interac-
tions is created. Continuous clusters of overlapping anchors are merged to
represent a single vertex in the graph. The edges are then added to the graph,
where there are interactions between anchors assigned to two different
vertices. Multiple edges connecting the same vertex are collapsed into a
single edge, with weight equal to the number of interactions (hence, the
resulting graph is not a multigraph). The physical position of each vertex is
calculated as the centre of the anchor cluster forming the vertex.

To identify the candidate stripes, each vertex with at least one down-
stream neighbour in the graph is selected as a potential anchor of a

horizontal stripe, ie. a stripe which appears as a horizontal flare above
the diagonal on a heatmap, or whose anchor (the location where the
stripe reaches the diagonal) precedes its other end in terms of genomic
coordinates. Likewise, each vertex with at least one upstream neighbour is
selected as a potential vertical stripe (appearing as vertical pattern above
diagonal on a heatmap, with the anchor being downstream of the stripes
longest extent). We will now refer to these anchor-forming vertices simply
as “anchors”, and to the other vertices in a candidate stripe as “leaves”. A
number of values is computed for each leaf v;, in order to measure the quality
ofthestripe. Let v; = 1, 2, ..., k denote the kleaves of a stripe, and v, denote
the anchor.

1. The length of the stripe at the leaf v;: d; = |v; — v,]. Prior to this step,
the vertices are arranged so that d; is ascending with i, i.e. v, is the
anchor, v, is the vertex closest in terms of genomic coordinates to the
anchor, etc. In a horizontal stripe, the coordinates of v; have increasing
order, and in a vertical stripe they have a decreasing order.

2. Relative gap g; = —log d’:f‘*‘. All lengths are set to be at least 1 kb to
ensure that this value is well-defined.

3. q_gap; - quantile of the relative gap values across all candidate stripes in
the dataset identified in the previous step.

4. stripe_score; - quadratic mean of the q_gap; for j = 1...., i. Represents
the average quality of the stripe of up to a certain point (i.e. leaf v;).

5. cross_score; - each leaf is potentially a part of two orthogonal stripes:
horizontal and vertical one. For a given stripe direction the cross score
of v; is the ratio of stripe_score; calculated in that direction and the
stripe score in the orthogonal direction.

6. The length of the stripes are determined: a stripe is considered to end
with a leaf v;, if g 4 drops below 0.05, or if there are no further leaves.

7. Iftwo adjacent stripes with the same directionality overlap and differ in
length by no more than 200 kb, they are merged together.

8. Only stripes with at least two leafs, and having a minimum length of
20 kb are selected and considered further.

The above steps result in a set of candidate stripes. In order to select the
final stripes from the candidate set, two features of the stripes are considered:
the stripe_score of the leaf terminating the stripe (note that this is a form of
cumulative quality of the stripe up to this leaf), and the mean cross_score of
every leaf in the stripe after its length has been trimmed. These parameters
measure the continuity and distinctiveness of the stripe respectively, and the
selection of the final stripe set is done by placing a lower threshold on these
values. The choice of the thresholds is done by visual inspection of the
output and manual adjustment; this does not require, however, re-running
the algorithm. We used the thresholds of 0.45 for stripe_score and 0.9 for
cross_score. Note that in contrast to methods based on heatmap analysis
(such as Stripenn), potential stripe locations are already narrowed down, as
the stripe can only be called in a location where two consecutive loops were
present.

Pileup plots for the stripe analysis were constructed using Coolpuppy”®
APL In line with the methodology used in Stripenn™ we used parameters
equivalent to “--rescale --local --unbalanced” options. In this procedure
each stripe domain is expanded by regions of equal size from both sides, then
rescaled to a standard size, and the raw contact matrix signal is averaged over
all stripe domains in a given dataset.

Biophysical modelling

For loop extrusion modelling, we used LoopSage”. We assume that the
stochastic system can be described by a Boltzmann distribution, where the
temperature parametrises the rebinding probability of cohesin”. During the
simulation, the temperature decreases following a simulated annealing
approach®. The dcHiChIP dataset inspired us to develop a new, more user-
friendly environment for LoopSage. This environment includes the cap-
ability to model two different populations of loop extruders that move at
different speeds and diffuse as random walks. This observation aligns with
previous work from Gibcus et al.*, which proposed two populations of
extruders capable of forming short and long-range loops.
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The simulation pipeline is composed of two main parts: a stochastic
simulation part, where we compute the stochastic trajectories of cohesins in
the DNA fibre by running the Monte Carlo simulation, and a molecular
simulation part, where we import the cohesin positions exported by the
numerical simulation part and we feed them into an OpenMM model*'**
which is capable of producing 3D-structures from them. Having produced
the ensemble of models, we compute the average inverse all-versus-all
distance heatmap of each one of these 3D models. Finally, we aggregate
them into an average final heatmap, which should reconstruct similar
patterns as the experimental HiChIP heatmap. For the purposes of this
work, we used a polymer that consists of 1000 monomers. The stochastic
simulation ran for 8 x 10* Monte Carlo steps with sampling frequency 400
and burn-in period 4 x 10*. The value of the folding and crossing coeffi-
cients are set as the default ones. The reason why we chose such a large burn-
in period is because we wanted to have enough time to propagate the slow
cohesin complexes. We applied a simulated annealing approach with initial
Monte Carlo temperature 4 and final temperature 1, assuming that repre-
sentative steps emerge once slower, shorter loops begin to form after the
burin-in period.

To validate our models, we employed a two-step approach. First, we
estimated the Pearson correlation between experimental and averaged
simulated heatmaps, focusing only on regions where loops were detected in
the experimental data (loop-strength correlation). This initial validation was
straightforward because LoopSage uses anchors and their averaged
strengths as input, resulting in consistently high correlations. In the second
validation step, we compared the entire simulated heatmap with the
experimental one. To facilitate this comparison, we applied Gaussian
smoothing to the experimental heatmap and calculated Spearman corre-
lations for various LoopSage parameters.

We made a qualitative study about the variation of the resulting
averaged inverse distance heatmaps based on two parameters of interest:
(i) the number of cohesin molecules (tested for values 50, 100, 150), and
(ii) the binding coefficient of the CTCF muotif as it is defined in our
new documentation (tested for values 0.25, 0.5, 1). Strong CTCF binding
with high cohesin levels creates overly confined loops, whereas weak binding
with few cohesins yields broad TADs lacking distinct borders (Supple-
mentary Fig. 12A). To find the best choice of model parameters we chose
the model with the highest Spearman correlation between simulated
and experimental heatmaps (Supplementary Fig. 12B). To achieve higher
correlation, it is required adjusting excluded volume parameters and
introducing a second, faster family of extruders. With 100 slow and 5
fast extruders, plus an excluded volume power of 3, we matched better
both short- and long-range loops. While changing excluded volume had
limited effects, adding a few fast diffusing extruding factors enabled
proper long-range loop formation, with slower extruders then forming local
loops as seen in the 3D models and averaged heatmaps (Supplementary
Fig. 12B).

Statistics and reproducibility

For SMC1 and CTCF HiChIP (HG00731) experimental data, two inde-
pendent biological replicates were performed. Information on replicates and
reproducibility is provided in the Results section and Supplementary
Figs. 1-2.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

Sequencing data generated in this study is deposited in the Gene Expression
Omnibus (GEO) database, with an accession number GSE266640. Raw data
and analysed data that support the findings of this study are also submitted
4D Nucleome data repository™* (https://data.4dnucleome.org) under
accession number 4DNES7BZ38]JT and 4DNESOAF3QAA.

Code availability

nf-HiChIP pipeline is available at https://github.com/SFGLab/hichip-nf-
pipeline. The pipeline is implemented in Nextflow with Docker support and
processes the output of various tools. The gStripe algorithm implementation
is available at https://github.com/SFGLab/gStripe as a Python 3 package.
The latest version of LoopSage is available via PyPI https://pypi.org/project/
pyLoopSage/ and as an open-source project on GitHub at https://github.
com/SFGLab/pyLoopSage. The source code for all the pipelines can also be
found at https://doi.org/10.5281/zenodo.11213538.
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