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Definition of the microbial rare biosphere
through unsupervised machine learning
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The microbial rare biosphere, composed of low-abundance microorganisms in a community, lacks a
standardized delineation method for its definition. Currently, most studies rely on arbitrary thresholds
to define the microbial rare biosphere (e.g., 0.1% relative abundance per sample), hampering
comparisons across studies. To address this challenge, we present ulrb (Unsupervised Learning
based Definition of the Rare Biosphere), available as an R package. ulrb uses unsupervised machine
learning to optimally classify taxa into abundance categories (e.g., rare, intermediate, or abundant)
withinmicrobial communities.We show thatulrb ismore consistent than threshold-basedapproaches
and can be applied to data derived from common microbial ecology protocols and non-microbial
studies. ulrb can be used to identify different types of rarity and is statistically valid for the analysis of
various dataset sizes. In conclusion, ulrb discerns rare from abundant organisms in a user-
independent manner, finding applicability in selected ecological datasets.

Most species in nature are rare1–5, a trend recognized as early as in the XIX
century, by Darwin, in The Origin of Species: “rarity is the attribute of a vast
number of species”6.Generally, the identificationof rare species is important
for biodiversity conservation, because rare species are often closer to
extinction7.Within themicrobiology field, the rare biosphere8 is considered
a reservoir of genetic diversity2,3, which is of crucial relevance for the
resistance and resilience of ecosystems4, a source of symbionts shaping host-
associated microbiomes9, and a source of novel biosynthetic genes10.

The standard computational measure to study the rare biosphere is to
order all taxa from the most to the least abundant, in a Rank Abundance
Curve (RAC). The RAC can be mathematically described by the power-
law11, whereby a few taxa are abundant, but many are rare in the so-called
long tail of the RAC.Most studies define themicrobial rare biosphere using
relative abundance thresholds such as 0.1% or 0.01% per sample (e.g.,12–21),
based on early microbial ecology studies of the RAC2,8,22. However,
threshold-based approaches do not accommodate for differences in
sequencing depth obtained by different methodologies. Moreover, different
thresholds provide different interpretations of the RAC and most likely
none provides consistent results across different methods or communities.
Using a specific example, the results obtained by a 0.1% relative abundance,
per sample, will be different between using amplicon sequencing of a small
region of the 16S rRNA gene or using shotgun metagenome sequencing.
This is because the methods produce abundance tables with taxon

abundance scores in different orders of magnitude. Thus, a definition of
0.1% relative abundance, per sample, might work well to describe the long
RAC tail of a 16S rRNA sequencing dataset. However, this same threshold
would yield a very different view of the rare biosphere from the shotgun
metagenome sequencing data from the same sample20. This is a problem,
because it complicates inter-comparability across studies and sequencing
methodologies (Supplementary Fig. 1). In summary, threshold-based
approaches are flawed, because they are arbitrary.

Previous studies have proposed alternative ways of defining the rare
biosphere, for example, by calculating the impact of different thresholds on
beta diversity (Multilevel Cutoff Level Analysis, MultiCoLA)23,24. However,
in a previous studywe showed thatMultiCoLA did not resolve the arbitrary
nature of threshold-based approaches to define the rare biosphere20. Other
studies have suggested evaluating several thresholds against theRAC25,26 and
recalibrate according to sequencing depth, using the ratio between observed
and expected taxa (with Chao index)25. Outside the scope of microbial
ecology, the utilization of unsupervised learning to define rare and common
species has been proposed with the FuzzyQ method27.

Here, we propose an unsupervisedmachine learning approach to solve
themajor issues of the threshold-basedmethods to define themicrobial rare
biosphere. We refer to our approach and respective methodology (using
default parameters, unless stated otherwise) as Unsupervised Learning
based Definition of the Rare Biosphere (ulrb).
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ulrb clusters all taxa sampled from a biological community using the
k-medoidsmodel with the partitioning aroundmedoids algorithm (pam)28.
The k-medoids model is an unsupervised learning model that partitions
points of data into k clusters, minimizing the distance between the points
and the centroid of the clusters28. Within ulrb, the points are the taxa
abundance scores in a given sample, and the clusters represent their
abundance classifications. The ulrbmethod allows for different numbers of
classifications, which can be adapted to the experimental design of the user.
As a default parameter, ulrb uses three clusters (k = 3), corresponding to the
classifications “rare”, “undetermined” and “abundant”. The “unde-
termined” classification can be interpreted as “intermediate”, that is, a state
of abundance between “rare” and “abundant”. There aremetrics that can be
used to inspect what is the best number of classifications29–31 and there is an
option to automatically decide the number of classifications in ulrb (see
Methods).

The introduction of an intermediate classification is optional but
recommended to avoid the existence of taxa with very similar abundance
scores having opposite classifications (“rare” or “abundant”). Previous
studies, using relative abundance thresholds, have also introduced inter-
mediate classifications toprovidemore comprehensive information32,33. The
ecological implication of considering intermediate classifications is the
acknowledgment that some taxa are neither rare nor abundant, for example,
they might be transitioning between being rare and abundant, as con-
ditionally rare taxa34,35. The most important aspect of ulrb is that it auto-
matically classifies taxa based solely on their abundance score within a
community. Furthermore, the method considers that a taxon is not rare/
abundant by itself. Instead, a taxon is rare relative to another that is abun-
dant, or vice-versa.

The objective of this study is to present an unsupervised machine
learning approach for the definition of the rare biosphere and validate its
applicability to a wide range of datasets. Our method can be used for the
analysis of any biological community with the R package ulrb (Unsu-
pervisedLearningbasedDefinitionof theRareBiosphere),whichuses open-
source code and is available in The Comprehensive R Archive Network
(CRAN, https://cloud.r-project.org/web/packages/ulrb/index.html) and

GitHub (https://github.com/pascoalf/ulrb) repositories. Additionally, the R
package ulrb includes a dedicated website with several tutorials and exten-
sive documentation on all functions (https://pascoalf.github.io/ulrb/). ulrb
was tested against microbial communities obtained from different
sequencing and bioinformatics strategies and compared against threshold-
basedmethods for thedescriptionof the rarebiosphere. Its statistical validity
was evaluated against variations in the number of phylogenetic units,
samples and sequencing depth. Further, the applicability of ulrb for non-
microbial (animal and plant) datasets was tested, while also applying the
FuzzyQmethod to the microbial datasets analyzed in this study. Finally, an
ulrb extension to identify types of rarity in a host-microbiome context was
illustrated.

Methods
The ulrb algorithm
The unsupervised learning method used by ulrb is partitioning around
medoids (pam) algorithm28, based on k-medoids model36. In the context of
ulrb, we apply thepamalgorithmfor a single feature,which is the abundance
scores of taxa in a given sample. Thus, the result obtained in one sample is
independent from the result obtained in another sample. The principle of
the pamalgorithm28, in ulrb, is to divide all taxa into a predefined number of
clusters (k), so that taxa within the same cluster are more similar to each
other thanwhat they are compared to taxa of other clusters. This is achieved
by finding the centroids of clusters (medoids) andmaximizing the objective
function, which in this case minimizes the distance between taxa and their
respectivemedoid. Todo this, the algorithm randomly selects two candidate
taxa as medoids, then it calculates the distance between them and all other
taxa, attributing all taxa to the nearest medoid (Fig. 1). Then, the algorithm
enters into the swap phase, whereby themedoids are replaced and distances
are calculated again (Fig. 1). The swap phase is repeated until the total
distances between taxa are minimized, and clusters are defined (Fig. 1). For
more details on the algorithm, we refer the reader to the ulrb package
documentation (https://pascoalf.github.io/ulrb/), as well as toKaufman and
Rousseeuw28 and cluster package documentation37. Because ulrb explores
one dimension of the abundance table (phylotype abundances in a sample),
any data transformationwill not change the relative distance betweenpoints
for abundance classification, and thus the method works equally well for
compositional and non-compositional data.

ulrb R package construction and utilization
The ulrb R package was built using the functionalities of devtools38. It
includes functions to prepare abundance tables and apply the pam algo-
rithm, and helper functions to verify statistics and for data visualization.

Themain function in the ulrb package is called define_rb(), which will
apply the ulrbmethod and automatically provide a classification of all taxa
into “rare”, “undetermined” or “abundant”. The define_rb() function uses
an abundance table as input. This table should include, at least, three col-
umns, indicating the abundance, sample name and phylogenetic unit.
Additional variables are allowed and unchanged by the function defi-
ne_rb(). To apply the pam algorithm28,39 we used the pam() function, from
the cluster package37. Besides thedefault parameters, it is possible tochoose a
specific number of abundance classifications, but in this case the user needs
to manually name them. For example, if the user decides to use k = 4, then
the abundance classificationswill benamed “1”, “2” and soon, but it is trivial
to change those automatic names into user specified terms, e.g., “very rare”,
“rare”, “abundant”, and so on.

It is possible to automatically decide k in define_rb() function. For that
purpose, we made an additional function, suggest_k(), which will calculate
the best k possible, based on either the average Silhouette score31, Davies-
Bouldin index30 or Calinski-Harabasz index29 (more details below). To
calculate the average Silhouette score we used the pam() function from the
cluster R package37 and to calculate the Davies-Bouldin and Calinski-
Harabasz indicesweused the clusterSimRpackage40. Bydefault, suggest_k()
will use the average Silhouette score. Independently of using default or user
specified parameters, the define_rb() function will throw a warning for

Fig. 1 | Schematic representation of k-medoids. This is a simplified illustration of
k-medoids, using 2 dimensions (x and y axis), for two clusters (k = 2), represented by
different colors. aTwo random taxa are selected as medoids. bThe distance between
each medoid and all other taxa is calculated. c Taxa are sorted in the cluster of the
nearest medoid. d After a swapping multiple times, a final classification is achieved.

https://doi.org/10.1038/s42003-025-07912-4 Article

Communications Biology |           (2025) 8:544 2

https://cloud.r-project.org/web/packages/ulrb/index.html
https://github.com/pascoalf/ulrb
https://pascoalf.github.io/ulrb/
https://pascoalf.github.io/ulrb/
www.nature.com/commsbio


samples with low Silhouette scores. To do that, define_rb() identifies clus-
ters, across all samples, where at least half the taxa correspond to a Silhouette
score below0.5. Even if thiswarning appears, theuser canproceednormally,
being aware that itmight be possible to improve the clustering performance.
However, the fact that a specific cluster got a bad average score does not
imply that the structure of the entire clustering result is artificial.Anartificial
cluster is a cluster produced through a human method without prior
assumptions on the data and that may have an unknown or currently
unobservable meaning when looking at the properties of the data.Wewarn
the user, however, that if different studies use different numbers of classi-
fications, to accommodate the best Silhouette scores, then comparability is
hindered.

The function suggest_k() provides the best k value for all samples used
as input, by default. However, suggest_k() can alternatively return a detailed
result, which provides a list with a report on the behavior of the three
different indices (average Silhouette score, Davies-Bouldin and Calinski-
Harabasz indices) across different values of k. The values of k that are tested
by default range from 3 to 10. This range of k values can be changed, but
more than 10 clusters might erode the purpose of using unsupervised
learning methods to define the rare biosphere (and other domain-related
abundance classifications, like “abundant”), because themore clusters there
are, the less information they provide. The user can use any range of allowed
values of k, from twoup to the total number of different abundance scores in
a given sample. Note that ifmore than one sample is tested at the same time,
then themaximumkwill be the lowestmaximumkacross all samples tested.
A tutorial is available on theulrbRpackagewebsite illustrating the impact of
extreme k values on abundance classifications (https://pascoalf.github.io/
ulrb/articles/explore-classifications.html).

To help the users format their dataset for ulrb package functions, we
provide the prepare_tidy_data() function, which can transform common
abundance table formats into the required format. Specifically, taxa by rows,
with samples as columns; or vice versa.

Additional functions usedwithin themajor functions described in here
were illustrated in the package tutorials, available online (https://pascoalf.
github.io/ulrb/index.html).

Unsupervised learning statistics
The package ulrb includes three main statistics to evaluate the quality of
the clustering, which are the average Silhouette score31, Davies-Bouldin
index30 or Calinski-Harabasz index29. To evaluate the quality of the
clusters obtained from ulrb results in this study, we relied on the Sil-
houette score31. However, depending on the user’s needs, one of the other
statistics might be more useful. Briefly, the average Silhouette score
measures cluster definition and separation, the Calinski-Harabasz index
measures cluster separation and density, and Davies-Bouldin measures
cluster separation. Below, we describe the Silhouette score in more detail,
because it was the index used to evaluate the results presented here. For

more details on Calinski-Harabasz and Davies-Bouldin indices, see
Supplementary Methods.

Silhouette score
The Silhouette score calculates how close a taxon is to its own cluster relative
to the next closest cluster. The Silhouette score of a given taxon, S ið Þ, is given
by Eq. 1,

S ið Þ ¼ ðb� aÞ
maxða; bÞ ð1Þ

where a is themean distance between the ith taxon and all other taxa on the
same cluster, and b is themean distance between all taxa in the cluster of the
ith taxa and the centroid of the next closest cluster. It follows that
�1 ≤ S ið Þ≤ þ 1. By convention,S ið Þ ¼ 0means that the ith taxon is as close
to its own cluster as it is to the next closest cluster; S ið Þ ¼ �1means that the
ith taxon is better positioned in the next closest cluster, instead of its own
cluster; and S ið Þ ¼ þ1 means that the ith taxon is in the center of its own
cluster31. Note that a perfect score might indicate an artificial cluster in the
case of an outlier group31, but we address this issue in theDiscussion section
and accept clusters of outliers as valid.

Based on Kaufman and Rousseeuw39, we interpreted the average
Silhouette score as: >0.71 strong cluster; >0.51 reasonable cluster;
≥0.26 weak cluster; and values below 0.26 indicate a potentially artificial
cluster.

The Silhouette score is calculated for each taxon, but it can provide
information on a specific cluster or all clusters (Fig. 2). Thus, the average
Silhouette score of all clusters provides a statistic of quality of the clustering
method, which is comparable with other methods.

Datasets used to validate ulrb
To validate ulrb we used an original dataset presented in this article
(EnvironmentalMonitoring of Svalbard and JanMayer,MOSJ 2016–2020),
along with publicly available datasets emulating diverse ecological contexts,
to strengthen the validation of ulrb and cover a representative range of
methodologies. The public datasets are: Norwegian Young Sea Ice Expe-
dition (N-ICE), MOSJ 2019, Ants, BCI, and coral microbiome. A summary
of the selected datasets and their major features is available in Table 1 (see
also Data Availability). Below we provide a short description of the pre-
viously published datasets, with additional details on Supplementary
Methods, followed by details on the MOSJ 2016–2020 dataset.

Validating ulrb for different phylogenetic units: the N-ICE dataset
The N-ICE dataset is composed of samples collected North of Svalbard in
201541,whichwereused forV4V516S rRNAgene amplicon sequencing and
shotgunmetagenomic sequencing42. The sequencing resultswere previously
processed, using distinct bioinformatics approaches20, resulting in amplicon

Fig. 2 | Schematic representation of the informa-
tion that the Silhouette scores can provide.
a Visual representation of taxa grouped in three
different clusters, each taxon with a Silhouette score.
b The average Silhouette scores of all taxa within a
cluster can be calculated to deliver a single quality
score regarding that specific cluster, or the Silhouette
scores of the taxa from all clusters can also be cal-
culated, to obtain a single average Silhouette score
for the entire sample. The values shown are arbi-
trary, for the purpose of illustrating the possible
ways of grouping the data.
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sequence variants (ASVs, n = 9 samples), operational taxonomic units
(OTUs, n = 9 samples), and metagenome derived OTUs (mOTUs,
n = 9 samples). For extended details on sampling, sequencing and bioin-
formatics processing, see Supplementary Methods. A summary of the
sequencing statistics of N-ICE is available in Supplementary Table 1.

Validating ulrb for different amplicon sequencing strategies: the
MOSJ 2019 dataset
The MOSJ 2019 dataset is composed of samples collected during an expe-
dition in Svalbard, in the framework of the Environmental Monitoring of
Svalbard and Jan Mayer43 (MOSJ) in 2019. Samples were collected for two
different amplicon sequencing approaches44, specifically: V4V5 16S rRNA
gene amplicon sequencing, with Illumina technology, and full-length 16S
rRNA gene amplicon sequencing, with Circular Consensus Sequencing
PacBio technology. Initially, there were 18 samples available per amplicon
sequencing strategy, but after filtering for the samples with high quality in
both sequencing strategies, this number was reduced to 6 samples. For
extended details sequencing and bioinformatics processing, see Supple-
mentary Methods. Sequencing statistics were summarized in Supplemen-
tary Table 2.

Validating ulrb across varying sample sizes, sequencing depths
and phylogenetic diversity: the MOSJ 2016–2020 dataset
We explored a time series of Arctic seawater samples collected for micro-
biome analyses, hereby referred to as the “MOSJ 2016–2020 dataset”,
published in this study, to test the robustness of ulrb under varying sample
sizes, sequencing effort and phylogenetic diversity. Below we describe the
sampling, sequencing, and data processing details of this dataset.

MOSJ 2016–2020: Sampling and sequencing details
Microbiome samples were collected from2016 to 2020 (n = 119 samples) in
a standardized way45 in the framework of the EnvironmentalMonitoring of
Svalbard and Jan Mayer (MOSJ)43. Every year, during the summer season,
the MOSJ campaign collects samples at several stations from the Kongsf-
jorden transect, covering the epipelagic, mesopelagic and bathypelagic
layers. Details on sampling coordinates and depth for the samples that were
used are available in Supplementary Data 1.

Seawater was filtered (mean = 2.9 L, sd = 1.4 L and n = 117 samples,
SupplementaryData 1) through cartridge filters (0.22 µmpore size; Sterivex
units) and DNA was extracted following the DNeasy PowerWater Sterivex
Kit (Qiagen) and best practices from OSD45. Based on a previous work,
variable filtration volume does not constitute a confounding variable46. For
the amplification of V4V5 16S rRNA gene, the primers 515YF (5′-GTGY-
CAGCMGCCGCGGTAA-3′) and 926 R (5′ - CCGYCAATTYMTT-
TRAGTTT- 3′)47–50 were used. Sequencing was performed with Illumina
technology, on MiSeq platforms (2 x 300bp). This study integrates all
119 samples from MOSJ2016-2020 in a single dataset.

MOSJ 2016–2020: processing of V4V5 16S rRNA gene amplicons
To produce ASVs from V4V5 16S rRNA gene sequencing, we used a
bioinformatic protocol based on DADA251. Reads were trimmed at 249 nt
(Forward) and 214 nt (Reverse) based on quality profiles of the entireMOSJ
dataset (2016 to 2020) (Supplementary Fig. 2). Thus, the trimming criteria
were the same for all years, as a compromise to allow standardizationofASV
creation. Default parameters were used for the remaining steps of DADA2
protocol51, which include the creation of an errormodel for quality filtering,
identification of ASVs (i.e., the unique sequences), chimera removal and
taxonomic assignment with Naive-Bayesian algorithm52 and the Silva v138
database53,54.

ASV tables were filtered to remove taxa attributed to unknown
domain-level classifications, eukaryotes and organelles, if any; and single-
tons were removed, if any. ASV tables were rarefied at several rarefaction
levels, considering the rarefaction curves (Supplementary Fig. 3), always
discarding samples below the rarefaction threshold (n = 117 samples after
this step).T
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For a summary of raw read processing statistics, see Supplementary
Table 3.

Examining types of raritywithulrb: the coralmicrobiome dataset
Depending on how the abundance classification changes, taxa can be
grouped in types of rarity3. For example, if one taxon oscillates between
being rare and abundant, it can be considered conditionally rare34. The
current version of ulrb does not allow for the automatic calculation of the
types of rarity. However, once the ulrb classification is obtained (“rare”,
“undetermined” and “abundant” classifications), it is possible to manually
inspect how specific taxa change their classification across some variable. To
test this possibility, we used the coral microbiome dataset, which includes
samples characterized by shotgun metagenomic sequencing to describe
coral host associations55. Specifically, sampleswere collectedwithin the coral
tissue (n = 13 samples), and in the sediment (n = 3 samples) and seawater
(n = 4 samples) surrounding the corals. The corals selected are within the
group of octocorals and include the species Eunicella gazella (n = 3 samples
of healthy tissue, and n = 3 of necrotic tissue), Eunicella verrucosa
(n = 4 samples of healthy tissue), and Leptogorgia sarmentosa
(n = 3 samples). The 16S rRNA gene reads from the shotgun metagenomic
dataset included 93,589 high-quality reads and 1041 mOTUs defined at a
97% similarity cut-off55. For extended details on sampling, sequencing and
bioinformatics processing, see Supplementary Methods.

Validating ulrb for non-microbiome data: Ants and BCI datasets
The Ants dataset includes 49 different species surveyed at 99 sites56,57. This
dataset was made available in the FuzzyQ R package27. For the purpose of
this study, a site is equivalent to a sample. Prior to analysis with ulrb, one
samplewas removed fromtheAnts dataset (site 95) because of low sampling
effort.

The Barro Colorado Island Tree Counts (BCI) is a publicly available
dataset58,59. The BCI dataset used 50 plots of 1 hectare, surveyed over 35
years. For this study, a subset of the full BCI census was used to make a
species abundance table, filtering alive trees and counting the number of
species found in eachcombinationof plot and year of survey (sample for our
purpose).Then,wefiltered sampleswith, at least,more than two tree species.
Our final species abundance table, derived from a BCI subset, includes 327
tree species and 18 samples in a species abundance table.

Statistics and reproducibility
All statistical analyses and plots were produced using R software60. Several
plots used the package ulrb (presented in here) together with ggplot261 and
gridExtra62. Rarefaction was done using the rrarefy() function from the
Vegan R package63, to standardize the total number of reads per sample.
When necessary, centrality metrics were used to avoid overlapping of
samples in the plots. The centrality metric used was the mean ± standard
deviation (sd),with thenumberof samples (n) indicated in thefigure legend.
To compare independent groups, we also used boxplots. For an alternative
unsupervised approach to classify the rare biosphere, we used the FuzzyQR
package27, which also calculates Silhouette scores for a statistical evaluation
of results. For reproducibility, all source data and code are publicly available
(see Source Code, and Data Availability statements). Biological replicates
were defined as independent samples representing the properties on each
independent group of samples being compared, and the sample size (n) was
indicated in each analysis (Table 1). The source code and source data allow
full reproduction of our results64.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Testing ulrb for different kinds of phylogenetic units
To test ulrb applicability across common kinds of phylogenetic units, we
used the N-ICE dataset. Briefly, we considered amplicon sequence variants

(ASVs, n = 9 samples) and pre-computed Operational Taxonomic Units
(OTUs, n = 9 samples) from V4V5 16S rRNA gene amplicon sequencing,
and metagenomic operational taxonomic units (mOTUs) (n = 9 samples)
from full-length 16S rRNA genes obtained via shotgun metagenomic
sequencing. For ASVs, OTUs, and mOTUs, ulrb provided a RAC
description of the microbial communities consistent with the classical view
of the rare biosphere as the long tail of the RAC (Fig. 3a), showing that it can
be used for either kind of phylogenetic unit.

To determine the statistical support of the unsupervised learning
results, we calculated Silhouette scores for the datasets obtained with each
phylogenetic unit (see Methods). The Silhouette scores were higher for
OTUs and mOTUs than ASVs (Fig. 3b), meaning that clustering of phy-
logenetic units into abundance classifications by ulrb was overall more
robust for OTUs andmOTUs than for ASVs. More than 75% of OTUs and
mOTUs formed strong or reasonable clusters (Supplementary Fig. 4).
However, 58%of the abundantASVs formedweak clusters (Supplementary
Fig. 4). OTUs formed strong clusters in all samples; the mOTUs formed
either strong or reasonable clusters in all samples; and ASVs formed strong
or reasonable clusters for “rare” and “undetermined” classifications, except
for one sample (Supplementary Fig. 4). Although some phylogenetic units
and clusters had lower Silhouette scores, the average Silhouette score indi-
cated that the clustering structure across the entire dataset was strong or
reasonable in all samples. This was consistent for all tested phylogenetic
units, including ASVs (Supplementary Fig. 4). The fully automatic alter-
native of ulrb selected three clusters for ASVs and OTUs, but four clusters
for mOTUs. Thus, based on average Silhouette scores (default settings), the
ASV clustering could not be improved any further by using any other value
of k. One possible reason why abundant ASVsweremore difficult to cluster
with ulrb, might be that it included more different abundance values than
OTUs (216 ASVs vs 192 OTUs) andmore extreme values (ASVmaximum
abundance = 5613 reads; OTU maximum abundance = 4825 reads). Note
that this comparison refers to the ulrb statistical robustness against using
different phylogenetic units (OTUs, ASVs, and mOTUs). It does not,
however, imply any recommendation regarding which phylogenetic unit
should be used in specific studies.

To verify if ulrb provides more consistent abundance classifications
for different phylogenetic units in comparison with threshold-based
methods, we examined the alpha diversity (number of ASVs/OTUs/
mOTUs) within each classification obtained (rare, undetermined and
abundant) when using ulrb and two threshold-based approaches (Fig. 4).
Results obtained with ulrb showed a consistent trend for all phylogenetic
units tested, revealing, in all cases, that the rare biosphere consisted of a
larger richness of phylogenetic units than that of undetermined or
abundant phylogenetic units (Fig. 4). Thus, ulrb reflected the shape of the
RAC with better consistency than threshold-based definitions, which
presented distinct patterns for each phylogenetic unit approach (Fig. 4).
The absolute values of the response variable (number of ASVs/OTUs/
mOTUs) are different, because the methodology is different, but they are
consistent, since they have the same relationship. Thus, when using ulrb,
the definition of rarity (and, by extension, the definition of “abundant”
and “undetermined” classifications) had the same interpretation across
phylogenetic units.

For perspective, we applied the same analysis using an alternative
unsupervised learning approach to define the rare biosphere, using FuzzyQ
(Supplementary Fig. 5). The FuzzyQ method worked as expected (Sup-
plementary Fig. 5), presenting generally good quality clusters (Supple-
mentary Fig. 5). Similar to ulrb, the phylogenetic unit with worse quality
clusters was the ASVs (lower Silhouette scores, Supplementary Fig. 5).

Testing ulrb for different amplicon sequencing strategies
To test ulrb applicability to different amplicon sequencing strategies, we
used the MOSJ 2019 dataset, which includes samples from short-reads
(V4V5 region of the 16S gene, n = 6 samples), and long-reads (full-length
16S rRNA gene, n = 6 samples). For either sequencing approach, ulrb was
able to characterize the classical RAC in a way that shows a long-tail of rare
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Fig. 4 | Comparison of number of rare, undetermined (if applicable) and
abundant ASVs from ASVs, OTUs, and mOTUs. Abundance classifications were
estimatedwith differentmethods: one single relative abundance threshold (0.1%, per

sample), two relative abundance thresholds (0.1% and 1%, per sample) and ulrb
using default parameters (k = 3). The number of ASVs was illustrated with boxplots
and points for each sample (n = 6 samples). The outliers weremarkedwith red cross.

Fig. 3 | RAC and Silhouette score plots for N-ICE dataset. aRelative abundance of
each phylogenetic unit (either ASV, OTU or mOTU) from all samples. For each
sample, phylogenetic units were ordered in the x axis from the most to the least
abundant. The y axis shows the abundance score of each phylogenetic unit in
Log10 scale. For context, three relative abundance thresholds are highlighted with

dashed lines (0.01%, 0.10% and 1.00%). b Silhouette scores obtained for each phy-
logenetic unit from all samples. Phylogenetic units are ordered from highest to
lowest Silhouette score. For (a, b), lines were used to group phylogenetic units in the
same sample and abundance classification. Default classifications (“rare”, “unde-
termined” and “abundant”) were colored coded.
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ASVs, followed by an intermediate region of undeterminedASVs and a few
ASVs with very high abundance (Fig. 5a).

In terms of statistical quality of the unsupervised learning results, the
Silhouette scores below 0.5 were more often attributed to abundant and
undetermined than to rare ASVs, especially in the analysis of the full-length
16S rRNAgene approach (Fig. 5b).More than 75%of the rare and abundant
ASVs from the full-length 16S rRNA gene approach formed strong or
reasonable clusters, in contrast with the undetermined ASVs (with up to
34.5%weak and potentially artificial clustering) (Supplementary Fig. 6). For
the V4V5 16S rRNA gene approach, abundant ASVs presented the weakest
Silhouette scores (Supplementary Fig. 6b). For the full-length 16S rRNA
gene approach, half of samples got either strong or reasonable clusters for
any abundance classification (Supplementary Fig. 6). Regarding the V4V5
rRNA gene approach, half of the samples displayed weak clustering for the
“abundant” classifications (Supplementary Fig. 6). When all clusters were
considered, both approaches (V4V5 and full-length 16S rRNA gene
sequencing) had strong or reasonable clustering results (Supplementary
Fig. 6). Thus, the average Silhouette score never fell below 0.5, whichmeans
that the clusters foundwere not artificial.We attempted an improvement by
using the automatic option of ulrb, but the automatic result (relying on
average Silhouette scores) also selected three clusters.

We compared the consistency of different definitions of rarity between
V4V5 and full-length 16S rRNA gene sequencing (Fig. 6). The most com-
mon approach to delineate the rare biosphere (0.1% relative abundance, per
sample) resulted in a higher number of rareASVs than abundantASVswith
the V4V5 region of the 16S rRNA gene, but the opposite was observed for
the full-length 16S rRNAgene (Fig. 6). Using two thresholds also resulted in
different patterns,with thenumber ofASVs goingup anddown fromrare to
undetermined to abundant for the full-length 16S rRNA gene, but always
decreasing when the V4V5 region of the 16S rRNA gene was used (Fig. 6).

Finally, the ulrb approachwas the only one to provide the same patternwith
both molecular methods, showing in each case a clearly higher richness of
ASVs classified as rare than undetermined or abundant (Fig. 6). Thus, ulrb
was able to provide a consistent definition of rarity between the two
sequencing strategies, while the other two definitions, relying on relative
abundance thresholds, failed to do so.

We tested the applicability of FuzzyQ in comparing amplicon V4V5
with full-length 16S rRNA gene sequencing (Supplementary Fig. 7). The
method was able to classify taxa into common and rare but using three
classifications (instead of two)would have been better for the full-length 16S
rRNA gene sequencing data, because some ASVs were grouped near the
threshold of 0.5 commonality index (Supplementary Fig. 7). Regardless of
the number of clusters, the clustering quality was good for both sequencing
strategies, except for a few common ASVs obtained from V4V5 16S rRNA
gene sequencing approach (Supplementary Fig. 7).

Verifying robustness of ulrb against sample size, sequencing
depth and number of taxa
To verify the robustness of ulrbwe used theMOSJ2016-2020 dataset, which
includes up to 117Arctic seawater samples characterized by 16S rRNAgene
sequencing and processed with the DADA2 pipeline for ASV-based
diversity assessments (see Methods). We tested the quality of clustering
(measured by average Silhouette score) as a function of three variables that
distinguishdatasets: (1) number of samples (n); (2) number of taxa (ASVs in
this context); and (3) sequencing depth, per sample.

To test the effect of sample size (n), we locked the sequencing depth
at 10,000 reads (using rarefaction), resulting in a total pool of 114 high-
quality samples. Then, we subsampled random samples, without repla-
cement, from the pool of 114 high-quality samples. At each step (from
n = 6 to n = 114), we applied ulrb to all the samples and then calculated

Fig. 5 | Comparison of ASVs derived fromV4V5 and full-length 16S rRNA gene.
aRelative abundance of eachASV in Log10 scale, ordered in the x axis from themost
to the least abundant. For context, three relative abundance thresholds are high-
lighted with dashed lines (0.01%, 0.10% and 1.00%). b Silhouette score of each ASV.

For both (a, b), lines were used to group ASVS in the same sample and abundance
classification. ASVs were colored coded by abundance classification (“rare”,
“undetermined” and “abundant”).

https://doi.org/10.1038/s42003-025-07912-4 Article

Communications Biology |           (2025) 8:544 7

www.nature.com/commsbio


the average Silhouette score of each sample and plotted the mean ± sd
(Fig. 7a). Results showed that ulrb provided high quality clustering
(average Silhouette scores >0.75) for the rare biosphere with low (n < 30)
and high (n > 30) sample size. The “undetermined” and “abundant”
classifications, similarly to the previous sections (Fig. 3 and Fig. 5),
presented lower quality. However, the “undetermined” classification
presented mostly reasonable clusters, and the “abundant” classification
varied between weak and reasonable clusters (Fig. 7a). Importantly, the
average Silhouette scores presented more random variation at the
“undetermined” and “abundant” classification at low sample size (n < 30)
than at large sample size (n > 30). In fact, above 30 samples, ulrb results
were very robust for all abundance classifications (Fig. 7a).

To test the robustness ofulrb against different number of taxa (ASVs in
this context), we selected 34 samples and rarefied them to 50,000 reads, to
have as many ASVs as possible and at least n > 30 samples. Then, we
collected random ASVs (from 100 ASVs to up to 4000 ASVs) per sample,
without replacement. Figure 7b shows that, for this set of samples, all
abundance classifications obtained very good scores (average Silhouette
score >0.75). Importantly, the number of ASVs clearly had no effect on the
qualityof the clustering obtainedbyulrb. To show that the randomselection
of ASVs was able to keep the RAC shape and was not exclusively obtaining
ASVs of one single abundance classification, we illustrate the RAC obtained
by a random selection of 100, 1000, and 3000 ASVs in a random sample
(Supplementary Fig. 8).

To test the impactof sequencingdepth,we selected the 34 sampleswith
more reads and applied different rarefaction levels to them (from1000 reads
to up to 50,000 reads). Remarkably, ulrbwas extremely robust for variations
in sequencing depth, since the average Silhouette score was almost perfectly
constant as a function of sequencing depth (Fig. 7c). As in the sample size
analysis, the “rare” classification presented better quality than the “unde-
termined” and “abundant” classifications (Fig. 7c).

In summary, by applying variations in specific features of a large
dataset, we showed that ulrb presented robust results for variations in
sample size, number of taxa (ASVs in here) and sequencing depth. Since any
abundance table will ultimately vary because of a combination of different
number of taxa, samples and order ofmagnitude of the abundance score, we
present evidence that ulrb is robust for a wide range of abundance
tables (Fig. 7).

Finally, we verified the impact of the same variables on the application
of FuzzyQ and found that this method generally presented high quality
clustering for the “rare” classification, but potentially artificial clusters for
the “common” classification (Supplementary Fig. 9). However, FuzzyQ
results improved for larger datasets (n > 30 andASVs > 700), and it was not
limited by sequencing depth (Supplementary Fig. 9).

Validating ulrb for non-microbial datasets
To test if ulrb can be applicable for non-microbiome datasets, we applied
ulrb to animal and plant datasets that were publicly available, the Ants27,56

and theBCI59 datasets.ulrbwas able to classify all ant species into abundance
categories, depicting a few species thatwere abundant, undeterminedor rare
in different samples and also a long tail of rare species (Fig. 8a). The clus-
tering quality was also good for most species (average Silhouette score
>0.75), with very few species in low quality clusters (Fig. 8b).

Similarly, ulrb was able to classify rare, undetermined and abundant
tree species in the BCI dataset (Fig. 8c, d). Furthermore, the classifications
obtained showed a reasonable division between abundance scores, illus-
trating the applicability of ulrb (Fig. 8a). The Silhouette plot reveals that ulrb
provided robust classifications for most species, with only a few presenting
low average Silhouette scores (Fig. 8d).

Using ulrb to establish types of rarity
To show that ulrb can be used tomonitor taxa and, therefore, describe types
of rarity, we used a coral microbiome from a shotgun metagenomic
sequencing dataset55. Specifically, we monitored the classifications obtained
for a selected group of mOTUs (561, 559 and 866, based on Keller-Costa et
al.55) across different coral species, health status and surrounding environ-
ment, in away that effectively described different types of rarity (Fig. 9). The
mOTUS (561, 559, and 866) were selected based on previous knowledge of
their ecology and adequacy to describe types of rarity. OTU 561 (genus
Anaerospora) was absent in healthy coral tissue and in sediment but was a
member of the seawater rare biosphere and colonized the necrotic coral
tissue, becoming rare or undetermined (Fig. 9). Thus, ulrb helped identify
OTU561 as a potential necrotic tissue colonizer and established its origin in
the seawater rare biosphere. Another example of a necrotic tissue colonizer
was OTU 559 (family Rhodobacteraceae), which was abundant in necrotic
tissue and seawater, but rare or undetermined in healthy octocoral tissue.

Fig. 6 | Comparison of number of rare, undetermined (if applicable) and
abundant ASVs from V4V5 and full-length 16S rRNA gene sequencing. Abun-
dance classifications were estimated with different methods: one single relative
abundance threshold (0.1%, per sample), two relative abundance thresholds (0.1%

and 1%, per sample) and ulrb using default parameters (k = 3). The number of ASVs
was illustrated with boxplots and points for each sample (n = 6 samples). There were
no outliers.

https://doi.org/10.1038/s42003-025-07912-4 Article

Communications Biology |           (2025) 8:544 8

www.nature.com/commsbio


This result indicates that specific, abundant members of the seawater
microbiome (in this case, a Rhodobacterales phylotype) may belong to the
rare biosphere of healthy, host-associatedmicrobiomes and rapidly colonize
decaying host tissue, transitioning from rare to abundant while the sym-
biotic microbiome enters the dysbiosis state (Fig. 9). A contrary example is
OTU 866 (family Endozoicomonadaceae), which was abundant in healthy
coral tissues, but became rare or undetermined under necrosis (except for
EG18_N) and was rare or absent in the sediment and seawater samples
(Fig. 9). Thus, ulrb indicates that this phylotype in the family Endozoico-
monadaceae represents a coral symbiont enriched in healthy while depleted
in necrotic tissues.

Discussion
Microbial ecology studies usually delineate rare from abundant taxa based
on relative abundance thresholds2,3. Here we propose the ulrb method,
which automatically clusters taxa based on the relationship between their
abundances in a given sample, without the need of a threshold selection.
Thus, the common observation that most taxa are “rare”means that these
are within a small range of low abundance values, while the few “abundant”
have a disproportionately higher abundance. In microbial ecology, the
killing-the-winner hypothesis65,66, in which lower cell abundance decreases
the probability of encountering bacteriophages, is often evoked to explain a
possible ecological strategy underlying the existence of so many rare taxa

within a community. In addition, somemicroorganismsmight be dormant
but keep the ability to grow and become abundant under conditions that are
more favorable34. Other microorganisms are able to keep high metabolic
activity, even though at low abundance67. Ecological effects, such as dis-
persion and drift might also contribute for the emergence of some rare
taxa1,24. Finally, some rare taxamight bedecreasing their abundance towards
local extinction2. Previous reviews have summarized evidence for these
mechanisms24. Since ulrb is an unsupervised machine learning method, it
makes no assumptions about metabolic or ecological mechanisms shaping
community composition, i.e., the classification solely depends on the
abundance table provided. However, the resulting classifications can be
explained by such ecological mechanisms. For example, an abundant taxon
that becomes rare could indicate the existence of a top-down factor, while
the sudden emergence of a rare taxon previously unreported in a specific
environment could indicate dispersion effects.

The most used methods to define the rare biosphere are problematic,
because they are based on arbitrary thresholds of relative abundance20,24. To
provide concrete numbers, we summarize the literature on the microbial
rare biosphere, from January 2006 to 2024 (Supplementary Table 4). Of 181
articles, approximately 37% did not provide a clear methodology to define
the rare biosphere and, among those that defined the rare biosphere
explicitly, approximately 84% used relative abundance thresholds (Sup-
plementary Table 4). Within the studies that relied on relative abundance

Fig. 7 | Quality of ulrb clustering measured by the average Silhouette score as a
function of number of samples, ASVs, and sequencing depth. a Number of
samples (n), ranging from 6 samples up to 114 samples, in increments of two
samples; b number of ASVs, ranging from 100 to 4000 ASVs per sample, in
increments of 300 ASVs; c, number of reads per sample, in increments of 1000

reads. The samples (a), ASVs (b) and reads (c) were randomly selected in each
increment, without replacement. For the response variable, the mean (±sd) of the
average Silhouette score was used and the classifications were grouped by different
colors, as illustrated in the figure legend. The MOSJ2016-2020 dataset was used for
this figure.
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thresholds, approximately 60% used a single threshold, while the remaining
used two or more thresholds (Supplementary Table 4). Approximately half
of the studies used 0.1% relative abundance to distinguish rare from
abundant phylogenetic units within communities, with approximately 70%
applying the thresholdper sample, insteadof applying it to thewhole dataset
at once (Supplementary Table 4).

We compared two of the most common approaches to define the rare
biosphere against ulrb, specifically, the utilization of a single threshold of
0.1% relative abundance per sample, and the alternative including an
intermediate level of relative abundance ranging from 0.1 to 1%. To do this
comparison, we applied the different definitions of rarity to environmental
replicates assessed by different methods (V4V5 and full-length 16S rRNA
gene sequencing and metagenomics), showing that threshold-based defi-
nitions have patterns of diversity that are method-dependent, while ulrb
provided the same pattern across all methods. More specifically, using
threshold-based definitions, the number of rare and abundant taxa was
inconsistent across methodologies, but it was very consistent when using
ulrb. This is because threshold-based methods do not accommodate the
differences in sequencing depth and variability of taxa abundance, unlike
ulrb. ulrb captures the rarity concept without the need for arbitrary
thresholds in a way that is consistent across datasets, because it solely
depends on the relative distancebetween taxa abundance scores. This ability
to capture connections between the abundanceof taxa, independently of the
order ofmagnitude of the abundance scores, provides classifications that are
non-random and both biologically and ecologically informative.

The clustering results from ulrbwere generally stronger for OTUs and
mOTUs than for ASVs (based on Silhouette scores, Supplementary
Figs. 4 and 6). ASVsmay be harder to cluster into abundance classifications,
because they are more prone to extreme values, which will affect the clus-
tering result, for example, by creating a single cluster for outliers. This
problem can be solved by removing outliers31, but in this context abundant
taxa are outliers that must be kept, because they represent real taxa.
Therefore, we propose that taxa that are outliers relative to the remaining

taxa should be considered abundant taxa, even if itmeans that very few taxa
are defined as abundant. Another factor that might contribute for the dif-
ficulty of clustering ASVs by ulrb is that such datasets usually consist of
diverse, highly similar phylogenetic units (e.g., sequences diverging in few
nucleotides fromone another), each of which possessing its own abundance
score, but frequently representing one single microbial species (or sub-
populations within one species)44.

The ulrbmethod proved to be statistically robust for any variation of
the main variables shaping an abundance table. Collectively, the classifica-
tion of taxa into “rare” was usually of better statistical quality than the
“undetermined” and “abundant” classifications. A reason for this is that the
“rare” classification includes more taxa than the “undetermined” and
“abundant” classification, which in turn gives the “rare” classification
stronger clusters. Additional evidence for this assertion is that if we ran-
domly select a certain number of taxa, the clustering quality becomes
equivalent for all classifications. Another reason for the observation of
stronger clusters in the rare biosphere is that the variability of abundance
among rare taxa is much lower, thus contributing to better defined clusters.
The robustness of ulrbwas not affected in anyway by the sequencing depth,
which explains why ulrbwas able to provide consistent results formicrobial
datasets derived from different sequencing methodologies. In fact, the
reason why we cannot use the same relative abundance threshold for 16S
rRNAgenemetabarcoding (amplicon sequencing) and 16S rRNAgene data
derived from shotgun metagenome sequencing is precisely the different
order ofmagnitude of the datasets, which is an issue that is not solved by the
compositional nature of the data. Furthermore, ulrb was also statistically
robust independently of the number of samples, even though the Silhouette
scoresof the “undetermined” and “abundant” classifications variedmore for
datasets containing less than 30 samples. This was expected, because a low
sample size (n < 30) may not be enough to characterize the mean value of a
distributionofdata68. Sinceulrb is applied to a specific sample and its result is
not impacted by the existence of other samples, a perfect result would be a
horizontal line, representing no variation in the clustering quality.However,

Fig. 8 | Analysis of ulrb applicability to Ants and BCI datasets. aMean ± sd of
relative abundance of ranked species from theAnts dataset (n = 98 samples), colored
by classification; bmean ± sd of average Silhouette score of ranked species from the
Ants dataset (n = 98 samples), colored by classification; c mean ± sd of relative

abundance of ranked species from the BCI dataset (n = 18 samples), colored by
classification;dmean ± sd of average Silhouette score of ranked species from the BCI
dataset (n = 18 samples), colored by classification.
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because we are selecting random samples from the dataset, those samples
will have random variation between them. As the sample size increases, the
random variation decreases and approaches the true average.

ulrb was designed for handling large abundance tables derived from
molecular analyses ofmicrobial communities. Yetwe showed that it can also
be applied to non-microbial data, using the ants and plants datasets (Fig. 8).
This was expected, because ulrb relies on the relative distance between the
abundance scores of the taxa within a sample. Furthermore, the microbial
and non-microbial abundance tables have the same underlying structure,
with differences in the number of taxa and the abundance score of those
taxa. Thus, sincewe showed thatulrbwas consistent for anyvariation in taxa
numbers, sequencing depth and number of samples (Fig. 7), ulrb was
expected to work properly for non-microbial data.

Outside the scope of microbial ecology, a previous study has suggested
the utilization of unsupervised learning to define rare and common taxa,
using FuzzyQ27. FuzzyQ has an analogous framework to ulrb, because both
are able to define rare taxa without the introduction of arbitrary thresholds,
i.e., they provide automatic classifications. However, there are several dif-
ferences between both methods, because of the number of features used
(Supplementary Fig. 10), making it unreasonable to directly compare them.
However, we applied FuzzyQ to similar data in parallel to provide

perspective and identify potential advantages and disadvantages. Briefly,
both methods can be used to define the rare biosphere for microbial and
non-microbial data, but ulrb provides information at sample level, while
FuzzyQ provides information at the whole dataset level. Thus, one dis-
advantage of FuzzyQ relative to ulrb is that it is not clear if a taxon is
common/rare due to the frequency of occurrence or to its underlying
abundance in the study. Consequently, it provides little information on the
transition between rare and abundant states for a given taxon across sam-
ples. Some advantages of FuzzyQ include the commonality index, which
indicates how common or rare a taxon is with a particular dataset. Addi-
tionally, the automatic inclusion of frequency of occurrence provides
information on commonality, showing how often a taxon appears across
samples. This information about the “rare” and “abundant” classification
can be useful in certain experimental settings.

We showed that ulrb can be adapted to manually inspect the types of
rarity within a given dataset, using data derived from a coral microbiome
study55. Such an analysis supported the identification of likely mutualistic
octocoral symbionts, such asmembers of the familyEndozoicomonadaceae,
which were abundant in healthy coral tissues, but rare or absent in most
necrotic tissues, sediment and seawater. The sameapproachalso allowed the
identification of the genus Anaerospora as a seawater rare biosphere

Fig. 9 |Monitoring of the abundance classifications of selectedOTUs. Samples are
represented on the x axis and the abundance classification on the y axis, with lines
connecting samples that are related. For Eunicella gazella species, lines connect
healthy to necrotic tissue (EG15_H, EG16_H, EG18_H and EG15_N, EG16_N,
EG16_N), while Eunicella verrucosa (EV01, EV02, EV03, EV04) and Leptogorgia
sarmentosa (LS06, LS07, LS08) only presented healthy tissue. Additionally, sediment

(SD01, SD02, SD03) and seawater (SW01, SW02, SW03, SW04) samples were also
represented in distinct groups. The different coral species, sediments and seawater
were separated by vertically dashed lines. Relevant taxonomic information of the
selected OTUs is indicated at the top of each plot. To indicate that an OTU was
absent in a sample, we added the classification “absent”, which is not obtained
from ulrb.
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member with the ability to colonize necrotic corals, but not healthy ones.
Such examples demonstrate that ulrb can be easily adapted to ascertain
different types of rarity bymonitoring selected taxa across relevant variables.
However, ulrb is currently unable to automatically calculate types of rarity
for any dataset, which means that the user must manually do such mon-
itoring. We foresee the implementation of such capabilities in future ver-
sions of ulrb.

On the microbial side, this study focused specifically on prokaryotes,
but ulrb should work equally well for othermicrobial groups (e.g., fungi and
protists) obtained with high-throughput sequencing methods, because the
data will have similar characteristics. Furthermore, any variation in such
datasets will necessarily be within differences in number of taxa, samples
and sequencing depth, which we showed did not have any impact on ulrb
robustness and applicability.

The identification of types of rarity across a set of samples, the optimal
number of abundance clusters to be used, and the eventual occurrence of
clusters represented by outliers are all challenges that need to be met in
current rare biosphere research. For each case, the present version of ulrb
offers possible solutions, but also presents limitations.We show that typesof
rarity can be defined by manually inspecting target taxa, but we lack an
automatic approach to do so in the current version; we suggest a standard
number of clusters (k = 3), which might not be adequate for some experi-
mental settings; and ulrb may also produce clusters composed of a single
outlier taxon, which is explained by the extremely high abundance of such
taxon relative to the remainder. Those limitations can be mitigated with
tools available in the current version, but future work will attempt to solve
those issues. In terms of computational power, since ulrb applies its calcu-
lations on a single dimension, it is quite fast. It is worth noting that if
different studies select different numbers of clusters, then inter-
comparability across studies might be compromised.

Conclusion
This study presents the ulrb R package, with a methodology to define the
rare biosphere across microbial communities. This R package is open-
source and includes a dedicated website (https://pascoalf.github.io/ulrb/),
with tutorials explaining how to use ulrb functions and extensive
documentation.

We show that ulrb provides a more consistent interpretation of the
microbial rare biosphere across different sequencing strategies and bioin-
formatic protocols than threshold-based methods, because it is statistically
robust against variations in taxa counts, sequencing depth and number of
samples.We demonstrate that ulrb can also be used for non-microbial data,
because it depends only on the relative differences between the abundance
scores of taxa within a community. Thus, ulrb is effectively independent of
the methodology used to produce the abundance table.

Finally, we show that ulrb results can be used to manually monitor
specific taxa and ascertain types of rarity3,34. However, future work is
necessary to implement an automatic classification of types of rarity in the
ulrb R package.

Owing to the features mentioned above, ulrb is readily applicable to
discern rare from abundant organisms across various scenarios, showing
great potential to standardize microbial rare biosphere analysis. ulrb can be
used, but is not limited, to studying transitions from eubiosis to dysbiosis
states in host-associatedmicrobiomes, emergingmicrobial diseases because
of climate change, biological invasions, community gradient analyses and
landscape ecology data, to name a few possible applications.

Data availability
The FASTQ files from the N-ICE dataset are available at European
Nucleotide Archive (ENA), with project ID PRJEB21950 (V4V5 16S rRNA
gene amplicon sequencing) and PRJEB15043 (shotgun sequencing of
metagenomes). The FASTQ files from the MOSJ dataset are all available in
the projects PRJEB24517 (2016), PRJEB72025 (2017), PRJEB72030 (2018),
PRJEB60815 (2019) and PRJEB72034 (2020). The Ants dataset used is
available in the R package FuzzyQ27. The BCI dataset usedwas derived from

original data made publicly available in DRYAD (https://doi.org/10.15146/
5xcp-0d46)58. The octocoral microbiome dataset shotgun metagenomic
sequencingdata is available inENA,underprojectPRJEB13222. Sourcedata
for all plots and analyses is available in the GitHub repository (https://doi.
org/10.5281/zenodo.14922332)64.

Code availability
The source code for ulrb R package is available at GitHub (https://github.
com/pascoalf/ulrb) and CRAN. All the code to process raw reads and
reproduce the figures and tables in this paper are available in a GitHub
repository (https://doi.org/10.5281/zenodo.14922332)64. The code used for
the current version of ulrb R Package (0.1.6) is also available in a repository
(https://doi.org/10.5281/zenodo.14922442)69.
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