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Exploring natural or pharmacologically induced brain dynamics, such as sleep, wakefulness, or
anesthesia, provides rich functional models for studying brain states. These models allow detailed
examination of unique spatiotemporal neural activity patterns that reveal brain function. However,
assessing transitions between brain states remains computationally challenging. Here we introduce a
pipeline to detect brain states and their transitions in the cerebral cortex using a dual-model
Convolutional Neural Network (CNN) and a self-supervised autoencoder-based multimodal clustering
algorithm. This approach distinguishes brain states such as slow oscillations, microarousals, and
wakefulness with high confidence. Using chronic local field potential recordings from rats, our method
achieved a global accuracy of 91%, with up to 96% accuracy for certain states. For the transitions, we
report an average accuracy of 74%. Our models were trained using a leave-one-out methodology,
allowing for broad applicability across subjects and pre-trained models for deployments. It also
features a confidence parameter, ensuring that only highly certain cases are automatically classified,
leaving ambiguous cases for the multimodal unsupervised classifier or further expert review. Our
approach presents a reliable and efficient tool for brain state labeling and analysis, with applications in

basic and clinical neuroscience.

Brain states are unique configurations of neural activity that are expressed in
different behavioral and cognitive conditions, such as wakefulness, sleep,
and anesthesia”. These states are characterized by distinct spatiotemporal
patterns of neuronal firing and functional connectivity, which influence
how the brain processes information and responds to external stimuli*”.
The significance of the properties and transitions between these brain states
are not only relevant to the investigatation of the mechanisms at play in the
healthy brain, but are also critical for the understanding of pathological
brain states*"’.

The classification and identification of sleep stages has been at the core
of sleep studies, and has required human supervision for decades. Another
relevant use of the identification of brain states is during anesthesia, since it is
critical to know the level of anesthesia during medical procedures to ensure
sedation and minimal side effects. The relevance of such identification is
reflected in various recent investigations, using machine learning methods
for the automatic detection of sleep stages'""* or anesthesia depth'*™'°. The

identification of consciousness levels, especially in disorders of
consciousness'’, have also been a target of recent deep learning
developments'®. All these approaches primarily rely on features extracted
from electroencephalography (EEG) to classify different stages. These cases
illustrate that the identification and study of brain states and the transitions
across them are of crucial interest for clinical applications.

The study of brain states is also critical for basic neuroscience, which
investigates more detailed mechanisms involving the cellular and local
network levels, leveraging techniques with higher spatial resolution than
EEG"”. Brain states can occur naturally or be artificially induced, with slow
wave sleep and deep anesthesia being prime examples of each type,
respectively. Both these states show similar brain activity patterns over time
and space, making them ideal for studying how the brain can operate under
conditions of lower excitability and synchronized activity patterns”. During
wakefulness, the cortex is characterized by asynchronous activity that cor-
responds with heightened consciousness and cognitive capabilities.
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However, in the context of deep sleep or deep anesthesia, the cortex pre-
dominantly exhibits synchronous slow oscillations (SO) that vary from 0.5
to 2 Hz for deep sleep, and 0.1 to 1 Hz for deep anesthesia® . These
oscillations rhythmically shift between active “Up states” and quiescent
“Down states™* (also known as Off-periods®), leading to a reduction in both
information processing and spatiotemporal complexity”* . Deep anesthe-
sia provides a valuable model for exploring the brain’s quieter operational
modes and their transitions to more active states'*””. Unlike the
unpredictability of spontaneous sleep transitions, anesthesia offers the
advantage of precise experimental control over the state. Wakefulness and
deep anesthesia are two extremes within a much broader spectrum of
possible brain states"”, and the study of different levels of anesthesia on
cortical dynamics provides an avenue for this research**** generating diverse
spatiotemporal patterns corresponding to brain states with physiological
relevance™.

One of the brain states that emerges when transitioning from deep to
light anesthesia are microarousals. Microarousals are periods of desyn-
chronized activity, arousal-like, that are well known in the field of physio-
logical sleep, appearing in alternation with slow waves™. Microarousals are
also relevant in different pathologies in which they present alterations, like in
sleep disorders or different neurological and psychiatric conditions. Recent
findings” suggest that transitioning from deep anesthesia to wakefulness is
marked by both subtle and pronounced shifts in brain dynamics, as seen in
local field potential (LFP) and multi-unit activity’® (MUA). Microarousals
can also be seen by injecting norepinephrine into the basal forebrain in
subjects under desflurane anesthesia™, and also by the spontaneously
released norepinephrine by the locus coeruleus during slow wave sleep”,
which has an important role in memory. This intriguing behavior can be
best understood as an evolving balance between two competing attractor
states”. In particular, the transition does not merely involve a gradual
evolution from one state to another. Instead, it showcases a period of
alternating oscillation between the SO and more asynchronous states, like a
back-and-forth salsa dance, with the latter progressively dominating as
wakefulness approaches’*’. Research including studies by Tort-Colet et al.”
and Camassa et al."’, has effectively mapped brain states under anesthesia in
rats, particularly focusing on microarousal (MA) states''. However, there are
no computational tools capable of analyzing MA states, especially con-
sidering the challenges of inter-subject variability and the complexity of
transitions between MA states*>*’.

Here we introduce a computational tool designed to (1) classify brain
states that occur when going from deep anesthesia towards wakefulness
and, (2) categorize the transitions between them, especially those occur-
ring in the microarousals state. We use invasive LFP signals, providing
more precise spatial resolution than non-invasive EEG. Our methodology
employs deep learning techniques and dual-model Convolutional Neural
Network (CNN) architecture along with an autoencoder-based clustering
algorithm. This setup is designed and optimized to identify patterns with
a high degree of certainty, setting a strict confidence threshold to ensure
prediction accuracy. Any segments that do not meet this threshold are
labeled as “unknown” and are further scrutinized through a self-
supervised autoencoder-based clustering algorithm, inspired by recent
advancements in computer vision research*~*. The latter model refines
classifications by reconstructing the samples and clustering them in the
frequency domain. With this layered approach, we can precisely cate-
gorize “unknown” samples as belonging to one state or transitioning
between two. Overall, our methodology delivers accuracy rates that meet
or exceed top-performing techniques in related fields such as sleep stage
classification and comparable anesthesia studies using other techniques
such as EEG"***. In this paper, we focus on local neuronal activity and
the differentiation of MA states and their transitions, areas that have
recently gained experimental attention”****. This highlights our
approach’s effectiveness and adaptability in specialized brain state cate-
gorization, including deep anesthesia scenarios and transitions. Further-
more, our work enhances current and common practices in visual
inspection labeling and other manually curated methods.

Results

We analyzed in vivo cortical LFP recordings from chronically implanted rats
(n =4, including a total of over 60 h of recordings) to classify brain states and
their transitions as the animal awakens from deep anesthesia. Our analysis
focused on dynamic features of brain states, such as the amplitude, the
frequency of the events, their shape, and their power spectral density (PSD).
All these features are indicators used to classify the different brain states
including SO, MA, and the awake state (AW). In line with recent findings,
we further distinguish synchronous (slow MA) and asynchronous (asynch.
MA) segments within the microarousal state” (Fig. 1a). We tested our dual-
step machine learning system on data from four subjects across multiple
sessions (up to four sessions per subject, each conducted on a separate day
and lasting up to 6 h), ensuring a variety in data volume across subjects.
Importantly, we employed a leave-one-out approach, meaning the data
from one subject was never used in the training or validation for that same
subject test.

Our method consisted of two main blocks, as shown in Fig. 1b. First,
the general model, composed of two CNN models (see Supplementary Fig. 1
for an overview of the CNNs’ architecture), predicts the label of the samples
with a certain probability. If the probability of a sample belonging to one
specific state is above the confidence level (CL), in this case 90%, they are
classified as AW, SO and each type of MA. On the contrary, if the sample has
a probability below the CL, it is marked as “unknown”. These “unknown”
samples are further processed via an autoencoder-based clustering, which
provides a final prediction for every sample. The clustering method also
allows the detection of the potential transitions between the MA states.

To evaluate the performance of our model (see Supplementary
Table 1), we report various accuracies, including global and individual ones,
for samples classified above the 90% CL, for those below the 90% CL, and for
all samples, across grouped or individual states. Accuracies involving
grouped states were calculated as the weighted average (in relation to the
number of samples) of accuracies for each state. The global accuracy
achieved, which combines high-confidence classifications and samples
refined through the autoencoder-based clustering, was 91%. The global
accuracy and the individual accuracies reported next highlight the robust-
ness of the pipeline in processing both clear and ambiguous cases.

CNN classification

In the initial block of our system, all four subjects included in this study
achieved high accuracies across the four main states, as shown in Fig. 2 and
Supplementary Table 1. The first CNN model, which classified AW, SO, and
MA for samples above the CL, achieved an accuracy of 97%, while the
second CNN model, which classified slow MA and asynchronous MA,
achieved an accuracy of 87%. Overall, for samples above the CL, combining
both CNN s and across all subjects and states, we obtained an accuracy of
93%. For samples below the CL, we obtained an accuracy of 88% (see
Supplementary Table 1). At the individual state level, the accuracy for the
AW state was 81% + 22%, while the SO and overall MA states demonstrated
higher accuracies of 95% *+ 4% and 98% =+ 2%, respectively. Within the MA
state, the asynchronous MA sub-state achieved an accuracy of 93% + 5%,
contrasting with the slow MA sub-state, which had a lower accuracy of
74% * 38%. All the results presented, including those in Fig. 2a, use 90% as
the CL. Data segments falling outside this threshold are noted as “unknown”
and are processed in the subsequent autoencoder-based clustering phase of
the system. Figure 2b illustrates examples of unknown samples under dif-
ferent confidence parameters. For a CL of 90%, the percentage of data that
remains unlabeled and requires further classification is as follows: 14% + 6%
(AW), 11% +10% (SO), 6% +6% (MA), 38% +8% (slow MA), and
20% * 11% (asynchronous MA) (see Supplementary Fig. 2 and Supple-
mentary Table 1).

Autoencoder-based clustering performance

The second part of the system addresses the “unknown” samples, unclas-
sifiable with high confidence by the CNN models. The samples are then
reconstructed using autoencoders and its reconstruction is used to calculate
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their PSD in the delta (0.1-1 Hz), theta (4-8 Hz) and gamma (100-500 Hz)
frequency bands (Fig. 2¢) (see Methods). To further distinguish between the
asynchronous and synchronous phases of the MA state, we employed an
unsupervised clustering algorithm that detects those samples that poten-
tially come from transitions between the asynchronous and synchronous
phases of the MA (see Methods). With the autoencoder-based clustering
model we achieved individual state accuracies of 74% +26% (AW),
95% + 5% (SO), 71% + 28 (slow MA) and 60% * 20% (asynchronous MA),
see Supplementary Table 1.

In Fig. 2c we present in orange the transitions we can detect using our
method. In the analysis of all sessions of one subject, most of the transitions

d
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between the MA states we found using the method were well detected,
having an average accuracy across subjects of 75% + 6%. In Fig. 2d the traces
identified as asynchronous MA, slow MA, or transitions across them are
shown. Figure 2e illustrates the final accuracies of all states for the different
prediction methods. The “Global” one includes all samples without
adjusting for confidence levels or transitions. The “CNN” focuses only on
unknown samples—those below the confidence threshold—and selects the
predicted class as the one with the highest probability from the CNN model.
The “centroid-with-transitions” method also considers only the unknown
samples, but predicted classes are determined using a centroid-based clas-
sification method, assigning unknown samples to the closest centroid class,
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Fig. 1 | Brain state classification and network structure. a Recorded data and states.
Schematics of the different Ground Truth brain states. The LFP of a full transition is
shown. It starts at the Awake (AW) state and after the anesthesia induction it falls
into the Slow Oscillation (SO) state. After a few hours it goes to the Microarousals
(MA) state, approaching wakefulness. The samples used as input to the models are
reshaped to a MxN matrix, where M is the number of samples and N = 2000 samples
(2-s windows, fs = 1000 Hz). b Model overview, A model for the state classification is
built using the leave-one-out strategy (i.e., the subject tested is not used for model
training or validation). The model classifies the samples as the known states (AW,
SO, MA, which can be divided into asynchronous MA and slow MA) if a confidence
threshold (90%) is passed, otherwise, the samples are labeled as “unknown”. From
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the classified known samples, an autoencoder (AE) is trained on each state. Each
known sample is then reconstructed with the corresponding state AE and the
spectral power in the delta (0.1-4 Hz), theta (4-8 Hz), and gamma (100-500 Hz)
bands is computed to find the centroids of each AE-reconstructed state. The
unknown samples are also reconstructed with the AE that gives the minimum Mean
Squared Error (MSE). The same spectral power is then calculated and projected over
the known samples space, where these unknown samples are re-classified as the state
whose centroid is the closest. We here add a new centroid, in between slow MA and
asynchronous MA centroids to account for samples that may contain a transition
between these two states.

Communications Biology | (2025)8:599


www.nature.com/commsbio

https://doi.org/10.1038/s42003-025-07991-3

Article

including the computed “Transitions” centroid (see Methods). Lastly, the
“centroid-no-transitions” method also applies a centroid-based classifica-
tion but excludes samples belonging to the MA transitions centroid when
determining the predicted classes.

The decline in accuracy from Global to CNN results from adding all
samples in the Global approach, including those above the 90% confidence
threshold. As evident in Fig. 2a, b and Supplementary Fig. 3, the accuracy of
these samples is notably high. The decrease observed from CNN to centroid-
with-transitions classified samples is attributed to the absence of transition
labels (slow MA to async MA or vice versa) in the Ground Truth labels. The
increase in accuracy of “centroid-no-transitions” highlights the contribu-
tion of the autoencoders to a better classification of those samples with a low
confidence level, which in the case of AW and SO does not vary much, but
for the two substates of the MA the accuracy increases with respect to the
CNN-labeled “unknown” samples, giving autoencoders and the corre-
sponding spectral clustering of the autoencoder-reconstructed samples a
higher predictive power.

Transfer learning

We quantified the efficacy of transfer learning, with a focus on achieving
high accuracy with minimal training sessions (Supplementary Fig. 4). This is
exemplified in Supplementary Fig. 4a, b, where we observed a marked
increase in mean accuracy as we conducted training over two to seven
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sessions, using the predictors for sessions of the same subject. We attained a
stable and high level of accuracy with as few as five training sessions across
various states. Moreover, we found that the percentage of unknown samples
decreased as we used more sessions, resulting in higher accuracy and con-
fidence in the predictions. This inverse relationship between the number of
sessions and the percentage of unknowns underscored the efficiency of our
training process. The same results were evident when we employed a leave-
one-out approach, similar to the rest of the study, as shown in Supple-
mentary Fig. 4b, further highlighting the relationship between the increasing
number of training sessions and the improvement in model performance.

Discussion

In recent decades, machine learning decoding algorithms have significantly
advanced clinical applications for neurological disorders, particularly in the
context of decoding for brain-computer interfaces’’. These advancements
have largely occurred within the field of brain-machine interfaces, which
employ both invasive™” and non-invasive methods’® to decode move-
ment commands. The use of these algorithms has recently allowed unpre-
cedented advances in speech decoding™*', facilitating social communication
and thus improving quality of life for these patients. Additionally, there is
growing interest in applying similar machine learning approaches, includ-
ing neural networks and autoencoders, to classify various brain states, not
only in non-invasive studies of sleep and workload with EEG'**** butalso in
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the confusion matrix). b Exemplary samples. Different state traces with the corre-
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pathologies such as disorders of consciousness'**’. However, the application

of machine learning algorithms to invasive LFPs for tracking spontaneous
brain states and their transitions, through the analysis of invasive, high
spatial resolution LFPs, remains relatively unexplored, as highlighted in this
paper. A recent study investigating LFPs for different awake states* (thus
different states to those studied here) used a different approach with
unsupervised Gaussian mixture models and hidden semi-Markov model.

In this study, we presented a novel computational tool designed to
classify and decode brain states across varying anesthesia levels, filling a
noticeable gap in efficient labeling and anesthesia brain state categorization
techniques. Our framework combines a one-dimensional-CNN approach
to classify brain states in anesthesia (awake, AW; slow oscillations, SO;
microarousals, MA). Moreover, with an additional classifier, we studied the
differentiation within the MA states (namely asynchronous MA and slow
MA), reflecting the latest advancements in the study of microarousal
states”***” We achieved both high global and individual accuracies for each
state. We achieved a 91% global accuracy for the full pipeline, which inte-
grates high-confidence classifications from the dual-model CNNs with
samples below the confidence level that were subsequently classified with
the autoencoder-based clustering model. While we consider overall accu-
racy to be a crucial performance metric for the practical deployment of our
model on arbitrary data, we also believe that evaluating the error rate for
each brain state is essential. This approach provides a more detailed
understanding of the model’s strengths and weaknesses across different
conditions. What sets our framework apart is its second phase—the
autoencoder-based clustering strategy. The combination of CNNs and
autoencoders in this dual-model training approach not only empowers
neuroscientists to detect and classify samples that are challenging under
visual inspection but also offers flexibility in dataset classification and the
identification of transitions during state detection.

We wish to highlight that our machine-learning-based pipeline pro-
vides a specialized framework for detecting state transitions according to
frequency bands following the reconstruction of carefully trained auto-
encoders. The use of these autoencoders is crucial in our pipeline, as they
help refine the classification of samples that were either not predicted with
high confidence in the initial models or were involved in a certain state
transition. As part of our analysis, we found that the autoencoder’s recon-
struction provided better separation of the clusters, enabling clearer iden-
tification of the transitions. This improvement was particularly evident in
the spectral power computed from the autoencoder-reconstructed samples,
which offered a better cluster separation compared to the PSD obtained
from the original time series (see Supplementary Fig. 5). In addition to
improving cluster separation, we also explored the potential of autoencoders
functioning as complex frequency filters. Our analysis reveals that the
autoencoders, when trained on specific data subsets, can effectively alter the
spectral composition of the signals. For example, autoencoders trained on
‘Slow Oscillation’ and ‘Slow MA’ samples were found to remove higher
frequencies from synthetic signals, whereas those trained on ‘Awake” and
‘Asynchronous MA’ samples did not exhibit this filtering effect (see Sup-
plementary Fig. 6). This observation underscores the autoencoder’s role in
selectively processing the frequency content of the signal based on the
underlying state. These findings highlight the autoencoder’s dual function
both as a classifier and as a frequency filter, which enhances the robustness
of state transition detection.

We would also like to emphasize the strong performance of the CNN
models in classifying instances of low-confidence data. We have focused on
clustering within frequency bands to identify different states, which offers
excellent discrimination power given that each band is representative of one
state***>*°. However, it is important to note that this is not the sole indicator
for discerning state transitions. We also introduce a “confidence” parameter,
which enables us to separate those samples that have been predicted with a
high probability from those that have not. For future specific experiments
where data quality is crucial, it will be extremely important how this con-
fidence parameter is tweaked to ensure highly accurate predictions. On the

other hand, if the experiment requires a more lenient data quality, con-
fidence levels can be adjusted accordingly. Since a lower confidence level
suggests that a sample is less similar to its average spectral state character-
istics, it would be logical to explore whether the confidence parameter could
serve as a predictor of the samples’ positions in frequency space, potentially
aiding in the identification of state transitions. In our case there seems to be a
strong correlation. We could eventually achieve higher accuracy in MA
states at the expense of lower accuracy in AW or SO states, while incor-
porating other data modalities (such as electromyography (EMG) or video
tracking) to fully label these states. This approach could ultimately lead to a
more accurate and robust classification of the states in question, which is
crucial for the objectives of our study.

Another key strength of this work is the specificity targeting intra-
cortical LFP data in brain states occurring under anesthesia. Experimental
neuroscientists using invasive approaches often struggle to access numerous
valuable data channels; in response, our framework emphasizes simplicity.
The implementation of a computationally efficient CNN with a single-
channel input also facilitates the training phase. Recent studies demonstrate
that, even with few layers, CNN models can offer significant insights into
brain dynamics™®. Simplicity and adaptability make it versatile for different
subjects and sessions, optimizing the analysis of varied datasets. Another
introduced feature is that, to cater to low-frequency classifications, we have
implemented a sinusoid activation function, a method inspired by previous
studies®’, as an alternative to the traditional ReLU (Rectified Linear Unit).
However, when comparing both activation functions, no substantial dif-
ferences in performance were observed, indicating that the choice of the
sinusoidal activation function should not be viewed as critical to the success
of the model.

Moreover, our decoding approach also has some limitations. The
framework, as it stands, is optimized for a specific experiment dealing with
standard anesthesia levels and then adds another classifier specifically to
differentiate MA states. It is fine-tuned to tackle the need for reliable
computational tools for automatic brain state classification during anes-
thesia stages. To use the same framework for other purposes (e.g., sleep),
some refinement of the models, a reliable ground truth labels annotation,
adapted preprocessing, and novel training of the models from scratch would
be required. For instance, the current setup processes data in 2-s time
windows. While this window suits our experiment, those delving into other
brain state classifications might need to adjust this window size, with the
trade-off of additional computational resources. Additionally, the dataset
used in this study presents some degree of data imbalance given the duration
of the awake periods, which were shorter than the other states. After ran-
domly permuting the labels, our analysis confirms that the high accuracies
obtained by the model are due to its effective performance rather than a
consequence of data imbalance or random guessing. Still, whenever possi-
ble, larger data balance and larger numbers of subjects would be optimal,
enhancing the robustness of the findings and avoiding additional model
testing.

We acknowledge that there are areas where caution is necessary. For
different applications, or when dealing with new datasets, pre-trained
models might not perform well enough. In this paper, our goal was to focus
on the shape and signature of the waves of the different states. In scenarios
where specific state transitions (and their timings) are the focus, incorpor-
ating an RNN (Recurrent Neural Network)-based approach might be more
apt. And while our framework aids in decision-making, determining
hyperparameters of confidence still mandates expert visual inspection.
Another potential limitation was whether selecting the autoencoder based
on the previous CNN prediction introduced a potential bias in the overall
accuracy, which we inspected and confirmed did not occur in our case.

In comparison with other models, our system can autonomously verify
and highlight complex samples for precise classifications. In terms of
accuracy, our approach yields comparable or even superior labeling out-
comes to similar studies, which achieved 70-90% accuracy across subjects.
Subjects with clearer signals experienced high accuracy across states. In
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contrast, one subject’s model occasionally confused the Awake state with the
combined microarousal, attributed to the similarity in shape between
asynchronous microarousal and awake segments. The fact that our method
was designed to work as a leave-one-out approach, offers significant
potential for generating general models that could be used for new subjects,
meaning that every dataset we incorporate in our studies could make the
model more generalizable and more robust. In this case, transfer learning
nuances might have to be considered in the future®. Also, this gives us some
pre-trained models that offer huge potential for deployment in micro-
controllers for on-device inferences in the field of neuroscience and cog-
nitive sciences, an area that has gained attention recently in preliminary
studies®”.

Future perspectives of our approach in the medical field are worthy of
exploration. Given its potential for analyzing single-channel activity, we
could use signals from different areas both from multichannel recordings in
experimental neuroscience to map across the brain of the behaviors
detected, or from intracranial stereo EEG from humans in pathological
conditions to identify anomalous local patterns.

Methods

End-to-end system overview

Our approach employs a two-step method that integrates two Convolu-
tional Neural Networks (CNNs) and one autoencoder to classify brain states
based on 2-s-long sequential data represented as a 1D array. This metho-
dology aims to offer both a broad and refined classification and analysis of
brain states.

Preliminary classification

The initial classification (step 1) employs a CNN with three convolutional
layers. This model provides a general classification into three primary states:
Awake (AW), Slow (SO) and Microarousals (MA). If this first CNN predicts
a MA state, the data is further processed by a second CNN (step 2). This
second CNN classifies the MA state into two substates: the asynchronous
MA (asynch. MA) and the slow MA (slow MA) phases. Thus, after steps 1
and 2, we obtain four classified states, each with a given probability, namely:
AW, SO, asynchronous MA and slow MA.

For both CNNs, we use a Confidence Level (CL) thresholding tech-
nique, inspired by semi-supervised self-labeling in image processing’.
These models predict the class of each sample by estimating a probability. In
our case, we set the CL at 90%. If the probability of a sample belonging to a
specific state exceeds the CL, it is classified as AW, SO, or one of the MA
phases. Conversely, if the probability falls below the CL, the sample is labeled
as “unknown”. These “unknown” samples are then further analyzed using
an autoencoder-based clustering method, which ultimately provides a final
classification for each sample (see next section).

Handling “unknown” and transition states with autoencoders
States classified as “unknown” resulting fromby the CNN are further pro-
cessed using autoencoders. These unsupervised neural networks learn to
recreate their input, and in our method, they play a pivotal role in classifying
ambiguous data. We use the “unknown” samples from the CNN models
(those that did not surpass the confidence level (CL) as an input for each
autoencoder, which has been trained with the classified data from the CNN
that did surpass the CL. Each unknown sample is reconstructed with the
autoencoder of the brain state that obtained the highest probability from the
CNN models.

This is followed by computing the PSD of the reconstructed samples,
either above or below the CL, across three primary frequency bands: delta
(0.1-1 Hz), theta (4-8 Hz) and gamma (100-500 Hz)", leading to a re-
clustering of samples. The points belonging to the power in specific fre-
quency bands of the reconstructed samples above the CL are projected onto
the three-dimensional space (three frequency bands). A centroid for each
state is computed as the center of mass corresponding to the specific state-
labeled samples above the CL. A centroid to account for the transitions
across microarousal states was manually added as the middle point that

separates the slow MA and asynchronous MA centroids. Each unknown
sample is then projected onto the 3D space, where the centroids of the
reconstructed samples above CL will determine to which state each
unknown sample is assigned to. Any reconstructed sample closer to the
“transitions” centroid than to any other will be automatically classified as a
“transition”.

Preliminary classification models - CNNs architecture

Both CNN models share a similar architecture with minimal nuances. The
first CNN, responsible for general state classification, consists of three
convolutional blocks with ReLU activation functions, followed by max-
pooling layers (see Supplementary Fig. 1). The final layers include a flat-
tening layer, a fully connected layer, and an output layer. The output pro-
vides the classification into the AW, SO, and MA states. Similar
classification structures have been used in previous literature®®’”. The second
CNN, responsible for classifying the MA state into its two substates, consists
of two convolutional layers with sinusoidal activation functions, inspired by
relevant literature”. The sinusoidal activation function used in our experi-
ments is defined as f(x) = sin(x), a simple function that does not include any
additional hyperparameters or learnable parameters. The function outputs
values in the range [—1,1], introducing a periodic nature to the activation.
This characteristic was initially chosen based on its theoretical relevance to
our empirical data, where the slow MA substate is characterized by low-
frequency components. However, when compared to the ReLU activation
function, no substantial differences in performance were observed. Speci-
fically, the performance for the asynchronous MA (slow MA) substate was
90% + 7% (76% + 38%) with ReLU and 93% + 5% (74% + 38%) with the
sinusoidal activation. These results suggest that the specific periodic prop-
erties of the sinusoidal activation function may not be necessary to solve this
task. The use of the sinusoidal activation function in this study should
therefore be viewed as an exploratory alternative rather than a strict
requirement. The second CNN also includes max-pooling and flattening
operations and a dense layer with a sigmoid activation function for binary
classification.

Autoencoders architecture

A single layer autoencoder was implemented for dimensionality reduc-
tion and feature extraction. The autoencoder architecture consists of an
encoder and a decoder, designed to learn a compressed representation of
the data by minimizing the reconstruction error. The encoder com-
presses the input data into a lower-dimensional latent space, represented
by a hidden layer, which is often referred to as the ‘bottleneck’ layer. This
hidden layer contains 75 neurons, which correspond to the encoding
dimension. The size of this hidden layer defines the extent of data
compression and captures the essential features of the input while dis-
carding redundant information. The input layer feeds into this hidden
layer using a ReLU activation function, facilitating non-linear transfor-
mations of the input features. Subsequently, the decoder reconstructs the
original input data from this compressed latent space. The decoder
consists of a single output layer with the same number of neurons as the
input layer, ensuring that the reconstructed output has the same
dimensionality as the original input. A linear activation function is
employed in the output layer to allow the network to learn the identity
mapping necessary for accurate reconstruction.

Models training

The system training process involves training two CNN models and a
number of autoencoders equal to the total classes targeted for classification
and refinement. Initially, we created concatenated matrices for each state
using the corresponding data samples. This ensures that each state’s training
data exclusively consists of samples relevant to that specific state. This is
accomplished by concatenating traces from the same state, based on the
ground truth annotation, and transforming the final array into a matrix
whose rows will be samples of 2000 points (2 s, fs (sampling rate) = 1 kHz).
A separate array indicates the ground truth label for each row.
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Training CNN models

Both CNN models are trained using the Adam optimizer and cross-entropy
as the loss function. For the first CNN, training and validation data are
loaded in mini batches with varying sizes. For the second CNN, training data
is filtered to include only instances belonging to MA states. An 80-20 split is
employed to create training and validation subsets, respectively. The model
is trained for 10 epochs, using a batch size of 32. To facilitate model eva-
luation and potential resumption of training, a custom callback function is
used to save the model every 5 epochs. Performance metrics (loss and
accuracy) are monitored for both the training and validation sets.

Training autoencoders

To handle samples that the initial CNN models could not classify with high
confidence (CL < 90%), we use specialized autoencoders tailored for each
state we aim to study. These autoencoders are trained using samples that the
preliminary models classified confidently (CL > 90). For example, to train
the autoencoder for the “awake” state, we use samples identified as “awake”
by the initial CNN model. The input dataset is split into training and testing
sets, with the proportion of the split depending on the total size of the state-
specific dataset: 10% for the awake class, given the small number of samples
available and 20% for the other classes. These testing sets act as classification
thresholds for each state. Model optimization uses the Adam optimizer to
minimize the Mean Squared Error (MSE) over a specific number of epochs
and a predetermined batch size.

Training set size and data efficiency analysis

We explored the optimal training set sizes required to attain satisfactory
testing outcomes. Specifically, our aim was to determine the fewest sessions
needed for training to accurately predict the three primary states: AW, SO,
MA. Our approach involved varying the training set sizes: using two, five
and seven sessions to forecast one random session of the testing subjects. For
the pairing of train/test data, we employed a k-fold algorithm and further
juxtaposed it with a modified k-fold strategy to evaluate its impact on the
leave-one-out approach. All the parameters of these new CNN models are
the same as in the Models architecture: CNN models, explained above.

Dataset

The dataset used in this study originates from the same set of experiments
described in Torao-Angosto et al.*'. Briefly, cortical LEPs from different
brain areas and EMG were recorded from four freely moving Lister Hooded
rats (6-10 months old) spanning multiple sessions (4, 2, 2, and 1 session,
respectively), each session lasting an average of 6 + 1 h. Although recordings
were obtained from multiple areas, with up to five electrodes per animal,
only the electrode with the highest signal-to-noise ratio (SNR) was used for
the current analysis. Chronically implanted electrodes in each animal were
located in the orbitofrontal cortex (n=2) and the primary motor cor-
tex (n=2).

LFPs were acquired in different brain states (Fig. 1A). First, a baseline
recording was obtained while the animal was awake. Then, the animal was
sedated and anesthetized using a combination of ketamine (50 mg/ml) and
medetomidine (1 mg/ml). Cortical activity was recorded from the induction
of the anesthesia, through deep anesthesia and then until it showed the first
signs of wakefulness. During this process, the animal went through the SO
and the MA states before showing signs of awakening. Slow oscillations
consist of an almost periodic pattern (<1 Hz) of Up (active) and Down
(silent) states”, and are referred in the figures as Slow Up-Down. Con-
versely, microarousals consists of periods of slow oscillatory activity (~5 Hz)
interspersed by periods of awake-like activity”’”. In the manuscript, we refer
to the former as slow MA (slow MA) and the latter as asynchronous MA
(asynch. MA). The awake state is characterized by irregular and high-
frequency fluctuations in the LFP and muscle activity (EMG)*'. The LFP
traces were normalized and downsampled to 1kHz for computational
reduction purposes, as in previous studies™. For a detailed description see
Torao-Angosto et al.*'. All experiments were carried out following Spanish
regulatory laws (BOE-A-2013-1337), which comply with European Union

guidelines and were supervised and approved by the Animal Experi-
mentation Ethics Committee of the Universitat de Barcelona (287/17 P3).

Itis important to note the distribution of data within the dataset. Due to
the brief duration of awake recordings, which were performed prior to
anesthesia injection, these segments only comprised approximately 4% +
3% of the total dataset. In contrast, SO and MA were more prevalent,
constituting 48% * 16% and 59% + 16% of the segments, respectively. The
number of segments used in this work is approximately 50k segments of 2 s
each, which is about 28 h of recordings (after data pre-processing, e.g.,
removingartifacts) in total. To ensure that this distribution did not adversely
impact our results, we computed the overall performance after randomly
permuting the labels. Our analysis confirms that the high accuracies
achieved by the model are due to its effective performance, rather than a
consequence of data imbalance or random guessing.

Ground truth labeling

The ground truth annotations were carried out by an expert. This process
involved defining three significant global states: Awake, Slow Oscillation
and the asynchronous and synchronous parts of the Microarousals. Ground
truth annotations were applied to the LFP channel exhibiting the highest
SNR. The EMG channel, positioned around the animal’s neck, was utilized
to monitor animal movements and served as a supplementary source of
information for this labeling process. The AW state pertained to time
periods showing asynchronous cortical activity recorded before anesthesia
administration. During this phase, the animal exhibited clear signs of
wakefulness, such as responsiveness and movement, accompanied by a high
EMG amplitude. SO labels were assigned to time segments characterized by
adistinct Up/Down pattern with a frequency below 2.5 Hz. These segments
immediately followed anesthesia induction and typically persisted for 2-3 h.
The animal displayed no signs of wakefulness, and the EMG exhibited a flat
profile. MA labels were designated for time samples that occurred once the
stable SO state had concluded. These samples were expected to exhibit a shift
toward wakefulness, as detailed in Tort-Colet et al.”” They consisted of
brief periods of asynchronous activity interspersed with intervals of slow
oscillation characterized by a notably higher frequency (~6 Hz) com-
pared to the typical SO observed after anesthesia induction. During the
MA state, the animal remained unresponsive but began to display
drowsiness-related symptoms, which were validated through EMG and
video recordings.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The demonstration dataset is publicly available at https://doi.org/10.5281/
zen0do.14990181. Other data are available from the corresponding author
on reasonable request.

Code availability

The code used in this work is publicly available and will be publicly main-
tained and updated at https://github.com/arnaumarin/LFPDeepStates and
is available at ref. 74.
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