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Synaptic tagging and capture (STC) is a mechanism that enables the formation of associative synaptic
plasticity by marking activated synapses with “tags” to capture plasticity-related products (PRPs)
essential for plasticity stabilization. Experimental evidence using long-term potentiation (LTP), a
widely studied cellular correlate of memory, shows that the duration of synaptic tags varies, lasting up
to 90 minutes in ex vivo hippocampal slices but shorter in in vivo conditions, likely due to higher
metabolic activity. In this study, we investigate the time window for tag-PRP interactions in STC using
a strong-before-weak paradigm, where protein synthesis-dependent late-LTP precedes protein
synthesis-independent early-LTP at various intervals. Surprisingly, successful STC is observed even
with a 9-hour interval in the strong-before-weak paradigm, suggesting a broader temporal flexibility for
tag-PRP interactions than previously understood. This unexpected finding offers alternative
explanations for associative memory formation by cataloguing memory events, allowing weaker
memories to be strengthened when preceded by stronger ones.

New information is continuously received and processed in the brain every
day, every moment. The brain has mechanisms to filter out irrelevant details
and retain useful information, enhancing its efficiency. However, when
seemingly irrelevant details are linked to memorable experiences or occur in
temporal proximity to significant events, the brain may still reinforce these
details, transforming them into long-lasting memories. This remarkable
capacity of the brain to connect related memories is known as associativity.
At the cellular level, associativity is also observed in long-term potentiation
(LTP), a well-studied form of synaptic plasticity widely recognized as a
cellular correlate of learning and memory' (for a review, see Bin Ibrahim,
Benoy, & Sajikumar, 2022)".

The associative property of LTP is elegantly exemplified by the
synaptic tagging and capture (STC) model™. According to the STC
model, the maintenance of LTP involves distinct processes, including the
setting of tags to capture plasticity-related products (PRPs) and the
synthesis of PRPs, which can be initiated by various stimuli. Tag setting,
or “tagging,” represents a temporary state of activated synapses that
primes them to capture available PRPs. Newly synthesized PRPs are
distributed throughout the neuron but are only utilized by tagged
synapses. Frey and Morris’ demonstrated the STC model by showing that
an LTP event, which does not independently trigger PRP synthesis, can
nevertheless be sustained at a potentiated level if PRPs are available from
another source. Further investigations into the STC model paired strong

tetanization-induced late-LTP with a weak tetanization event that typi-
cally induces protein synthesis-independent early-LTP>*’. In this con-
text, the early-LTP was transformed into long-lasting LTP, suggesting
that tag setting and PRP synthesis are two independent processes. The
timing of tag setting and PRP synthesis is essential for synaptic asso-
ciativity. If PRPs are unavailable while tagging is active, the potentiation
of LTP will eventually decay. This dependency was demonstrated in
previous studies using a “weak-before-strong” STC paradigm, where
different conditions exhibited varying tagging durations. In CA1 ex vivo
hippocampal slices, tag setting persisted for up to 90 minutes but could
be extended through metaplasticity®''. By contrast, in vivo field record-
ings and behavioural tagging showed shorter durations for tag setting™,
likely due to intact modulatory systems in the in vivo environment,
which increase the metabolic rate. In contrast, little is known about how
the duration of newly synthesized PRPs affects STC. It stands to reason
that LTP associativity or memory formation should occur within a
limited temporal window, maintaining the brain’s high energy efficiency.

In this study, we aimed to investigate the time window for tags-PRPs
interaction in STC using ex vivo extracellular electrophysiological field
recording technique. We used strong-before-weak and weak-before-strong
STC paradigms with varied intervals. Surprisingly, we observed successful
STC even when the STC interval was increased to 9 h in the strong-before-
weak paradigm.
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Methods

Animals and hippocampal slices preparation

A total of 83 transverse hippocampal slices from 55 male C57BL/6] mice at
5-7 weeks old were used in this study. Female mice were excluded to avoid
possible hormonal alterations during the oestrous cycle that can affect
synaptic plasticity measurements™ . Animals were purchased from
InVivos Pte Ltd (Singapore). The animals were housed under 12 h light/
dark cycle with food and water provided ad libitum. All experimental
procedures were approved by the Institutional Animal Care and Use
Committee (IACUC) of the National University of Singapore. We have
complied with all relevant ethical regulations for animal use.

Animals were anaesthetised using CO, and then decapitated after
cervical dislocation. The brain was quickly transferred into ice-cold (4 °C)
artificial cerebrospinal fluid (aCSF) saturated with carbogen (95% O, and
5% CO,). The composition of aCSF was as followed (in mM): 124.0 NaCl,
3.7 KCl, 1.0 MgS0,7H,0, 2.5 CaCl,2H,0, 1.2 KH,PO,, 24.6 NaHCO;,
and 10.0 D-glucose. The hippocampi were isolated and sliced into 400 pm
thick transverse slices using Stoelting tissue slicer. Then, the hippocampal
slices were placed onto a nylon net in an interface chamber (Scientific
System Design) perfused with carbogenated aCSF at a rate of approximately
1-2 ml/min at 32 °C and preincubated for at least 3 h to achieve metabolic
stability””. In all our experiments, slices were incubated for at least
2.5hours before electrode positioning for extracellular field potential
recordings. After electrode placement, slices were left for approximately
30 minutes before baseline recordings commenced, resulting in a total
incubation time of 3 hours.

Electrophysiological field recording

Two-pathway experiments were performed in all experiments (Fig. la).
Monopolar lacquer-coated stainless-steel electrodes (5 MQ, AM Systems)
were used in all cases. After the preincubation period, two stimulating
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electrodes, S1 and S2, were positioned at the stratum radiatum layer of the
CA1 region to evoke field excitatory postsynaptic potential (fEPSP) at
Schaffer collateral/commissural fibres—CA1 synapses. To obtain the fEPSP
signal, a recording electrode was placed at the CA1 apical dendritic layer.
The signals were amplified by a differential amplifier (Model 1700, AM
Systems), digitized with an analogue-to-digital converter (Power 1401-3A,
Cambridge Electronic Design) and monitored online using the Intracell
software (Institute for Neurobiology, Magdeburg).

After positioning the electrodes, an input-output curve (fEPSP slope
value vs afferent stimulation intensity) was plotted for each synaptic input.
The test stimulation intensity was set to elicit a fEPSP slope response that
was 40% of the maximal response obtained from the input-output curve.
The recording was done at a 5-minute cycle. The average fEPSP slope value
from 4 biphasic constant-current pulses at 0.2 Hz was used for each time
point. A stable baseline of at least 30 min was recorded before LTP induction
to assure neuronal metabolic stability”. If the fEPSP slope drifted by more
than 10% during this period, new test pulse intensities were chosen, and the
experiment was restarted. If the drift persisted, the experiment was aban-
doned. Additionally, experiments in which the control pathway fEPSP
drifted by more than 10% within any one hour of the experiment were
excluded. To induce LTP, either a strong tetanisation (STET) or weak
tetanisation (WTET) protocol was used. STET consists of 3 stimulus trains
of 100 pulses at 100 Hz (inter-trains interval of 10 min), while WTET
consists of 1 stimulus train of 21 pulses at 100 Hz. Short-term potentiation
(STP) was induced using a weaker tetanus stimulation consisting of a single
train of 14 pulses or 11 pulses’ at 100 Hz.

Statistics and reproducibility

All electrophysiological data were represented as mean + standard error of
mean (SEM). Each experimental group was represented by data from at least
seven hippocampal slices (n>7) derived from a minimum of three
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Fig. 1 | Extended associativity in strong-before-weak synaptic tagging and cap-
ture paradigm. a Schematic representation of a transverse hippocampal slice
showing the location of electrodes in the CA1 region. Recording electrode (rec)
positioned onto CA1 apical dendrites was flanked by two stimulating electrodes, S1
and S2, placed in the stratum radiatum (sr) layer to stimulate two independent
Schaffer collateral (sc) synaptic inputs of the same neuronal population. b A weak
tetanization (WTET, single train of 21 pulses at 100 Hz) applied to S2 (blue circle)
induced a significant potentiation that gradually decayed to baseline level
(n =7 slices from 5 animals). The control input S1 (red circles) remained stable
throughout the recording period. Strong-before-weak STC paradigm where a strong
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tetanization (STET, 3 trains of 100 pulses at 100 Hz, inter-trains interval of 10 min)
was applied to S1 (red circles) followed by a WTET applied to S2 (blue circles) at
various intervals, (c) 0.5 h (n = 8 slices from 5 animals), (d) 3 h (n = 7 slices from 6
animals), (e) 6 h (n =7 slices from 7 animals), (f) 9 h (n = 7 slices from 5 animals).
The LTPs induced in S1 and S2 maintained at potentiated level throughout the
recording period in all cases. Analogue traces show typical fEPSP of S1 (red) and S2
(blue) at 15 min of baseline (dotted line), 10 min after LTP induction (dashed line),
and at the end of the recording (solid line). Scale bar for all traces: 3 mV/5 ms. Three
red arrows represent STET, whereas single blue arrow represents WTET. All data are
represented as mean + SEM.
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Fig. 2 | Extended interval in weak-before-strong synaptic tagging and capture
paradigm fails to show associativity. a WTET applied to S2 (blue circles) followed
by a STET applied to S1 (red circles) at a 0.5 h interval showed associativity where
both LTPs sustained at potentiated level throughout the recording period

(n =7 slices from 5 animals). b When the interval between WTET and STET
increased to 3 h, the WTET induced an early-form of LTP that gradually decayed to
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baseline level (n = 7 slices from 5 animals). Analogue traces show typical fEPSP of S1
(red) and S2 (blue) at 15 min of baseline (dotted line), 10 min after LTP induction
(dashed line), and at the end of the recording (solid line). Scale bar for all traces:

3 mV/5 ms. Three red arrows represent STET, whereas a single blue arrow repre-
sents WTET. All data are represented as mean + SEM.

biological replicates. The data of each experimental group was collected
randomly from electrophysiological setups. The mean slope function of
fEPSP at each time point (millivolts per millisecond) was calculated and
normalised to the baseline value (averaged over 30 min stable baseline
recording) following the convention that all brain slices count equal
regardless of the absolute maximal slope value. Parametric test was used
here though non-parametric test also yielded the same conclusion. To assess
whether a LTP was maintained as a late-LTP or decayed back to baseline as
an early-LTP, two-tailed paired t-test was used to compare the normalised
fEPSPs between post-LTP time point (the last time point) and baseline (at
15th min of baseline). All graph plotting and statistical analyses were per-
formed using Prism software (GraphPad). p < 0.05 was considered statis-
tically significant’.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results

We first studied STC using the strong-before-weak paradigm. A WTET
protocol induced an early-LTP that eventually returned to the baseline level
(Fig. 1b; fEPSP,omin = 1052 +2.4%, p=.1687). Pairing the WTET at
30 minutes after a STET produced a typical STC, with both synaptic inputs
showing late-LTP (Fig. 1¢; fEPSPwrET, 240 min = 151.5 £ 19.9%, p = 0.0332;
fEPSPSTET, 240 min = 171.1 £20.6%, p=0.0121). Interestingly, when we
increased the interval to 3 h, the WTET-LTP continued to transform into
late-LTP (Fig. 1d; fEPSPwrpr,  360min = 140.6+10.3%, p=0.0069;
fEPSPSTET, 360 min = 156.4 +4.9%, p < 0.0001). This data suggests that the
available pool of de novo PRPs are still interacting with the tags set by WTET
to sustain the LTP. Therefore, we further extended the interval between
STET and WTET to verify the effective duration for the occurrence of STC.
Surprisingly, we found that both LTPs were sustained at a potentiated level
even with interval of 6h (Fig. le; fEPSPwreT, 540 min = 149.6 +15.9%,
p=0.0181; fEPSPs1p1. 540 min = 163.4 % 8.5%, p=0.0003) and 9 h (Fig. 1f;
fEPSPwrpr, 720min=149.1 £169%, p=00286; fEPSPsrer, 720 min =
136.1 £ 13.5%, p = 0.0422).

Next, we employed the weak-before-strong paradigm to induce
STC. Like the earlier results, a WTET induced on a synaptic input fol-
lowed by a STET in another synaptic input at a 30-minute interval
resulted in both the WTET- and STET-induced LTP maintained at

potentiated level (Fig. 2a; fEPSPwreT, 240 min = 135.2 £ 10.8%, p = 0.0122;
fEPSPSTET, 240 min = 160.1 £12.4%, p=0.0049). However, this associa-
tivity no longer existed when the STET was induced at 3h after the
WTET. Despite the STET-LTP remaining at a potentiated level
throughout the recording, the WTET-LTP returned to baseline at the end
of the recording (Fig. 2b; fEPSPwrEeT, 360 min = 95.6 £ 9.0%, p =0.6420;
fEPSPSTET, 360 min = 148.0 + 12.6%, p = 0.00061). Our results demonstrate
that the effective tag setting duration to capture PRPs is less than 3 h,
aligning with previous findings. However, the STC phenomenon could
consistently occur if PRPs are readily available during the tag setting
process, lasting at least 9 h in our ex vivo case.

We then hypothesised that the existing PRPs induced by STET could
exert a metaplastic effect on the unstimulated synapses within the same
neuronal population, thus lowering the threshold to induce LTP. Although
Frey and Morris’ demonstrated that a single very weak tetanus (11 pulses at
100 Hz) following a strong tetanus in another input did not lead to STC, we
predicted that this tetanus might be too weak to reach the lowered LTP
threshold. Therefore, we used a separate weak tetanus protocol (STP, 14
pulses at 100 Hz) to induce a transient potentiation that returned to baseline
within 30 min (Fig. 3a; fEPSP1gomin = 92.5 £ 4.5%, p =0.1152). Consistent
with earlier studies™”, STP (14 pulses) followed by STET at another synaptic
input did not transform the transient potentiation into late-LTP (Fig. 3b;
fEPSPs1p, 240 min = 103.5+3.7%, p=03161; fEPSPsrpr. 240 min = 151.8 %
14.9%, p =0.0142). Intriguingly, when we reversed the order to STET pre-
ceding STP (14 pulses), the transient potentiation was now transformed
into late-LTP (Fig. 3G fEPSPgrp.  s40min = 1542 £17.3%, p=.0201;
fEPSPSTET, 240 min = 195.7 £ 10.2%, p < 0.0001). We also repeated Frey and
Morris’ experiment and indeed confirmed that a weaker STP protocol with
11 pulses at 100 Hz did not result in STC (Fig. 3d; fEPSPstp, 240 min =
100.1 +6.0%, p=0.8278; fEPSPsrer. 240 min = 160.6 +12.2%, p=0.0010),
implying that the stimulation is too weak to reach the LTP threshold. These
results suggest that the STP-inducing synaptic input has undergone meta-
plastic changes due to activity activated by STET in another synaptic input.
Consequently, this enables a weaker stimulation to produce a late-LTP.

Discussion

Previous studies have shown that “functional tags” last approximately 90 to
120 minutes to capture PRPs**’". But what about the time window for the
reverse scenario? How long can PRPs remain available for capture by later-
set tags? This study explored the time course for effective associativity
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Fig. 3 | Strong tetanization lowers LTP induction threshold in neighbouring
synapses. a A weak tetanus protocol (short-term potentiation (STP), 14 pulses at
100 Hz) applied to S2 (blue circles) induced a transient potentiation that returned to
baseline level within 30 min (# = 10 slices from 5 animals). b STP (14 pulses) applied
to S2 (blue circles) followed by STET applied to S1 (red circles) at a 1 h interval did
not affect the STP-induced potentiation (n = 8 slices from 4 animals). c When STET
was induced in S1 (red circles) followed by STP (14 pulses) in S2 (blue circles), the
STP induced a long-lasting potentiation that sustained throughout the recording
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period (n = 7 slices from 3 animals). d Similar experiment as in ¢, except that the STP
was replaced with an even weaker tetanus (11 pulses at 100 Hz). The STP-induced
potentiation did not transform into a long-term potentiation in this case (n = 8 slices
from 3 animals). Analogue traces show typical fEPSP of S1 (red) and S2 (blue) at
15 min of baseline (dotted line), 10 min after LTP induction (dashed line), and at the
end of the recording (solid line). Scale bar for all traces: 3 mV/5 ms. Three red arrows
represent STET, whereas single blue arrow represents STP (11 or 14 pulses). All data
are represented as mean + SEM.

between different synaptic populations using ex vivo extracellular field
electrophysiological recording techniques. The significant discovery is that
tags set after an extended period (9 hours in our setting), following a strong
tetanus in another synaptic input, still exhibit associativity. In addition to
demonstrating the sharing of PRPs over an extended interval, we also
identified a heterosynaptic metaplastic effect, in which a strong tetanus
reduced the LTP threshold in neighbouring synaptic populations.

The extended duration of associativity observed in our strong-before-
weak STC paradigm is notable, as homoeostatic mechanisms would be
expected to counteract the PRP-sharing process over time. Frey and Morris®
proposed this possibility, though the precise time course has not been
determined. At the behavioural level, this concept is supported by beha-
vioural tagging models™. In these models, if the associative event (leading to
long-term memory) precedes a weak learning task by 2-3 hours, the event
loses its enhancing effect on the learning task’”™. The discrepancy
between our findings and data from behavioural tagging models may stem
from differences in the complexity of neuromodulatory systems between
ex vivo and in vivo conditions. Neuromodulators such as acetylcholine are
thought to play a role in homoeostatic plasticity, helping to prevent inter-
ference between previously stored memories and newly acquired

information**". In ex vivo hippocampal slices, neuromodulation from

extrahippocampal regions is absent, which may disrupt homoeostatic effi-
ciency and contribute to the extended associativity duration observed in our
study. However, the homoeostatic mechanisms underlying LTP main-
tenance and memory consolidation, as well as the role of neuromodulation
in these processes, remain largely unexplored. Thus, while ex vivo electro-
physiological recording is a valuable technique for identifying specific
homoeostatic modulation pathways, in vivo studies are ultimately necessary
to understand the coordinated, system-wide modulation. It is important to
exercise considerable caution when translating cellular synaptic tagging and
capture (STC) findings to behavioural tagging paradigms, as the interactions
among neighbouring synapses and neurons at the cellular level may differ
markedly from the interregional dynamics underlying behaviour.

Another mechanism that may facilitate the prolonged associativity is
through heterosynaptic metaplasticity. Metaplasticity is the “plasticity of
synaptic plasticity”, meaning that, synapses ability to undergo plastic
changes can be influenced by its own prior events or even the activity of
neighbouring synapses*>*. Our results indicate that a short-term poten-
tiation (STP) protocol (14 pulses at 100 Hz), which typically induces tran-
sient potentiation, can lead to late-LTP when delivered after, but not before,
a strong tetanus (STET) in close spatial and temporal proximity. This
outcome could be explained in two ways. One possibility is that the STP
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at 0 h time point indicates the timing where the strong TET/training is induced.
Under ex vivo condition, no associativity is observed when weak TET precedes
strong TET by 3 h. Associativity is observed for up to at least 9 h following strong
TET induction. The effective associativity window is shorter under behavioural
tagging conditions (dotted grey line)*>. TET: tetanization.

protocol induces a brief tagging state (due to the weaker stimulation) that
allows the transient potentiation to convert to late-LTP if PRPs are readily
available during the tag-setting process. Alternatively, the STP protocol
might enhance tag setting when applied after a STET, compared to its
application prior to a STET, where fewer or no tags are established. This
enhanced tag setting post-STET could facilitate the capture of PRPs,
resulting in late-LTP. Indeed, previous studies have shown that LTP
induction in one pathway can facilitate long-term depression in another
pathway™. In another study, late-LTP induced in one synaptic input was
shown to protect another synaptic input from depotentiation-induced LTP
resetting”. Together, these findings support the latter explanation, sug-
gesting that an STET metaplastically primes neighbouring synapses, facil-
itating future potentiation events. This may also contribute to the extended
duration of associativity by priming the WTET-synapses to produce PRPs,
however, this requires further validation. Nonetheless, regardless of the
explanation, the weaker STP protocol (11 pulses at 100 Hz) used by Frey and
Morris’, as well as in our experiments, did not result in late-LTP even when
followed by an STET in a separate synaptic input. This suggests that the
threshold for inducing tag setting, at least in our case, must exceed 11 pulses
at 100 Hz. Interestingly, we previously reported that the threshold for setting
a synaptic tag can be lowered by processes such as metaplasticity—speci-
fically, ryanodine receptor activation before STP induction™. This enables
tagging interactions in a weak-before-strong paradigm at 30 and 60 minutes
but not at 90 minutes. In the current experiments, we used a 60-minute time
window for STET-STP interactions and did not observe the expression of
STC. However, it remains to be tested whether reducing the interval might
promote the expression of STC. Additionally, the molecular mechanisms
governing tag status and the time course of these metaplastic effects remain
to be elucidated.

Studies on STC have proposed several molecules as potential tags,
including Ca’**/calmodulin-dependent protein kinase II (CaMKII)*', pro-
tein kinase A***’, and tropomyosin receptor kinase B (TrkB); however, the
specific mechanisms of tag-PRP interaction remain largely unexplored.
Notably, Sacktor*® proposed a model of synaptic autotagging by protein
kinase M zeta (PKMU) to explain the compartmentalization of activated
PKM( at specific synapses during the maintenance phase of LTP*. PKM{ is
recognized as a key molecule for LTP maintenance and has been shown to
persist at elevated levels in vivo for months, positioning it as a strong can-
didate for memory maintenance” ™. In the autotagging model, LTP
induction activates PKMU, increasing AMPAR levels at potentiated

synapses. This elevation in GluR2 (an AMPAR subunit) serves as a tag to
capture PKMU during maintenance, establishing a cycle that sustains PKIM(
activity at these synapses. Exploring the interaction between PKM( and its
substrates may enhance our understanding of tag-PRP interactions and
provide insights into the mechanisms underlying synaptic associativity.

How neurons regulate the time window of STC remains an open
question. One hypothesis is that specific post-translational modifications of
PRPs may limit further associativity beyond a certain period. This study
suggests that investigating modifications of PRPs, such as PKMG, in ex vivo
versus in vivo conditions—particularly 4 hours after LTP induction (derived
from behavioural tagging studies)—could shed light on these mechanisms
(as illustrated in Fig. 4). The ex vivo hippocampal slices, which lack extra-
hippocampal homoeostatic modulation, may prevent PRP modifications
that would otherwise restrict associativity. Targeting the mechanisms that
delay the onset of synaptic homoeostasis—and thereby prolong the avail-
ability of plasticity-related proteins (PRPs) in behavioural paradigms that
replicate the extended STC conditions—may represent a promising strategy
to enhance associative learning. Elucidating the neuromodulatory processes
and synaptic associativity underlying this phenomenon could provide cri-
tical insights into the molecular mechanisms of associative memory
formation.

Data availability

All data are available on the Open Science Framework (OSF) (https://osf.io/
wqrk4/?view_only=750f66389bc2447686769ad9b9144fd8) and can be
obtained from the corresponding author upon reasonable request.
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