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Hierarchical anddistinct biologicalmotion
processing in macaque visual cortical
areas MT and MST
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Tingting Feng1,2,3, Yun Zhang4,5, Wenhao Han 1,2,6, Xiaoling Luo4, Yifei Han1,2, Wenjie Wei4, Hong Qu4,
Shenbing Kuang 1,2 , Tao Zhang 1,2 & Yi Zhang7

It is widely accepted that biological motion (BM) perception involves the posterior superior temporal
sulcus (pSTS). Yet, how individual neurons and neural circuits in pSTS encode BM remains unclear.
Here we combined electrophysiological recordings with neural network modeling to elucidate BM
computations in two subregions of pSTS. We recorded single-cell activity from the middle temporal
area (MT) and the medial superior temporal area (MST) of three macaque monkeys when they viewed
point-light displays portraying BMwalking in different directions (left vs. right), orientations (upright vs.
inverted), and forms (intact vs. scrambled). We found that, while individual neurons in both MT and
MST showed selectivity for these features, neural populations in MST but not MT exhibit BM-specific
encoding, i.e., preferential representation of intact upright BM—the defining characteristic of BM
recognition. A neural network model trained to replicate these neurophysiological findings implicated
that, BM-specific encoding in MST may arise from feedforward connectivity patterns, i.e., MT
subpopulations selective for linear translational motion and nonlinear optic flow projected
preferentially to distinct MST cells. Taken together, our findings highlight hierarchical and distinct BM
processing in MT and MST, advancing our understanding of BM computations in pSTS at the single-
cell and neural circuit levels in the primate brain.

Perceiving the movement of other living creatures is of survival
importance for many species. Humans and other primates can readily
recognize body movements and perceive biological motion (BM) from
even simplified kinematic information of a dozen point-lights attached
to the joints of an actor1. It is generally accepted that both form and
motion information contribute to BM recognition2, but motion cues
seem to be more critical3,4. BM perception from the point-light display
has two hallmark characteristics: one is the inversion effect, that is,
turning the display upside-down severely impairs BM recognition5,6,
and the other is the scrambling effect, i.e., BM recognition is completely
lost when individual point-lights are spatially scrambled such that the
form information is destroyed7. Correspondingly, a preferential neural
representation of intact upright BM (relative to inverted or scrambled
BM) is often regarded as a marker of BM-specific processing in the
brain8.

BM perception generally involves a network of distributed cortical and
subcortical brain structures specialized for processing socially relevant
information8–10. In particular, the posterior superior temporal sulcus (pSTS)
is the region most prominently associated with BM processing8,11. Neuroi-
maging studies have well documented that the pSTS is more active when
subjects view intact upright BM than scrambled or inverted BM12–14. Yet, on
a more fine-grained scale, the pSTS contains two important subregions
particularly relevant for the analysis of visual motion signals15,16. One sub-
region is the middle temporal area (MT), a keymotion-sensitive area in the
primate visual cortex where neurons respond selectively to simple transla-
tional motion in a direction-selective manner17–19. The second subregion is
the adjacent medial superior temporal area (MST). MST receives direct
feedforward input from MT20 and responds selectively to more complex
motion patterns such as optic flow defined by expansion and rotation21,22.
SinceBMstimuli likely activate neurons in bothMTandMST, an important
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question to ask is, whether BM-specific processing is established in area
MST or is determined earlier in area MT. So far, our understanding of BM
computation at the single-cell and neural circuit levels within pSTS is still
limited.

Only a few single-cell electrophysiological studies have attempted to
address the visual recognition of biological movements (for action-based
movement recognition, see a plethora of mirror neuron studies in recent
reviews23,24). Early studies in monkeys have found that neurons in the
superior temporal polysensory (STP) area respond selectively to displays of
body movements25. As a polysensory brain area, STP sits at the anterior
section of the STS (also known as aSTS), responsible for integrating infor-
mation from upstream areas such as the posterior section of the superior
temporal sulcus (pSTS) and the fundus of the superior temporal sulcus
(FST)26,27. Anatomically, the pSTS is the first stage of BM processing, which
is then fed to area FSTand subsequently integratedwithin area STP.While it
certainly remains to be understood how biological motion is hierarchically
computed and represented along these posterior-anterior STS gradients, the
current study focused exclusively on the posterior portion of this circuit.We

aim to investigate how individual neurons and neural circuits within pSTS
support BM recognition.

We addressed these questions with neurophysiological recordings in
awake-behavingmonkeys andneural networkmodeling.Wefirst examined
the neuronal correlates of BM processing inMT andMST respectively. We
then built a neural network model trained to replicate these neurophysio-
logical data and, more importantly, to shed connectivity insights on how
these two pSTS subregions might interact to achieve BM-specific compu-
tations in the primate brain.

Results
Neuronal datasets and analysis
We trained three macaque monkeys to view BM stimuli and recorded
single-cell spiking activity from area MT and MST (Fig. 1a, b), using stan-
dard extracellular techniques (see “Methods”). The full datasets consisted of
129 MT neurons and 228 MST neurons from three monkeys. Since neu-
ronal responseswere similar betweenmonkeys,wepooled themtogether for
data analysis andpresentation.Note that theMSTdataset has beenanalyzed

Fig. 1 | Experimental paradigms and BM stimuli. a Trial sequence. In each trial,
monkeys were required to maintain fixation on a small red dot while viewing point-
light animations depicting various BM stimuli. b Schematics of the extracellular
recordings in two pSTS subregions (MT and MST). c BM stimuli portray BM

walking in different directions (left vs. right), orientations (upright vs. inverted), and
forms (intact vs. scrambled). (b) was adapted from a cartoon image deposited at
SciDraw by Andrea Colins Rodriguez (https://doi.org/10.5281/zenodo.4662738),
with additional graphic elements added by the first author of this study.
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previously in our recent paper28. The current study re-analyzed the same
MST dataset and a new MT dataset collected under identical stimulus
conditions. We sought to quantitatively compare stimulus selectivity and
BM-specific processing across these two pSTS subregions.

The task for the monkeys was to passively view point-light displays
while maintaining gaze fixation at the center of the screen.Wemanipulated
the walking direction (left vs. right), body orientation (upright vs. inverted),
and body form (intact vs. scrambled) of BM stimuli (Fig. 1c). Contrasting
neuronal responses within each comparison allowed us to assess the
selectivity (or detectability) strength of individual neurons to these BM
features. Given the rhythmic nature of BM stimuli (with a walking cycle of
2 Hz), the elicited neuronal responses were also not stationary but rather
oscillatory during stimulus presentation. Following previous
conventions28–30, we applied the spectral analysis to the spike density
response to derive a so-called “modulation index” (MI) as ameasure of BM-
modulated neural response (see “Methods”). These MIs were subsequently
contrasted across stimulus conditions (e.g., left vs. right) to obtain the
detectability index (DI). DI represented the ability of each neuron to dis-
tinguish the BM feature under comparison (e.g., walking directions).

MTandMSTcellsexhibit comparable andbalancedBMdirection
selectivity
Direction selectivity is the most prominent feature of neurons in motion-
sensitive areas. Similar to our previous findings in MST, responses of MT

neurons were also dynamically modulated by BM stimuli, and these mod-
ulations were BM direction-dependent. As can be seen from two example
MT neurons (Fig. 2a), the upper neuron exhibited largermodulation effects
when BM walking to the right (MI = 0.82), relative to when BMwalking to
the left (MI = 0.39). In otherwords, this neuronpreferred right-walkingBM.
In contrast, the neuron in the lower panel preferred left-walking BM
(MI = 2.22 and 0.85, respectively).

At the population level, the direction preference for left vs. right was
balanced and comparable between areas MT and MST. To reveal the
dynamic coding of walking directions, we calculated the mean normal-
ized firing rates in one walking cycle (0–500ms relative to stimulus
onset). We found that the mean population responses induced by right-
walking and left-walking BM stimuli overlapped, in both MT and MST
areas (Fig. 2b). However, the mean population responses sorted by
preferred vs. non-preferred directions showed clear separations, indi-
cating a capability of discriminating BM directions for neurons in these
two brain areas (Fig. 2c). To more quantitatively compare BM direction
selectivity across areas, we plotted the distribution of direction DIs for
each brain area (Fig. 2d). First, the mean direction DIs in MT and MST
did not differ significantly from zero (MT: mean = 0.02, t(128) = 0.36,
p = 0.72, one-sample t-test; MST: mean = 0.04, t(227) = 0.49, p = 0.69,
one-sample t-test). This again indicated that the ability to detect right-
walking and left-walking BMs was balanced in both areas. Second, the
mean direction DIs did not differ between MT and MST (Welch’s two-

Fig. 2 | BM direction selectivity was comparable and balanced in MT and MST.
a The raster and spike density responses of two example MT neurons to BM
walking directions. The modulation index (MI) showed directional preferences.
b Normalized population responses of MT (orange) and MST (purple) neurons to

left-walking (dashed) and right-walking (solid) BM. c The same as in (b) but sorted
into preferred and non-preferred directions. d The distribution of direction DI in
MT (upper) andMST (lower). The vertical dashed lines mark themean direction DI
in each area.
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sided t-test: t = 1.08, p = 0.87), suggesting that BM direction coding was
equally strong in these two visual areas.

MST but not MT cells show BM-specific processing—biased
form and inversion selectivity
BM recognition has two defining characteristics, the inversion effect, i.e.,
severely impaired recognition of inverted BM, and the scrambling effect,
i.e., entirely disrupted recognition of scrambled BM. Hence, biased
neuronal selectivity for form and inversion could be regarded as an
indication of BM-specific processing at the neural level. In this section,
we will examine the form and inversion selectivity in MT and MST
respectively, testing whether these selectivity are biased. This will help us
to determine whether BM-specific processing is established in area MST
or occurs early in area MT.

Form selectivity could be estimated by comparing neuronal responses
evoked by intact and scrambled BM. Figure 3a shows the spiking responses
of two example MT neurons. We can see that the MT neuron at the top
exhibited greater modulation in response to intact BM (MI = 1.46) than
scrambled BM (MI = 0.79). In contrast, the MT neuron at the bottom was
also stronglymodulated by BM, but its modulation showed a preference for
the scrambled BM (MI = 2.45) relative to the intact BM (MI = 1.1). At the
population level, the form selectivity was balanced in areaMT but biased in
areaMST toward preferring the intact BM(Fig. 3b–d). This can be observed
from two analyses. First, the population mean responses overlapped inMT
but diverged in MST (Fig. 3b), with the intact BM evoking stronger

responses relative to the scrambled BM. This indicated that while MT cells
had a balanced preference for intact and scrambledBM,MSTcells showed a
preferential representation of intact BM than scrambled BM. Second, this
claim was also supported by the quantitative form DI distribution analysis
(Fig. 3d). The mean form DI in area MT was close to zero (mean = 0.04,
t(128) = 0.67, p = 0.51, one-sample t-test), suggesting that while individual
MT neuron responded differently to intact and scrambled BM (Fig. 3c),
their preference at the population level was balanced. In comparison, the
mean formDI in areaMSTwas significantly biased toward preferring intact
BM (mean = 0.39, t(227) = 7.69, p = 4.39 × 10−13, one-sample t-test). The
difference in formselectivity betweenMTandMSTwas alsoverifieddirectly
(t = 4.5, p = 9.65 × 10−6, Welch’s two-sided t-test).

We performed similar analyses for the inversion selectivity and found
that MST but no MT cells showed biased inversion selectivity. Figure 4a
depicts the spiking responses of two example MT neurons to upright and
inverted BM. The top MT neuron showed larger modulated responses to
invertedBM(MI = 1.6) thanuprightBM(M= 0.65), indicating apreference
for inverted BM. Oppositely, the bottomMT neuron preferred upright BM
(MI = 2.28) relative to inverted BM (MI = 1.07). At the population level, the
preference for upright vs. inverted BM was balanced in MT but was biased
toward preferring upright BM in area MST (Fig. 4b–d). First, as a visual
inspection of the populationmean responses (Fig. 4b), upright and inverted
BM elicited similar MT responses. Meanwhile, upright BM elicited larger
responses than inverted BM in MST. Second, the neural preference for
upright BM in area MST but not MT could also be observed quantitatively

Fig. 3 | MST but not MT cells showed biased form selectivity. a The raster and
spike density responses of two example MT neurons to intact and scrambled BM.
The top neuron preferred intact BM while the bottom neuron preferred scrambled
BM. bNormalized population responses ofMT (orange) andMST (purple) neurons

to intact (solid) and scrambled (dashed) BM. c The same as in (b) but sorted into
preferred andnon-preferred forms.dThe distribution of formDI inMT (upper) and
MST (lower). The vertical dashed lines mark the mean form DI in each
area. ***p < 0.001.
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from the inversionDI distributions (Fig. 4d). Themean inversionDI in area
MST was significantly biased toward preferring upright BM (mean = 0.18,
t(227) = 2.85, p = 0.005, one-sample t-test). In contrast, the mean inversion
DI in area MT was indistinguishable from zero, indicating balanced neural
preference (mean = 0.07, t(128) = 1.1, p = 0.27, one-sample t-test).

Independent BM encodings in area MST
To sum up, we have so far characterized and compared the selectivity
responses ofMTandMSTneurons to BMstimuli. Our results revealed that,
while cells in both brain areaswere selective for each of theBMfeatures, cells
in MST but not MT showed BM-specific processing. In other words, MST
cells had biased form and inversion selectivity, preferring intact (vs.
scrambled) and upright (vs. inverted) BM. It should be noted that the biased
form and inversion selectivity in MST could not be trivially explained by
biased sampling in the recorded population for two reasons. First, as we
showed already in the previous section, the direction selectivity in areaMST
(and in area MT as well) was perfectly balanced between left- and right-
walking directions (Fig. 2b–d), arguing against biased sampling. Second, the
Pearson correlation analysis revealed that neither the form selectivity nor
the inversion selectivity in MST was correlated with its direction selectivity
(Inversion DI vs. direction DI: r(226) =−0.07, p = 0.28; Form DI vs.
direction DI: r(226) = 0.01, p = 0.83). This suggested that these biased
encodings in MST reflected neural features independent from the basic
motion direction representations, and should be better interpreted as

serving the neural correlates of the inversion and scrambling effects
observed behaviorally during BM recognition.

It is also worth noting that, the two biased encodings in MST, i.e.,
the BM-specific processing in the form and inversion selectivity, were
also independent from each other (r(226) = 0.02, p = 0.75, Pearson cor-
relation). These independent representations of BM features in area MST
suggested that they were probably encoded in distinct neural sub-
populations or in shared neural population but through distinct com-
putations. Either way, these independent encodings do not refute the idea
of BM-specific processing in MST. Meanwhile, we should point out that
the neural bias being larger in the form selectivity than in the inversion
selectivity was not unexpected. In fact, it aligned well with their effect size
differences at the behavioral level. Psychophysical studies have shown
that scrambling does more damage to BM recognition than inversion
(entirely lost by scrambling vs. partially impaired by inversion). It is
hence reassuring for us to observe neural effect size differences, i.e.,
relatively large form bias but smaller inversion bias in the
neurophysiological data.

A spiking neural network model replicated neurophysiological
data and implicated connectivity patterns underlying the emer-
gence of BM-specific processing in MST
ThedistinctBM-specificprocessing inMSTbutnotMTbegs thequestionof
how a balanced encoding in areaMTwould lead to biased representation in

Fig. 4 |MSTbut notMT cells showed biased inversion selectivity. aThe raster and
spike density responses of two example MT neurons to upright and inverted BM.
The top neuron preferred upright BM while the bottom neuron preferred inverted
BM. bNormalized population responses ofMT (orange) andMST (purple) neurons

to upright (solid) and inverted (dashed) BM. c The same as in (b) but sorted into
preferred and non-preferred body orientation. dThe distribution of inversion DI in
MT (upper) andMST (lower). The vertical dashed linesmark themean inversionDI
in each area. **p < 0.01.
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MST who receives direct input from MT? or how the two areas might
interact to give rise to BM-specific, biased representation in the brain. We
addressed these questions with neural network modeling in this section.

To reveal the computational mechanisms underlying the distinct BM
processing in MT and MST, we used the recorded neurophysiological data
to train a two-layered spiking neural network (SNN) model31, mimicking
feedforward spike train transmission fromMT toMST (Fig. 5a, b). In brief,
The SNNconsisted of an inputMT layer and an outputMST layer that were
fully connected. The number of MT and MST neurons and their neuron

typesmatched the electrophysiological data. The spike trains of the collected
129MTneuronsduring stimuluspresentationperiod (0–1500ms, binnedat
10ms in each epoch) were provided as the inputs to the model. On a given
trial, eachMTneuron i (i = 1, 2, 3,…129) transmits a spike train SMT

i to each
outputMST neuron j (j = 1, 2, 3,…, 168), inducing a postsynaptic potential
ϵi(t) on MST neuron j. The membrane voltage μj(t) of MST neuron j is the
weighted sum of wji·ϵi(t) from all MT neurons. If the μj(t) exceeds a
thresholdθ (reddotted line), theMSTneuron jwill emit anoutput spike (Saj )
and enter the refractory period. The initial connectivity weights wji between

Fig. 5 | A spiking neural network model trained to replicate
neurophysiological data. aModel architecture. The two-layered spiking neural
networkmodel consisted of an inputMT layer and an outputMST layer. b EachMT
neuron i transmits spike trains SMT

i to an output MST neuron j, inducing the
postsynaptic potential ϵi(t) on MST neuron j. The membrane voltage μj(t) of MST

neuron j is the sum of wji·ϵi(t) for all MT neurons. The MST neuron j will emit an
output spike (Saj ) if theμj(t) exceeds a threshold θ (red dotted line). cThe training and
test accuracy of the model. d The responses of a model MST neuron and a biological
MST neuron were selective for upright BM.
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MT and MST neurons were randomly and were updated during training.
After training, the model reproduced the spike trains of the collected 168
BM-selective MST neurons under each stimulus condition.

As shown previously, the recorded 168 MST neurons were classified
into formneurons, inversion neurons, andwalking direction neurons based
on their BM selectivity. Then according to neural preference, each neuron
type can be further divided into two opposing subtypes (e.g., intact-
preferring form cell, scramble-preferred form cell), resulting in a total of six
pools of MST neurons: intact-preferred (N = 41), scramble-preferred
(N = 13), left-preferred (N = 28), right-preferred (N = 24), upright-
preferred (N = 40), and inverted-preferred (N = 22). The model employs a
winner-takes-all strategy to determine which MST neuron pool responds
most strongly to the stimulus. For example, when a BM stimulus carrying
three features (e.g., “intact-upright-left”) was fed into the SNN network,
MST neurons in the three target pools (“intact”, “upright”, “left”) were
regarded as the target neurons, while those in the non-target populations
(“scramble”, “inverted” and “right”) were designated as the non-target
neurons. Each non-target neuron should not respond to the motion sti-
mulus and remain silent throughout the simulation. Each target neuron
started with randomly generated spike trains which, through weight
updating, evolved into the actual spike trains of biological MST neurons in
the target pools.

We used the tempotron learning rule to modify the synaptic weights,
minimizing a cost function that measures the amount of timing deviations
between the actual and desired output spikes32. In an iterative learning
scheme, synaptic weights were updated (either increasing or decreasing) by
an amount proportional to the cost at each iteration (see “Methods”). The
output of themodelwas expected to reproduce the recordedMST responses
after training. To evaluate the performance of model output, we computed
the accuracy as a measure of similarity between biological and model MST
neuron pools using Hamming distance (see “Methods”). The training and
test accuracy were computed at every time epoch. The neurophysiological
responses of MT and MST neurons were split across trials, such that the
spike trains of 75% of the trials were used for the training process and the
remaining 25% of the trials for the test process (cross-validation). It can be
observed that the SNN model learned quickly (Fig. 5c). The training
accuracy can be up to 99.7%, and the test accuracy can be up to 98.3%,
indicating that theMSTpopulation had successfully reproduced the desired
output spike trains. This means after training, the spike density responses
and the selectivity of model MST neurons resembled those of biological
MST neurons. As an illustration, Fig. 5d plotted the spiking responses of a
model MST neuron (left panel) and a biological MST neuron (right panel).
The Pearson correlation analysis indicated that the model neuron and the
biological neuron had very similar response profiles (Upright-intact-left:
R2 = 0.82, p = 5.8 × 10−20; Inverted-intact-left:R2 = 0.35, p = 2.4 × 10−7), and
both of them were inversion-selective and preferred upright BM.

The connectivity weights between MT and MST neuron populations
were completely random before training, and the SNN could not perform
the BM recognition task. Yet, after training, the model replicated neuro-
physiological MST responses based on the recorded MT spike train inputs.
We hypothesized that the MT-MST connectivity has formed a certain
pattern or structure, giving rise to BM-specific processing. We thus exam-
inedwhetherMTneurons projecting to distinctMST cell typeswould show
differences in their basic properties, in responding to the conventional non-
biological motion (linear motion and optic flow).

In the trainedmodel, someMTneurons aremore densely connected to
a type of MST neurons than others. For example, there is an MT neuron
projecting to 34 intact-preferred neurons, 1 scramble-preferred neuron, 23
right-walking preferred neurons, 21 left-walking preferred neurons, 8
upright-preferred neurons, and 22 inverted-preferred neurons. If an MT
neuron has projection connections to at least half of the MST neurons in a
certain type, it is classifiedas anMTneuronprojectingheavily to that type of
MST neuron. For the example MT neuron described above, it projected
heavily to intact (34/41), left (21/28), right (23/24), and inverted (22/22)
preferredMST neurons, but sparsely to scrambled (1/13) or upright (8/40)

preferred neurons. Through this classification criterion, we found that the
number ofMTneurons that project heavily to intact-, scrambled-, upright-,
inverted-, rightward- and leftward-preferring MST neurons are 43, 41, 48,
45, 52, and 42, respectively. In the following, we quantified the basicmotion
selectivity of these 6 pools of MT neurons that projected preferentially to
each type of MST cells (3 BM features × 2 preference).

Figure 6a–c plotted the linear motion selectivity and nonlinear optic
flow selectivity for each pool of these MT neurons. For MT cells that pro-
jected heavily to MST direction cells (Fig. 6c), their linear selectivity
strengths were significantly larger than their nonlinear selectivity strengths
(rightward-preferring: t(51) = 2.96, p = 0.005; leftward-preferring:
t(41) = 2.05, p = 0.047, paired t-test). Similar observations can be made for
MT cells that projected heavily to MST inversion cells (Fig. 6b, upright-
preferring: t(47) = 4.23, p = 0.0001; inverted-preferring: t(44) = 2.33,
p = 0.024, paired t-test). These observations were expected since MT neu-
rons are well known for their sensitivity to simple linear translational
motion as compared to more complex motion patterns. For MT cells that
projected to MST form cells, their selectivity properties for linear and
nonlinear motions diverged depending on their specific form preference
(Fig. 6a). MT neurons preferentially connected with scramble-preferring
form cells again showed stronger linear selectivity than nonlinear selectivity
(right panel, t(40) = 4.3, p = 0.0001, paired t-test). In contrast, MT neurons
preferentially connected with intact-preferring form cells showed similar
levels of linear and nonlinear selectivity (left panel, t(42) = 1.43, p = 0.16,
paired t-test). In other words, relative to other cell types, MST intact-
preferring form cells received considerably more information from non-
linear optic flow selective MT neurons.

The connectivity pattern implicated from the model suggested that,
while linear motion selective MT neurons projected to each MST cell type
equally in an undifferentiated manner, nonlinear optic flow selective MT
neurons projected preferentially to MST intact-preferring form cells
(Fig. 6g). It seemed that the nonlinear selectivity in the MT population was
the critical driving force for form selectivity in areaMST.We tested this idea
directly with an “ablation” experiment in the model. The reasoning behind
was, if nonlinear selectivity in MT plays a critical role in shaping form
selectivity in MST, then “lesioning” nonlinear selective MT neurons would
impair mainly the form selectivity in MST while leaving the inversion and
direction selectivity relatively intact.

In the ablation experiment, we first trained the model with the full
MT-MST connectivity as we did previously, we then “lesioned” the
model by removing MT neurons whose rotation or radiation selectivity
index was greater than 0.33 (i.e., when responding to optic flow, the
preferred response was twice as large as the non-preferred response).
This allowed us to assess the form, inversion and direction selectivity of
the simulated MST population before and after lesion (Fig. 6d–f). There
were two noteworthy observations. First, similar to neurophysiological
results, the simulated MST neurons in the full model exhibited biased
form selectivity (intact-preferring) and biased inversion selectivity
(upright-preferring), but balanced direction selectivity. Second, “lesion-
ing”MT neurons with strong nonlinear optic flow selectivity resulted in a
dramatic loss of form selectivity in area MST (Form DI difference = 0.42,
t(167) = 8.31, p = 2.15 × 10−14, paired t-test), while the inversion selec-
tivity was well preserved (Inversion DI difference = 0.0045, t(167) = 0.11,
p = 0.91, paired t-test) and the direction selectivity only marginally
impacted (Direction DI difference = 0.09, t(167) = 2.09, p = 0.04, paired
t-test).

To conclude, the results from these two modeling experiments
(Fig. 6a–c, d–f) provided converging and compelling evidence that MT
subpopulations selective for linear and nonlinear motion projected pre-
ferentially to distinct MST cells that support BM recognition. To be more
specific, the ability to detect BM form inMST neurons dependedmainly on
inputs fromMT cells selective for nonlinear optic flow, while the ability to
detect BM direction and inversion (horizontal and vertical spatial trans-
formations) in MST neurons might be driven primarily by inputs from
MT cells selective for linear translational motion (Fig. 6g).

https://doi.org/10.1038/s42003-025-07861-y Article

Communications Biology |           (2025) 8:408 7

www.nature.com/commsbio


Discussion
In this study, we combined monkey neurophysiology with neural network
modeling to characterize BM processing in visual cortical areas MT and
MST. We recorded single-cell spiking activity from these two brain areas
while macaque monkeys passively viewed BM stimuli of different walking
directions, orientations, and forms. By relating neuronal responses to these
BM features, we found that neurons in both MT andMST were selective for
these features. Yet, at the population level, neural selectivity in area MST but

not MT showed a preferential representation of intact (vs. scrambled) and
upright (vs. inverted) BM. These biased neural representations echo the
psychophysically observed scrambling and inversion effects during BM
perception, thus indicating a neural correlate of BM-specific processing in
area MST but not MT. To unravel the computational mechanisms under-
lying the emergence of BM-specific processing, we constructed a two-layered
spiking neural network model and trained it to reproduce MST responses
based on the feedforward spike train inputs from MT. While the model

Fig. 6 | Themodel provided insights into the connectivity structures betweenMT
and MST. a–c The mean linear motion selectivity and nonlinear optic flow selec-
tivity of MT neurons projected heavily to MST form cells (intact- or scramble-
preferring), inversion cells (upright- or inverted-preferring), and direction cells
(leftward- or rightward-preferring). Error bars indicate SEM. d–f The impact of
removing nonlinear optic flow selective MT neurons in the model: the form

selectivity was dramatically impaired while the inversion and direction selectivity
were relatively preserved. g The schematic illustration of preferential projection of
nonlinear optic flow selective MT neurons to MST form cells (orange arrows), and
preferential projection of linear motion selective MT neurons toMST inversion and
direction cells (gray arrows).
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successfully replicated these neurophysiological data, the connectivity
weights from MT to MST exhibited an intriguing pattern, i.e., MT neurons
with strong linear motion selectivity projected preferentially to MST direc-
tion and inversion cells, while MT neurons with strong nonlinear optic flow
selectivity connected preferentially with MST intact-preferring form cells.

Our study highlighted hierarchical and distinct BM processing in visual
cortical areas MT and MST. Previous studies have well documented that
most neurons in areas MT and MST are direction-selective and important
for visual motion processing33,34. Although continuous, these two visual areas
are distinguishable based on anatomical location, receptive field properties,
and functional responses to simple and complex motions20,21,35–37. For
example, MST neurons have larger RF sizes, respond more selectively to
complex motion patterns16, and perform a nonlinear integration of the
output of MT neurons38. However, these previous studies focused almost
exclusively on conventional, non-biological motion stimuli. So far, few stu-
dies have examined the roles these two areas play in the processing of
biological motion information. To our knowledge, this is the first single-cell
study to examine how MT and MST neurons and neural circuits perform
BM computation. The neurophysiological results revealed that both MT and
MST cells responded vigorously to rhythmic BM in a phase-lockingmanner,
and these neural responses were selective to each of the BM features such as
direction, inversion, and form. Interestingly, the selectivity of MT neurons
for each BM feature was balanced (with similar levels of selectivity for left vs.
right, intact vs. scrambled, and upright vs. inverted), but significantly biased
in MST toward preferring intact and upright BMs as opposing to scrambled
and inverted BMs. These preferences served as neuronal correlates of the
scrambling and inversion effects observed in psychophysical studies5–7,39,40,
indicating BM-specific processing in area MST. Taken together, these
findings suggest that MT neurons may function as feature detectors during
BM recognition, while MST neurons, building on the inherited information
from MT, contribute more directly to BM perception.

While MT and MST are two important adjacent subregions in pSTS,
neurons in downstream areas anterior to these two subregions, such as FST
and STP, are also shown to respond to biological movements25,41,42. Future
studies should investigate BM processing in cortical areas downstream of
MT/MST, to have a broader understanding of how BM features are extracted,
transmitted, and integrated along these posterior-anterior STS gradients.
Meanwhile, another legitimate question to ask is, why did we observe the
neural correlate of the inversion effect in MST but not MT? The answer may
partly lie in the fact thatMST is amultimodal area that connects with gravity-
related vestibular signals in the brain. MST neurons receive vestibular input
and have been shown to integrate visual and vestibular information43,44. In a
recent study45, the authors demonstrated that gravity facilitated the
orientation-dependent visual perception of biological motion. They observed
that the reduced inversion effect following microgravity exposure correlated
with the altered visual-vestibular connectivity. Because of this evidence, we
postulate that the inversion effect we observed in area MST may be attri-
butable to the integration of visual and vestibular signals in this region.

Our results from the neurophysiological experiments revealed hier-
archical and distinct BMprocessing inMTandMST. This begs the question
what are the computational mechanisms underlying the differences
between MT and MST in BM processing? To put it differently, how would
the balanced BM feature selectivity in MT lead to biased feature repre-
sentation in the downstream area MST? To address this question, we
employed a spiking neural network model mimicking spike train trans-
missions from MT to MST. Our modeling results revealed that the con-
nection patterns from MT to MST followed specific rules, and were
structured in a way that allowed for the emergence of BM-specific proces-
sing. Specifically, we found that MT neurons projected heavily to MST
direction and inversion cells had stronger linear motion selectivity than
nonlinear opticflowselectivity (Fig. 6b, c). Thiswasnotunexpected, because
it is well known that MT functions mainly as a linear motion detector and
responds significantly more to linear motion than complex motion
patterns16,46–49. In contrast, MT neurons preferentially connected withMST
intact-preferring form cells exhibited equal ability of linear and nonlinear

motion selectivity (Fig. 6a). This means that the ability to extract form from
biological motion in MST might be primarily driven by MT neurons with
better nonlinear optic flow selectivity. This idea was further corroborated in
the subsequent “lesioning” experiment in which we showed that the form
selectivity of MST neurons dropped dramatically if we removed nonlinear
optic flow selective MT neurons from the model, while the same lesion
manipulation affected the inversion and direction selectivity only slightly
(Fig. 6d–f).

These connectivity insights gained from our modeling experiments
highlight the distinct contributions of two subpopulations ofMTneurons in
shapingBM feature selectivity inMST cells. OneMTneuron subpopulation
was more selective for linear motion and contributed mainly to direction
and inversion selectivity in MST (where horizontal and vertical spatial
transformation of BM were applied), and the other MT neuron sub-
population had better nonlinear optic flow selectivity and contributed
mainly to form selectivity in MST. We speculate that nonlinear motion
selectivity ismore crucial for formdetectionwhile linearmotion selectivity is
more influential in the discrimination of body orientation and walking
directions. This speculation of the connectivity structures and the distinct
roles ofMTandMSTneurons inBMprocessing are experimentally testable,
and future experimentswith cell-type specificneuro-modulation techniques
will be needed to either corroborate or refute these predictions.

Previousneurophysiological studies indorsal streamextrastriate cortex
have predominantly centered on optic flow and the perception of self-
motion (or heading)50,51. Perceiving the direction of self-motion in the
environment relies onvisual opticflowandnonvisual cues suchas vestibular
input during navigation. It has been shown that neurons inMSTandventral
intraparietal area (VIP) aremultimodal, tuned to both visual optic flow and
vestibular cues43,44,52,53, and integrate multisensory information in a statis-
tically optimal manner to achieve accurate self-motion perception54.
However, motions in real-world scenarios are far more complex than self-
motion. The ability to perceive the motion of other objects (or living ani-
mals) in the environment is also crucial for navigation and survival. So far,
only a handful of studies in thefield have focused on the perception of object
motion, in particular the biological movement of other creatures25,41. In this
regard, the current study marks an important endeavor in this direction.
Our findings highlight new distinct functional roles of areaMT andMST in
biological movement perception and social cognition, beyond conventional
visual optic flow analysis.

Moreover, since both self-motion and object motion can cause image
motion on the retina, resolving the ambiguity between self- and object
motions has become an important task for the brain to achieve perceptual
stability. To date, a few studies have characterized neural responses to visual
stimuli consisting of a combination of self-motion and object motion55,56

and examined neural computations underlying the dissociation of self-
motion and object motion in MT and MST57,58. In this context, the current
study investigated the neural responses to object motion (BM stimuli) and
self-motion (optic flow stimuli) in isolation. But in real-life situations, they
oftenoccur simultaneously. This complexity calls for amore comprehensive
exploration that combines these different aspects of motion in future
experimental designs, e.g., a point-lightdisplay portrayingwalking but at the
same time involves expansion/contraction simulating movement toward/
away from an observer.

Many previous modeling studies have attempted to build neuronal
models of MT and MST regions to fit their responses to motion stimuli.
Some researchershave accomplishedpioneeringwork indevelopingmodels
to simulate the response of individual MT neurons to motion stimuli59–61,
describing the characteristics of receptive field and direction preferences.
Some MST models have shown MST neurons’ selectivity for optic flow
patterns in the combination of inputs from the MT area, matching the
responsive properties of MST neurons62–64. Layton and Fajen’s researches
focus on the interaction of MT and MST motion signals, providing com-
putational mechanisms for the perception of object motion during self-
motion65,66. Despite these advancements, most of the neuronal models of
MT andMSTprimarily focusedon opticflow computation and self-motion
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perception, fewmodels explored the neuralmechanismof biologicalmotion
processing in these two visual areas.

Note that, unlike conventional motion stimuli, the BM stimuli used in
this studywere dynamic and periodical, thus eliciting temporally oscillatory
spike trains. In most of the previous MT/MST models, each neuron was
simulated with a firing rate-based processing unit, which has simplified
structures and inadequate ability to capture these temporal dynamics. In this
study, we chose the spiking neural networkmodel (SNN) as a better tool for
reproducing these temporally structured spike trains31. In the SNN model,
neurons generate spikes upon receiving sufficient input, akin to the gen-
eration of action potentials in biological neurons upon receiving adequate
stimulation. Therefore, compared with rate-based models, the SNN model
operates more closely to the processing principles of biological neural net-
works, offering increased biological plausibility and interpretability. The
SNN model considers time and allows neurons in the receptive layer to
integrate action potentials from the input layer at different times, making
them suitable for processing spatial-temporal spike train sequences67.

Methods
Animal preparation
Three male macaque monkeys weighing 8–10 kg participated in this study.
Each monkey was surgically implanted with a head-post and an MRI-
compatible recording chamber (Crist Instrument) placed under the gui-
dance of a Brainsight navigator (Rogue Research Inc.). The recording
chamber was placed to allow access to areas MT andMST, confirmed both
anatomically by a post-surgery MRI scan using a modified grid with dye
markers, andphysiologically bymappingof theneuron’s receptivefield (RF)
and visual responses (Supplementary Fig. 1). All surgical and experimental
procedures were approved by the Ethics Committee for Scientific Research
of the Institute of Psychology, Chinese Academy of Sciences.

Electrophysiology
We used theMatLab-basedMonkeyLogic2 toolbox to generate visual stimuli
and control the experiments68,69. The visual stimuli were presented on a
Display++ LCD monitor (Cambridge Research Systems), placed 57 cm
away from the monkey’s eyes. Monkey’s eye movements were monitored
with an EyeLink 1000 tracking system (SRResearch). During the experiment,
a glass-coated tungsten electrode was inserted through a guide tube posi-
tioned in a grid system, and the depth of the recording electrode was con-
trolled by a Microdrive system (Nan Instruments). Spike discharges and trial
markers were collected and stored by the AlphaLab data acquisition system
(Alpha Omega Engineering LTD) for online sorting and offline data analysis.

Once a neuron was isolated, we used a handheld moving bar to
determine its preferred direction. We then used a 4° circular dot patch
(drifting at 6°/s in the preferreddirectionof the neuron) tomap theneuron’s
receptivefield locationand size. For this, thedotpatchwasmovedat a stepof
4° in a 9 × 7 space lattice to cover the full visual field. The mapping of the
receptive field of each neuron was determined based on five blocks of
repetitions. These pre-experiment RF mappings helped us guide the pla-
cement of visual stimuli on the screen in subsequent formal experiments.
We positioned the visual stimuli at the center of RF for each recorded
neuron. Interestingly, we found that RF eccentricity was negatively corre-
lated with BM-specific processing (for more details see Supplemen-
tary Fig. 2).

Experimental paradigms and visual stimuli
In this study, we employed three kinds of visual motion stimuli to explore
the response properties ofMTandMSTcells. In the biologicalmotion (BM)
test, variants of point-lightwalkers70were presented in a cell’s receptivefield.
Each point-light animation comprised 13 dots moving within a 4° × 4°
spatial range (while the center of thewalkerwas kept at afixed location).We
manipulated the walking direction (left vs. right), body orientation (upright
vs. inverted), and body form (intact vs. scrambled) of BMstimuli in a 2× 2×
2 factorial design. Scrambled BM was created by randomizing the initial
frame of each point-light in the display such that each dot underwent the

same local motions as in an intact BM while the overall body form infor-
mation was destroyed. Themanipulations on body orientation andwalking
direction were achieved by transforming BM either vertically or
horizontally.

In each BM trial, the monkeys were required to maintain fixation on a
small red dot at the center of the screen (2° tolerance angle) from 300 to
500ms before BM onset to 300ms after BM offset (Fig. 1a). The BM sti-
mulus was presented at the center of the cell’s receptive field (RF) for
1500ms. During this period, the BM walked three cycles, each lasting
500ms (paced at 2 Hz frequency). Eachwalking cycle consisted of 15 frames
sequentially presented at a speed of 30 frames per second.

Besides the BM test, we also tested two other types of conventional
motion stimuli used extensively in previous studies to characterize neural
responses in areas ofMTandMST.Onewas linear translationalmotion, i.e.,
similar dot patches as in the pre-experiment receptive field mapping pro-
cedure. The directionof the dot patchwas randomly interleaved fromoneof
the eight directions (0–315° range, spaced at 45°). The other is nonlinear
optic flow patterns defined by expansion, contraction, clockwise, and
counter-clockwise rotations. The sizes of linear motion and nonlinear optic
flowwere set at 4° (the same as those in the BM test). In these two tests, each
trial began with a fixation point lasting 200ms, followed by an 800ms
stimulus presentation. Four optic flow patterns and eight translational
motion directions were randomly interleaved within each block and repe-
ated 10 times for each recorded cell.

Analysis of neuronal response to BM stimuli
For each neuron at each stimulus condition, we estimated a spike density
function (time resolution: 20ms) from the raw spike trains across 20 trials,
and it was then filtered with a 30ms Gaussian kernel to obtain a smoothed
spike density response. Since BM stimuli were rhythmic, the elicited spike
density responses were also time-varying and fluctuated periodically phase-
locking to the walking cycles of BM stimuli. To quantify the modulated
response elicited by BM, we followed the previous spectral analysis
conventions28–30 and defined the modulation index (MI) by the equation
(Eq. 1):

MI ¼ 2 � F1
F0mean

ð1Þ

where F1 is the amplitude of the 2Hz component after FTT transformation,
and F0mean is the baseline-subtracted mean firing rate across stimulus
conditions. Only spike density responses within the 330–1330ms time
window were included in the MI analysis.

We calculated one MI for each BM stimulus condition, and these MIs
were then contrasted across stimulus conditions to assess the detectability/
selectivity of the cell to a specific BM feature. For example, the direction
selectivity involves left vs. right comparisons under either intact upright BM
or intact inverted BM; For each pair of left vs. right comparisons we com-
puted an MI difference between left and right trials (i.e., MIright − MIleft),
and then we defined the direction detectability index (DI) as the pair with
the greater differential MI in direction comparisons. Similarly, we defined
the inversion detectability index as the pair with greater differential MI
betweenupright and inverted trials (i.e.,MIupright−MIinverted), and the form
detectability index as thepairwith the greatest differentialMIbetween intact
and scrambled trials (i.e., MIintact −MIscambled).

To understand the dynamic coding of BM at the population level, the
spike density response of each cell was normalized and then aligned to the
peak response before averaging across the neuron population in each brain
area. The normalization was done using the following equation (Eq. 2):

Normalized FR ¼ Fri�FRmin

FRmax � FRmin

� �
ð2Þ

where FRi means the firing rate response at the i-th time bin; FRmin and
FRmax are the minimum and maximum firing rate during 330–1330 ms
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across all conditions and time bins. The normalizedfiring rate response was
aligned to the timeof peak responses. In the time shift alignment,wefirst got
the 2 Hz phase spectrum from Fourier analysis and then calculated the
phase(φ) of the sine function of 2Hz, which varied between −2φ and 0.
After that, we selected a cycle of the sine function after the phase, which is
from abs(φ)/2π ∗ 500ms to (abs(φ)/2π+ 1) ∗ 500ms, and averaged the
normalized firing rate during the cycle.

Analysis of neuronal response to Linear motion and nonlinear
optic flow
To analyze neuronal response to these non-biological, conventional
motions, we calculated the selectivity indexes (SI) from themean firing rate
during stimulus presentation. To eliminate the effect of stimulus onset,
neuronal discharge during 200–800ms after stimulus onset in each trial was
included for this analysis. The SI was quantified by the following equation
(Eq. 3):

SI ¼ Rpref : � Rnonpref :

Rpref : þ Rnonpref :
ð3Þ

where Rpref. and Rnonpref. are the stronger and weaker neural responses
evoked by motion stimuli. For optic flow stimuli, we computed SI for
rotations (clockwise vs. counter-clockwise) and radiations (expansion/
contraction) separately. For linear translation motion, we computed SI for
horizontal directions (0° vs. 180°) andvertical directions (90°/270°).Herewe
focused exclusively on the cardinal directions, making the analysis more
comparable to BM stimuli where only horizontal and vertical transforma-
tions were applied. Finally, to obtain a single-valuedmetric representing the
overall selectivity strength of a cell, the linear selectivity indexwas defined as
the mean of horizontal and vertical SIs, and similarly, the nonlinear
selectivity index was defined as the mean of rotation and radiation SIs.

The spiking neural network (SNN) model
Since neuronal responses to BM were temporally dynamic and oscillatory,
the conventional firing rate-based model is incapable of capturing these
dynamics. Here, we employed a spiking neural network model where
simulated neurons interact with each other via temporally precise spiking
discharges31, to mimic the feedforward propagation of spiking information
from MT to MST. The SNN model consisted of two layers of neurons
representing MT and MST respectively (Fig. 5a). The input MT layer was
fully connected with the outputMST layer, and the number of each neuron
population matched the electrophysiological data. Each MST neuron
received the input spike trains from MT neurons. Once the MST neuron
receives input spikes from MT neurons, its membrane voltage changes
immediately. When the membrane voltage exceeds the threshold, MST
neuron emits a spike and enters the refractory period (Fig. 5b).We used the
neurophysiological spiking responses of MT and MST to train and cross-
validate the model.

We recorded a total of 129 MT neurons and 228 MST neurons. As
reported previously, among 228 MST neurons, 168 were BM-sensitive and
classifiable. Of these 168 MST neurons, 54, 62, and 52 neurons were clas-
sified as form neurons, inversion neurons, and walking direction neurons
because of their selectivity to the BM features28. Then based on their neural
preference, form neurons were subdivided into two opposing pools (intact-
preferring cells and scramble-preferring cells); Similarly, walking direction
cells were subdivided into left-preferring and right-preferring cells, and
inversion cells were subdivided into upright-preferring and inverted-
preferring cells. Consequently, these BM feature-selective MST neurons
(N = 168) were divided into 6 pools of neuron subpopulations: intact
(N = 41), scramble (N = 13), left (N = 28), right (N = 24), upright (N = 40),
and inverted (N = 22). Among them, intact and scramble, left and right,
upright and inverted are the opposing populations.

For each recorded MT and MST neuron, there are a total of 160 sam-
ples (trials) of BM stimuli (8 BM stimuli X 20 repetitions at each stimulus
condition), 120motion samples are used for training and 40 for testing. The

model learned the features of training samples with 200 epochs. For a given
input sample (e.g., the kth input sample), there is a target label yk

(actual classification), and a predicted label zk frommodel output (predicted
classification), they are both 6-dimensional binary vectors (because 6 pools
of MST neurons were used to classify 6 opposing BM features). For yk, the
target population of each opposing population is labeled 1, and the non-
target population is labeled 0. For example, when the input spike trains of
kth sample (‘intact-right-upright’) are fed the neural network, the target
labels yk of thesepopulations intact-scramble-left-right-upright-inverted are
yk = [1, 0, 0, 1, 1, 0]. Themodel used a winner-take-all strategy in the output
of each opposing pool to signify the stimulus. For zk, each opposing
populations have at most one winner population labeled 1, i.e., the popu-
lation with the higher average firing rate is the winner. The accuracy of a
sample k is to calculate the Hamming distance-based similarity between
these two binary vectors (yk and zk,), representing the probability of correct
feature classification based on the responses of 6 pools of MST neurons
(Eq. 4):

Accuracyk ¼ 1�
P6

i¼1 yik � zik
�� ��
6

ð4Þ

where yik and zik are the i-th index in yk and zk, respectively, and yik � zik
�� ��

measures the Hamming distance between the two binary vectors (ranging
between 0 and 6). The training (test) accuracy during each epoch is the
average accuracy of all training (test) samples.

We used the tempotron algorithm to modify the connectivity weights
in themodel32. The purpose of weights update was tominimize the amount
of spike timing deviations between the actual and desired output spikes.
When a BM stimulus (such as intact-left-upright) is presented to the neural
network, MST neurons in the target populations (‘intact’, ‘left’, and
‘upright’) are regarded as target neurons, whereas those in the non-target
populations (‘scramble’, ‘right’ and ‘inverted’) are designated as non-target
neurons. Each target neuron will have a target spike train S = [t1, t2, t3]
(output spikes that the MST neuron needs to learn), which are randomly
generated within the specified three windows t1∈T1win = [9ms, 29ms],
t2∈T2win = [60ms, 80ms], t3∈T3win = [110ms, 130ms]. The time
windows were determined by the peak responses of MST neurons in each
oscillation cycle. On the contrary, each non-target neuron keeps silent for
the entire simulation duration.

During learning, synaptic weights were updated by an amount pro-
portional to the spike timing deviations. Specifically, the weights were
modified depending on whether any actual output spikes occurred within
the target time windows. There were three scenarios. If the target neuron
fires within in the time window, which means that it recognizes the BM
feature correctly and its weights remain unchanged. If the target neuron
keeps silent, its weights will be increased to make this neuron fire at this
window in the future. Conversely, if the target neuron emits a spike outside
the time window or the non-target neuron emits a spike, which means the
neuron incorrectly fires and its weights will be decreased to make this
neuron silent in the future.

After learning, the MT and MST neurons are fully connected. How-
ever, in the mature biological neural network, the neurons between layers
are not fully connected, because synaptic connections that are not being
used or are weakly activated are eliminated during a critical period of brain
development. Therefore, we built a non-fully connected spiking neural
network model by pruning some unimportant connections, mimicking the
connection pruning mechanism that involves the elimination of certain
synaptic connections between neurons. If the absolute value of the weight is
lower than the mean weight (0.0925), meaning the weight is unimportant,
the connection is removed. After pruning, only 38.42% of the connections
were preserved. The fully connected and sparsely connected SNN networks
were retrained for 200 epochs to evaluate their comparative performance.
The sparse-connected SNN network employed the weights after pruning as
the initial weights. The learning rate of the sparse-connected model is
reduced to 1/4th of that of the fully connected SNN, while other parameters
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are consistent. The sparse-connected network not only matched but also
surpassed the fully connected model’s performance, achieving up to 100%
training and 99.17% test accuracy.

To test the robustness of these two SNN models, the input jittering
noise is used71. The Gaussian noise is added to the input spike trains of MT
neurons, with a mean of 0 and variances ranging from 0 to 10. Then, each
input spike is randomly removed or added with a probability of 0.05. 120
training normalmotion samples were used to train SNNand 40 samples for
the test. Despite a general trend of declining test accuracy with increased
noise variance, the sparsely connected SNN exhibited superior resilience.
Based on the better performance and biological plausibility in the sparsely
connectedmodel, wemainly reported the results of thismodel in this study.

Statistics and reproducibility
Data was analyzed using custom-made code developed in MatLab and
Python. Mean and standard error of mean were reported for all statistical
results where relevant. We set the statistical significance level as p < 0.05 for
all analyses. We did not pre-determine sample sizes of neurons, nor did we
exclude any of them from analyses. We used one-sample t-test to assess
whether there was significant biased encoding. Comparisons between brain
areas were performed using Welch’s two-sided t-test. Correlation analysis
was conducted using Pearson linear correlation.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Source data for reproducing figures and statistics are deposited at the Psy-
chological Science Data Bank (https://doi.org/10.57760/sciencedb.psych.
00494)72. Raw data that support the findings of this study are available from
the corresponding author upon reasonable request.

Code availability
Code for reproducing figures and statistics are deposited at the Psycholo-
gical Science Data Bank (https://doi.org/10.57760/sciencedb.psych.
00494)72.

Received: 24 July 2024; Accepted: 28 February 2025;

References
1. Johansson, G. Visual perception of biological motion and a model for

its analysis. Percept. Psychophys. 14, 201–211 (1973).
2. Giese, M. A. & Poggio, T. Neural mechanisms for the recognition of

biological movements. Nat. Rev. Neurosci. 4, 179–192 (2003).
3. Gilaie-Dotan, S., Saygin, A. P., Lorenzi, L. J., Rees,G. &Behrmann,M.

Ventral aspect of the visual form pathway is not critical for the
perception of biological motion. Proc. Natl Acad. Sci. USA 112,
E361–E370 (2015).

4. Cutting, J. E. & Kozlowski, L. T. Recognizing friends by their walk—
gait perception without familiarity cues. Bull. Psychon. Soc. 9,
353–356 (1977).

5. Dittrich, W. H. Action categories and the perception of biological
motion. Perception 22, 15–22 (1993).

6. Pavlova, M. & Sokolov, A. Orientation specificity in biological motion
perception. Percept. Psychophys. 62, 889–899 (2000).

7. Bertenthal, B. I., Proffitt, D.R. &Cutting, J. E. Infant sensitivity to figural
coherence in biomechanical motions. J. Exp. Child Psychol. 37,
213–230 (1984).

8. Blake, R. & Shiffrar, M. Perception of human motion. Annu. Rev.
Psychol. 58, 47–73 (2007).

9. Bonda, E., Petrides, M., Ostry, D. & Evans, A. Specific involvement of
human parietal systems and the amygdala in the perception of
biological motion. J. Neurosci. 16, 3737–3744 (1996).

10. Puce, A., Allison, T., Bentin, S., Gore, J. C. & McCarthy, G. Temporal
cortex activation in humans viewing eye and mouth movements. J.
Neurosci. 18, 2188–2199 (1998).

11. Grossman, E. D., Battelli, L. & Pascual-Leone, A. Repetitive TMS over
posterior STS disrupts perception of biological motion. Vis. Res. 45,
2847–2853 (2005).

12. Grossman, E. D. & Blake, R. Brain areas active during visual
perception of biological motion. Neuron 35, 1167–1175 (2002).

13. Grossman, E. D., Jardine, N. L. & Pyles, J. A. fMR-adaptation reveals
invariant coding of biological motion on the human STS. Front. Hum.
Neurosci. 4, 15 (2010).

14. Grossman, E. et al. Brain areas involved in perception of biological
motion. J. Cogn. Neurosci. 12, 711–720 (2000).

15. Maunsell, J. H. R. & Vanessen, D. C. The connections of the middle
temporal visual area (MT) and their relationship to cortical hierarchy in
the macaque monkey. J. Neurosci. 3, 2563–2586 (1983).

16. Lagae, L., Maes, H., Raiguel, S., Xiao, D. K. & Orban, G. A. Responses
ofmacaqueSTSneurons tooptic flowcomponents—acomparisonof
areas MT and MST. J. Neurophysiol. 71, 1597–1626 (1994).

17. Newsome,W.T., Britten,K.H. &Movshon, J. A.Neuronal correlates of
a perceptual decision. Nature 341, 52–54 (1989).

18. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical
microstimulation influences perceptual judgments of motion
direction. Nature 346, 174–177 (1990).

19. Movshon, J. A., Adelson, E. H., Gizzi, M. S. & Newsome, W. T. The
analysis of moving visual patterns in Frontiers in Cognitive
Neuroscience (eds Kosslyn, S. M. & Andersen, R. A.) (MIT Press,
1992).

20. Boussaoud, D., Ungerleider, L. G. & Desimone, R. Pathways for
motion analysis—cortical connections of the medial superior
temporal and fundus of the superior temporal visual areas in the
macaque. J. Comp. Neurol. 296, 462–495 (1990).

21. Duffy, C. J. & Wurtz, R. H. Sensitivity of MST neurons to optic flow
stimuli. I. A continuum of response selectivity to large-field stimuli. J.
Neurophysiol. 65, 1329–1345 (1991).

22. Bradley, D. C., Maxwell, M., Andersen, R. A., Banks, M. S. & Shenoy,
K. V. Mechanisms of heading perception in primate visual cortex.
Science 273, 1544–1547 (1996).

23. Bonini, L., Rotunno,C., Arcuri, E. &Gallese, V.Mirror neurons30 years
later: implications and applications. Trends Cogn. Sci. 26, 767–781
(2022).

24. Rizzolatti, G. & Sinigaglia, C. The mirror mechanism: a basic principle
of brain function. Nat. Rev. Neurosci. 17, 757–765 (2016).

25. Oram, M. W. & Perrett, D. I. Responses of anterior superior temporal
polysensory (STPa) neurons to biological motion stimuli. J. Cogn.
Neurosci. 6, 99–116 (1994).

26. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing
in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

27. Young, M. P. Objective analysis of the topological organization of the
primate cortical visual system. Nature 358, 152–155 (1992).

28. Feng, T. et al. Dynamic encoding of biological motion information in
macaque medial superior temporal area. Preprint at bioRxiv https://
doi.org/10.1101/2023.10.30.564682 (2023).

29. Crowder, N. A., Van Kleef, J., Dreher, B. & Ibbotson, M. R. Complex
cells increase their phase sensitivity at low contrasts and following
adaptation. J. Neurophysiol. 98, 1155–1166 (2007).

30. Skottun, B. C. et al. Classifying simple and complex cells on the basis
of response modulation. Vis. Res. 31, 1079–1086 (1991).

31. Jolivet, R., Timothy, J. L. & Gerstner, W. The spike responsemodel: A
framework to predict neuronal spike trains. 846–853 (Springer Berlin
Heidelberg, 2003).

32. Gütig, R. &Sompolinsky, H. The tempotron: a neuron that learns spike
timing-based decisions. Nat. Neurosci. 9, 420–428 (2006).

33. Born, R. T. & Bradley, D. C. Structure and function of visual area MT.
Annu. Rev. Neurosci. 28, 157–189 (2005).

https://doi.org/10.1038/s42003-025-07861-y Article

Communications Biology |           (2025) 8:408 12

https://doi.org/10.57760/sciencedb.psych.00494
https://doi.org/10.57760/sciencedb.psych.00494
https://doi.org/10.57760/sciencedb.psych.00494
https://doi.org/10.57760/sciencedb.psych.00494
https://doi.org/10.1101/2023.10.30.564682
https://doi.org/10.1101/2023.10.30.564682
https://doi.org/10.1101/2023.10.30.564682
www.nature.com/commsbio


34. Wild, B. & Treue, S. Primate extrastriate cortical area MST: a gateway
between sensation and cognition. J. Neurophysiol. 125, 1851–1882
(2021).

35. Duffy, C. J. & Wurtz, R. H. Sensitivity of MST neurons to optic flow
stimuli. II. Mechanisms of response selectivity revealed by small-field
stimuli. J. Neurophysiol. 65, 1346–1359 (1991).

36. Graziano, M. S. A., Andersen, R. A. & Snowden, R. J. Tuning of MST
neurons to spiral motions. J. Neurosci. 14, 54–67 (1994).

37. Andersen, R. A. Neural mechanisms of visual motion perception in
primates. Neuron 18, 865–872 (1997).

38. Mineault, P. J., Khawaja, F. A., Butts, D. A. & Pack, C. C. Hierarchical
processing of complex motion along the primate dorsal visual
pathway. Proc. Natl Acad. Sci. USA 109, E972–E980 (2012).

39. Troje, N. F. Reference frames for orientation anisotropies in face
recognition and biological-motion perception. Perception 32,
201–210 (2003).

40. Troje, N. F. & Westhoff, C. The inversion effect in biological motion
perception: evidence for a “life detector”? Curr. Biol. 16, 821–824
(2006).

41. Jellema, T. & Perrett, D. I. Cells in monkey STS responsive to
articulated body motions and consequent static posture: a case of
implied motion? Neuropsychologia 41, 1728–1737 (2003).

42. Vangeneugden, J., Pollick, F. & Vogels, R. Functional differentiation of
macaque visual temporal cortical neurons using a parametric action
space. Cereb. Cortex 19, 593–611 (2009).

43. Duffy, C. J. MST neurons respond to optic flow and translational
movement. J. Neurophysiol. 80, 1816–1827 (1998).

44. Gu, Y., Watkins, P. V., Angelaki, D. E. & DeAngelis, G. C. Visual and
nonvisual contributions to three-dimensional heading selectivity in
the medial superior temporal area. J. Neurosci. 26, 73–85 (2006).

45. Wang, Y. et al. Modulation of biological motion perception in humans
by gravity. Nat. Commun. 13, 2765 (2022).

46. Lagae, L., Raiguel, S. &Orban,G. A. Speed and direction selectivity of
macaque middle temporal neurons. J. Neurophysiol. 69, 19–39
(1993).

47. Van Essen, D. C.,Maunsell, J. H. R. & Bixby, J. L. Themiddle temporal
visual area in the macaque: myeloarchitecture, connections,
functional properties and topographic organization. J. Comp. Neurol.
199, 293–326 (1981).

48. Maunsell, J. H. R. & Van Essen, D. C. Functional properties of neurons
in middle temporal visual area of the macaque monkey. I. Selectivity
for stimulus direction, speed, and orientation. J. Neurophysiol. 49,
1127–1147 (1983).

49. Albright, T. D. Direction and orientation selectivity of neurons in visual
area MT of the macaque. J. Neurophysiol. 52, 1106–1130 (1984).

50. Angelaki, D. E., Gu, Y. & Deangelis, G. C. Visual and vestibular cue
integration for heading perception in extrastriate visual cortex. J.
Physiol. 589, 825–833 (2011).

51. Bremmer, F., Schlack, A., Graf, W. & Duhamel, J. R. Multisensory
self-motion encoding in parietal cortex. Vis. Cogn. 11, 161–172
(2004).

52. Bremmer, F., Duhamel, J. R., Ben Hamed, S. & Graf, W. Heading
encoding in the macaque ventral intraparietal area (VIP). Eur. J.
Neurosci. 16, 1554–1568 (2002).

53. Bremmer, F., Klam, F., Duhamel, J. R., Ben Hamed, S. & Graf, W.
Visual-vestibular interactive responses in the macaque ventral
intraparietal area (VIP). Eur. J. Neurosci. 16, 1569–1586 (2002).

54. Fetsch, C. R., DeAngelis, G. C. & Angelaki, D. E. Visual-vestibular cue
integration for heading perception: applications of optimal cue
integration theory. Eur. J. Neurosci. 31, 1721–1729 (2010).

55. Logan, D. J. &Duffy, C. J. Cortical areaMSTd combines visual cues to
represent 3-D self-movement. Cereb. Cortex 16, 1494–1507 (2006).

56. Sato, N., Kishore, S., Page, W. K. & Duffy, C. J. Cortical neurons
combine visual cues about self-movement. Exp. Brain Res. 206,
283–297 (2010).

57. Kim, H. R., Angelaki, D. E. & DeAngelis, G. C. A neural mechanism for
detecting object motion during self-motion. Elife 11, e74971 (2022).

58. Sasaki, R., Angelaki, D. E. & DeAngelis, G. C. Dissociation of self-
motion and object motion by linear population decoding that
approximates marginalization. J. Neurosci. 37, 11204–11219 (2017).

59. Rust, N. C.,Mante, V., Simoncelli, E. P. &Movshon, J. A. HowMTcells
analyze the motion of visual patterns. Nat. Neurosci. 9, 1421–1431
(2006).

60. Nishimoto, S. & Gallant, J. L. A three-dimensional spatiotemporal
receptive field model explains responses of area MT neurons to
naturalistic movies. J. Neurosci. 31, 14551–14564 (2011).

61. Cui, Y., Liu, L. D., Khawaja, F. A., Pack, C. C. & Butts, D. A. Diverse
suppressive influences in area MT and selectivity to complex motion
features. J. Neurosci. 33, 16715–16728 (2013).

62. Orban, G. A. et al. First-order analysis of optical flow in monkey brain.
Proc. Natl Acad. Sci. USA 89, 2595–2599 (1992).

63. Wang, R. Y. A network model for the optic flow computation of the
MST neurons. Neural Netw. 9, 411–426 (1996).

64. Grossberg, S., Mingolla, E. & Pack, C. A neural model of motion
processing and visual navigation by cortical areaMST.Cereb. Cortex
9, 878–895 (1999).

65. Layton, O. W. & Fajen, B. R. A neural model of MST and MT explains
perceived object motion during self-motion. J. Neurosci. 36,
8093–8102 (2016).

66. Layton, O. W. & Fajen, B. R. Computational mechanisms for
perceptual stability using disparity and motion parallax. J. Neurosci.
40, 996–1014 (2020).

67. Yin, B., Corradi, F. & Bohte, S. M. Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks. Nat.
Mach. Intell. 3, 905 (2021).

68. Asaad, W. F. & Eskandar, E. N. A flexible software tool for temporally-
precise behavioral control in Matlab. J. Neurosci. Methods 174,
245–258 (2008).

69. Asaad, W. F., Santhanam, N., McClellan, S. & Freedman, D. J. High-
performance execution of psychophysical tasks with complex visual
stimuli in MATLAB. J. Neurophysiol. 109, 249–260 (2013).

70. Vanrie, J. & Verfaillie, K. Perception of biologicalmotion: a stimulus set
of human point-light actions. Behav. Res. Methods Instrum. Comput.
36, 625–629 (2004).

71. Zhang, Y. et al. A new recursive least squares-based learning
algorithm for spiking neurons. Neural Netw. 138, 110–125 (2021).

72. Feng, T., Kuang, S. & Zhang, T. A dataset of “Hierarchical and distinct
biological motion processing inmacaque visual cortical areasMTand
MST”. Science Data Bank https://doi.org/10.57760/sciencedb.
psych.00494 (2025).

Acknowledgements
This work was supported by the National Key Research and Development
Program of China under Grant 2018AAA0100201, in part by the National
Science Foundation of China under Grant 61976043, in part by the National
Natural Science Foundation of China under Grant 31830037, and in part by
the Open Research Fund of the State Key Laboratory of Cognitive
Neuroscience and Learning under Grant CNLZD1803. We thank Dr.
Shengguang Li and Haiyan Liu for their care for the animals. We greatly
appreciate theexcellentworkof the technical support staff at the Institutional
Center for Shared Technologies and Facilities of Institute of Psychology,
Chinese Academy of Sciences.

Author contributions
T.Z. and S.K. conceived and designed the study. T.F. collected data from
two monkeys. W.H. collected data from one monkey. T.F., T.Z., and S.K.
analyzed data. Y.H. assisted in data analysis. Yi Zhang, T.Z., H.Q., Yun
Zhang, X.L., andW.W. developed themodeling analysis. T.F., T.Z., and S.K.
interpreted the results and prepared the figures. T.F. provided the first draft
of the manuscript. S.K. rewrote and revised the paper.

https://doi.org/10.1038/s42003-025-07861-y Article

Communications Biology |           (2025) 8:408 13

https://doi.org/10.57760/sciencedb.psych.00494
https://doi.org/10.57760/sciencedb.psych.00494
https://doi.org/10.57760/sciencedb.psych.00494
www.nature.com/commsbio


Competing interests
The authors declare the following competing interests: Shenbing Kuang is
an Editorial Board Member for Communications Biology but was not
involved in the editorial review or the decision to publish this article.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-025-07861-y.

Correspondence and requests for materials should be addressed to
Shenbing Kuang or Tao Zhang.

Peer review informationCommunications Biology thanksWernerGraf and
the other anonymous reviewers for their contribution to the peer review of
this work. Primary handling editor: Benjamin Bessieres. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s42003-025-07861-y Article

Communications Biology |           (2025) 8:408 14

https://doi.org/10.1038/s42003-025-07861-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsbio

	Hierarchical and distinct biological motion processing in macaque visual cortical areas MT and MST
	Results
	Neuronal datasets and analysis
	MT and MST cells exhibit comparable and balanced BM direction selectivity
	MST but not MT cells show BM-specific processing—biased form and inversion selectivity
	Independent BM encodings in area MST
	A spiking neural network model replicated neurophysiological data and implicated connectivity patterns underlying the emergence of BM-specific processing in MST

	Discussion
	Methods
	Animal preparation
	Electrophysiology
	Experimental paradigms and visual stimuli
	Analysis of neuronal response to BM stimuli
	Analysis of neuronal response to Linear motion and nonlinear optic flow
	The spiking neural network (SNN) model
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




