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We had previously reported a convolutional neural network (CNN) based approach, called the holistic
kinetic model (HK model 1), for detecting 5-methylcytosine (5mC) by single molecule real-time
sequencing (Pacific Biosciences). In this study, we constructed a hybrid model with CNN and
transformer layers, named HK model 2. We improve the area under the receiver operating characteristic
curve (AUC) for 5mC detection from 0.91 for HK model 1 to 0.99 for HK model 2. We further demonstrate
that HK model 2 can detect other types of base modifications, such as 5-hydroxymethylcytosine (5hmC)
and N6-methyladenine (6mA). Using HK model 2 to analyze 5mC patterns of cell-free DNA (cfDNA)
molecules, we demonstrate the enhanced detection of patients with hepatocellular carcinoma, with an
AUC of 0.97. Moreover, HK model 2-based detection of 6mA enables the detection of jagged ends of
cfDNA and the delineation of cellular chromatin structures. HK model 2 is thus a versatile tool expanding
the applications of single molecule real-time sequencing in liquid biopsies.

There is much recent interest in using third-generation sequencing tech-
nologies to directly detect DNA modifications of native DNA molecules'.
For example, the challenges of using single molecule real-time sequencing
(SMRT-seq) for 5-methylcytosine (5mC) detection has recently been
solved through the development of a holistic kinetics model (HK model),
improving the sensitivity for 5mC detection from <5% to >90%'. In con-
trast to the analysis of kinetic signals on the CpG site of interest, the HK
model holistically makes use of signals including inter-pulse durations
(IPDs), pulse widths (PWs) as well as base identities across a range of
nucleotides surrounding a CpG site, using a convolutional neural network
(CNN)'. Following Tse et al’s work, PacBio released an approach
named Primrose, which is essentially based on the HK model structure’.
Recently, Ni et al. developed an approach, named ccsmeth, based on the
recurrent neural network (RNN) and attention mechanism for 5mC
detection’.

The importance of direct analysis of DNA methylation has been illu-
strated in several recent studies on liquid biopsies from pregnant women*
and patients with cancer’ based on SMRT-seq. For example, the analysis of
methylation patterns of long cell-free DNA (cfDNA) molecules enhances
the tracing of their tissues of origin® in the context of pregnancy and
oncology, opening up many exciting possibilities for molecular diagnostics.
In addition to SMRT-seq, the feasibility of using long cfDNA methylation
patterns for tissue-of-origin analysis has been demonstrated using nanopore
sequencing (ONT-seq, Oxford Nanopore)®’.

Nonetheless, it would be scientifically intriguing to explore whether the
accuracy of 5mC detection could be further enhanced by optimizing the
structures of deep learning framework and fine-tuning the experimental
protocol for preparing training datasets. More importantly, it remains
unknown as to whether the use of a deep learning framework could be
equally applicable to detect other types of base modifications, such as
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5-hydroxymethylcytosine (5hmC) and N6-methyladenine (6mA). 5hmC
modification is an oxidized form of 5mC mediated by ten-eleven translo-
cation (TET) enzymes and is prevalent in embryonic stem cells’ and the
brain’. 5ShmC levels have been reported to be preferentially enriched in
tissue-specific gene bodies and enhancers'’, and 5ShmC has potential to be
used as a circulating biomarker for cancer detection'"". Of note, there is still
a lack of approaches for detecting 5ShmC using SMRT-seq. One possible
reason is that it is challenging to obtain a high-quality training dataset for
5hmC detection. On the other hand, 6mA modification is relatively more
prevalent in prokaryotes than eukaryotes. 6mA modification is involved in
many pathways related to the survival of bacteria and their interactions with
hosts". Using N6-adenine DNA methyltransferase followed by SMRT-seq,
a recent report demonstrated that the 6mA modification could be differ-
entially introduced into the double-stranded DNA depending on the
chromatin states, therefore facilitating the elucidation of the chromatin
structures'. However, that study detected 6mA in the genomes of Droso-
phila melanogaster cell line (S2 cells) and human immortalized myelogen-
ous leukemia cell line (K562 cells) simply based on IPD values at adenine
sites but did not report the actual performance of 6mA detection'. Based on
a single synthetic oligonucleotide of 199 base pairs (bp), the use of ratios of
IPD values between methylated and unmethylated adenines gave an accu-
racy of 85% for the detection of 6mA"’. The genomewide assessment of 6mA
in the human genome-scale requires further investigation. We reasoned that
considering the 6mA signals associated with those proximal nucleotides
might improve the accuracy in 6mA detection and lead to a better resolution
of chromatin structures.

In this study, we explored variations of deep learning framework for
enhancing 5mC detection of SMRT-seq by combining CNN models with
transformers, together with various dedicated training datasets, named the
holistic kinetic model 2 (HK model 2). We hypothesized that CNN and
transformer might exhibit synergy in capturing both long- and short-range
data patterns in an input feature map. In addition, we investigated experi-
mental and analytical strategies for overcoming the previously unsolved
difficulty in differentiation between 5mC and 5hmC. Moreover, we sig-
nificantly improved the specificity of 6mA detection without compromising
its sensitivity, effectively enabling the detection of both sparse and dense
modified signals in a single measurement. Finally, we applied HK model 2 to
the analysis of cfDNA molecules.

Results

Structure of HK model 2

Figure 1 shows a schematic of the design of HK model 2. Kinetic signals of
SMRT-seq including IPDs and PWs, the corresponding base identity, and
base positions within a 21-nucleotide (nt) measurement window were
organized into an input feature matrix (i.e. initial input layer) as described in
Supplementary Methods (Fig. SI1 A). The measurement window consists of
10-nt upstream and downstream of a target locus (e.g. cytosine of a CpG).
The Watson and Crick strand data were combined in an input feature
matrix in the initial analysis. The input layer was processed by four one-
dimensional (1-D) convolutional layers. The resultant convolutional out-
puts derived from a measurement window, together with the positional
information transformed by sinusoidal embeddings, were input to three
consecutive transformer layers, followed by an output layer that produced
the probabilities of base modification, ranging from 0 to 1, (referred to as
base modification score), with a softmax activation function. Using training
datasets comprising different base modifications, HK model 2 enables the
direct detection of multiple base modifications across the entire genome,
including 5mC, 5hmC, and 6mA. The details of HK model 2 are described in
Methods and Supplementary (Fig. S1 A-C).

Enhanced accuracy of 5mC detection by HK model 2

To evaluate the performance of HK model 2, we used the training dataset
(referred to as Dataset 01) from the previously published study (HK model)’
to train HK model 2. The training dataset comprised PCR-amplified DNA
(i.e. unmethylated DNA; the negative dataset) and M.SssI-treated DNA sets

(i.e. methylated DNA; the positive dataset), each involving 0.35 million CpG
sites. An area under the receiver operator characteristic curve (AUC-ROC)
value of 0.97 and an area under the precision-recall curve (AUC-PR) value
0f 0.97 were achieved for differentiating between the unmethylated cytosine
(uC) and 5mC in an independent testing dataset. HK model 2 thus
demonstrated significant improvement, compared to the original version of
HK model (renamed as HK model 1) with an AUC-ROC of 0.91 and an
AUC-PR 0f 0.92 on the same datasets (P value < 0.0001, DeLong’s test). To
further test the performance of HK model 2, we increased the size of training
dataset to 13 million CpG sites by preparing a larger dataset (named Dataset
02) according to Tse et al.’s experimental protocols'. Notably, the perfor-
mance of HK model 2 was thus further improved to 0.99 for both AUC-
ROC and AUC-PR (Fig. 2A and C). As shown in Fig. S24, the predicted
methylation score for 5mC was 0.95 (IQR: 0.88-0.95), significantly higher
than the score of 0.06 (IQR: 0.06-0.12) for uC (P value < 0.0001,
Mann-Whitney U test). If we defined a cutoft of base modification score of
0.5, we could obtain a specificity of 96%, a sensitivity (recall) of 95%, and a
precision of 96%. As shown in Fig. 2B and D, both AUC-ROC and AUC-PR
values progressively increased for both HK model 2 and HK model 1, as the
subread depth (x) increased. A subread refers to the sequence data obtained
from a single pass of the DNA template by the polymerase within a zero-
mode waveguide (ZMW). Since double-stranded DNA molecules have two
strands, in this study, the subread depth is defined as the number of
sequenced reads generated from one strand. For example, the sensitivity and
specificity in HK model 2 could reach 97% and 98% at a subread depth of
>20x while the sensitivity and specificity were 87% and 89% at a subread
depth of 5-10x. AUC-ROC and AUC-PR values of HK model 2 trained by a
large training dataset size (Dataset 02) showed consistent improvement
across different subread depths, demonstrating the robustness of HK model
2. There was a 22% increase in both AUC-ROC and AUC-PR for low
subread depths (1-5x) and a 6% increase for high subread depths (>120x)
(Fig. 2B and D), when comparing the HK model 2 (Dataset 02) to HK
model 1".

To further evaluate the performance of hybrid model structure, HK
model 2, integrating CNN and Transformer architectures, we conducted
benchmarking analyses of 5mC detection. On the basis of Dataset 01, HK
model 2 was compared to the public methods in this field such as ccsmeth,
Primrose, and several individual model strategies (see details in the Methods
and Supplementary). As shown in Table S1, HK model 2 gave rise to the
highest values in terms of both the AUC-ROC (0.97) and AUC-PR (0.97),
compared with HK model 1 (AUC-ROC and AUC-PR: 091 and 0.92),
primrose (0.87 and 0.89), ccsmeth (0.94 and 0.94), CNN (0.95 and 0.96),
MLP (0.94 and 0.95), and transformer (0.96 and 0.96). Importantly, at a
specificity of 99%, HK model 2 achieved a sensitivity of 79%, which was
superior to other approaches (range of sensitivities: 41-72%). At a recall rate
of 99%, HK model 2 achieved a precision of 70%, which was superior to
other approaches (range of precisions: 50-66%). Taken together, HK Model
2 has demonstrated superior performance to a number of other evaluated
deep learning algorithms.

We further examined the performance of HK model 2 by using the
public BS-seq and SMRT-seq data (hg002_15kb and hg002_24kb) of
HGO002, one of well-characterized datasets. The median read depth ata CpG
site was 100x for BS-seq data. The median circular consensus sequence
(CCS) depths at a CpG site were 25x and 28x for hg002_15kb and
hg002_24kb, respectively. We first identified 1,451,125 fully unmethylated
and 958,901 fully methylated CpG sites in the BS-seq data of HG002, with a
sequence depth of at least 10x. Then, applied HK model 2 to these identified
CpG sites from hg002_15kb and hg002_24kb, we observed that the
methylation scores deduced by HK model 2 at unmethylated CpG sites were
significantly lower than those at fully methylated CpG sites hg002_15kb
(median: 0.07 vs. 0.95; IQR: 0.06-0.12 vs. 0.88-0.95; P value < 0.0001,
Mann-Whitney test) (Fig. S3A) and hg002_24kb datasets (median: 0.07 vs.
0.95; IQR: 0.06 -0.13 vs. 0.89-0.95; P value < 0.0001, Mann-Whitney test)
(Fig. S3D). Through ROC curve analysis based on the predicted methylation
scores, AUC values were 0.94, 0.98, 0.98, and 0.99 at subread depths of 1-5x,
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Fig. 1 | A schematic of the model structure of HK model 2. Subreads generated
from single-molecule real-time sequencing (SMRT-seq) are aligned to the corre-
sponding circular consensus sequence (CCS), and the kinetic features are established
for individual nucleotides. Such kinetic features include inter-pulse duration (IPD)
and pulse width (PW) (Top left). DNA is double-stranded, thus subreads can be
derived from the Watson and Crick strands. As SMRT-seq utilizes a circularized
DNA template, the DNA polymerase (yellow) conducts multiple laps of continuous
and processive polymerization based on fluorescently labeled nucleotides, namely A
(adenine), C (cytosine), G (guanine), and T (thymine) (Top right), producing a
number of aforementioned subreads from the same DNA template. The colors of
fluorescent pulses during sequencing are used to determine the identity of each base.
The trajectory of these fluorescent signals helps measure two key kinetic features,
namely, IPD and PW. The IPD reflects the time interval between two consecutive
base incorporations, while PW indicates how long a base incorporation event lasts.
Due to the repeated measurement nature of SMRT sequencing, the collective use of

subreads from the same molecule can improve the sequencing accuracy and
quantification of the kinetics of polymerase which would be influenced by base
modifications present in the template [e.g. 5mC (5-methylcytosine), 5hmC (5-
hydroxymethylcytosine), or 6mA (N6-methyladenine)]. Furthermore, the holistic
kinetic (HK) model 2 framework is illustrated at the bottom. The kinetic signals of
sequenced nucleotides within a flanking region around a query site (e.g.a C
nucleotide at the CG context) are organized into an input matrix based on their base
identities and positions, forming a measurement window. The input matrix is
processed through convolutional layers, which extract local kinetic patterns asso-
ciated with base modification. The output of these layers, combined with positional
embeddings encoding relative nucleotide positions, is passed into transformer lay-
ers, which capture kinetic relationships across the measurement. The output layer
generates probabilities for different types of base modification (referred to as base
modification scores). Base modifications predicted by current HK model 2 include
5mC, 5hmC, and 6mA.

6-10x, 11-20x, and >20x, respectively, in the hg002_15kb dataset
(Fig. S3B), which were generally comparable to the values from the artifi-
cially prepared datasets (Dataset 02; Fig. 2A-D). We also achieved a com-
parable performance in the hg002_24kb dataset (Fig. S3E). Additionally, the
same conclusion could be validated from the PR curve analysis, as shown in
Fig. S3C and S3F. Furthermore, the methylation levels in 1 Mb genomic
regions quantified by HK model 2 were well correlated with those measured
by BS-seq for both the hg002_15kb dataset (Pearson’s r: 0.96; P value <
0.0001) (Fig. S4A) and hg002_24kb dataset (Pearson’s r: 0.95; P value <
0.0001) (Fig. S4B) samples. When analyzing the CpG sites with at least 20x
sequence coverage in both datasets, such correlation could also be observed
at single CpG resolution in the hg002_15kb dataset (Pearson’s r: 0.95;
P <0.0001) (Fig. S4C) and the hg002_24kb dataset (Pearson’s r: 0.94;
P <0.0001) (Fig. S4D).

Enhanced analytical coverage of base modification analysis in a
DNA molecule by HK model 2

For HK model 1, a 21-nt measurement window was used to analyze each
CpG in a sequenced molecule after the removal of sequencing adapters'.
Those CpG sites proximal to ends of a sequenced molecule would not have
sufficient flanking nucleotides to form an intact measurement window, thus
leading to the existence of non-reportable CpG sites in terms of methylation
states (referred to as the no-call region). Figure 2E shows a rapid reduction in
the percentage of callable CpG sites close to fragment ends within a
nucleotide distance of 11 nt using HK model 1. To overcome this issue, HK
model 2 made use of kinetic signals retrieved from sequencing adapters to
facilitate the methylation analysis of CpGs proximal to the fragment ends.
The percentage of callable CpG sites in HK model 2 approached 100%
(Fig. 2E), with an AUC-ROC of 0.97 (Fig. 2F) and an AUC-PR of 0.97
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(Fig. S5A) in differentiating between the methylated and unmethylated
CpGs in the boundaries of fragment ends. Moreover, by applying HK model
2 to one million paired methylated and unmethylated CpG sites with
varying window sizes and subread depths, we observed that the use of 21-nt
window size generally achieved a plateau performance in terms of AUC-
ROC (Fig. S6A) and AUC-PR (Fig. S6B) across different subread depths.
Thus, the analyses conducted in this study was mainly based on a window
size of 21 nt in this study.

Strand-specific HK model 2
The aforementioned evaluation of HK model 2 focused on data combining
the Watson and Crick strands. We further explored the performance of HK
model 2 when using single-stranded information. The capability of ana-
lyzing the strand-specific methylation patterns would broaden the applic-
ability of the model proposed in this study. For example, the strand-specific
HK model makes it possible to dissect DNA hemi-methylation which has
been reported to occur at CTCF (CCCTC-binding factor)/cohesin binding
sites and which may play a role in driving chromatin assembly . Figures 3A
and S5B show that the strand-specific HK model 2 could still achieve an
AUC-ROC of 0.97 and an AUC-PR of 0.97 using Dataset 02. When we
investigated the details of AUC-ROC values in a strand-specific manner for
each CpG in sequenced molecules according to their positions relative to the
nearest ends of sequenced fragments (Fig. 3B), a reduction in AUC-ROC
near the 3’ end of DNA fragments was observed in Dataset 02 using strand-
specific HK model 2. We hypothesized that the diminished performance of
the strand-specific model for those CpG sites close to the 3’ end might be the
unmethylated cytosines which were introduced into the M.SssI-treated
DNA molecules containing jagged ends during the DNA end repair (Pro-
tocol A in Fig. S7). To overcome this issue, we revised Protocol A to Protocol
B (Fig. S7) in which the end repair step was performed before the step of
M.SssI treatment to generate another enhanced training dataset, namely
Dataset 03. The use of Dataset 03 enabled the differentiation between
methylated and unmethylated cytosines with an AUC-ROC of 0.98
(Fig. 3A) and AUC-PR of 0.98 (Fig. S5B), confirming that the refined
protocol B was valid. More importantly, the discrepancy of AUC-ROC
between the proximal regions of 5° and 3’ ends shown in using strand-
specific HK model 2 disappeared (Fig. 3B). Hence, HK model 2 enabled the
accurate detection of 5mC that may exist either in the Watson or Crick
strand of a double-stranded DNA molecule.

To further assess the strand-specific performance in detecting 5mC, we
applied the HK model 2 to the publicly available HG002 datasets (15 kb and
24kb). In the BS-seq data of HG002, we identified 4,333,284 fully

unmethylated and 5,209,390 fully methylated CpG sites, each with a strand-
specific sequence depth of at least 10x. Using the HK model 2, we measured
methylation scores for these CpG sites in the SMRT-seq datasets of
hg002_15kb and hg002_24kb. As shown in Figs. S8A and S8D, the
methylation scores derived from the HK model were significantly lower at
unmethylated CpG sites compared to fully methylated sites in both the
hg002_15kb (median: 0.10 vs. 0.83; IQR: 0.09-0.19 vs. 0.51-0.92; P < 0.0001,
Mann-Whitney test) and hg002_24kb datasets (median: 0.13 vs. 0.88; IQR:
0.08-0.29 vs. 0.67-0.93; P < 0.0001, Mann-Whitney test). ROC curve ana-
lysis of the predicted methylation scores in the hg002_15kb dataset
(Fig. S8B) yielded AUC values of 0.85, 0.91, 0.93, 0.94, and 0.96 at subread
depths of 1-5x, 6-10x, 11-20x, 21-30x, and >30x, respectively. Similar
performances were observed in the hg002_24kb dataset (Fig. S8E). These
results suggest that the strand-specific HK model 2 for methylation analysis
is feasible and valid. PR curve analysis (Fig. S8C and S8F) also supported the
conclusions.

HK model 2 for differentiation between 5mC and 5ShmC

To enable HK model 2 to differentiate between 5mC and 5hmC, it is
necessary to prepare a training dataset that comprises 5hmC modifications.
In contrast to the preparation of 5mC modifications at CpG sites using a
single methyltransferase (M.SssI), there is currently no such methyl-
transferase whose end product of enzymatic reaction will be 5ShmC. The
TET proteins could catalyze the stepwise oxidation of 5mC to produce
5-hydroxymethylcytosine  (5ShmC), 5-formylcytosine  (5fC), and
5-carboxylcytosine (5caC) (Fig. 4A). The proportions of these oxidized
cytosines in a TET-treated DNA mixture would vary depending on the
incubation time.

According to a previous study'’, we used TET2 to treat DNA to obtain
the product mainly comprising the 5mC and 5hmC modifications (referred
to as 5xC) at cytosine sites, named the TET-5xC dataset. Using a DNA
ligation step, we introduced 5hmC into the hybrid DNA molecules to create
a training dataset (named Lig-5hmCG) (Fig. 4B). Based on the TET-5xC
and WGA-uC datasets, we established a reference for determining the 5xC
and uC modifications. In addition, based on M.SssI-mC and Lig-5hmCG,
we established other reference datasets for further resolving 5xC into 5mC
and 5ShmC modifications (Fig. 4C). We analyzed a total of 18,040,000 CpG
sites and 325,851 CpG sites for 5xC and 5hmC detection, obtaining AUC-
ROC values of 0.99 and 0.97 (Fig. 4D), and AUC-PR values of 0.99 and 0.97
(Fig. S5C), respectively. Using a cutoff of 0.5 in terms of base modification
score, 93% specificity and 94% sensitivity were obtained for differentiating
between uC and 5xC, while 85% specificity and 94% sensitivity were
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Fig. 4 | Schematic workflow for differentiating between 5mC and 5ShmC mod-
ifications using M.SssI-treated and Ligation-based DNA. A Illustration of the
composition of TET-treated DNA. B Illustration of the preparation for the 5hmC
detection dataset (named Lig-5hmC) based on a ligation method. C The analytical

workflow for 5mC and 5hmC detection in SMRT-seq. D ROC curves of the testing
datasets for the 5xC and 5hmC detection. E Box plots of modification scores for
5hmC detection in the testing dataset.

between 5ShmC and 5mC. As shown in Fig. 4E, the modification scores of
5hmC (median: 0.95; IQR: 0.92-0.96) were much higher than that of 5mC
(median: 0.06; IQR: 0.05-0.17) (P value < 0.0001, Mann-Whitney U test).

Differentiation between 5mC and 5hmC in biological samples
We further used biological samples to demonstrate the validity of 5hmC
detection based on HK model 2 framework. A bufty coat DNA sample was

obtained from a healthy individual, and a brain DNA sample was obtained
from a commercial source (EpigenTek). We used bisulfite sequencing (BS-
seq) and Tet-assisted bisulfite sequencing (TAB-seq) to deduce the 5xC
(approximately the total level of 5mC and 5hmC) and 5hmC levels in the
buffy coat and brain samples, with a sequencing depth of haploid genome of
at least around 6 folds. We observed that the overall levels of 5ShmC deter-
mined by HK model 2 showed a strong correlation (Pearson’s r: 0.91; P
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value < 0.0001) with those measured by TAB-seq across various genomic
regions in both the buffy coat and brain (Fig. S9B). Figure 5A shows that the
5hmC modifications deduced by HK model 2 were found to be enriched in
the brain across CpG islands (CGIs), enhancers, promoters, and repeat
regions (i.e. LINE, LTR, and Satellite) with levels ranging from 2.23% to
27.47%, compared with the buffy coat sample (range: 1.19-14.33%). Such
5hmC patterns were in agreement with the data shown in TAB-seq results
[Range of 5ShmC level: 4.78-27.64% (brain) versus 2.04-9.78% (bufty coat)].
The total levels of cytosine modification were found to be highly consistent
between the measurements of HK model 2 (indicated by 5xC) and BS-seq in
both the buffy coat and brain, with a Pearson correlation coefficient was 0.99
(P value < 0.0001) (Figs. 5A and S9A). Notably, a sharp dip of both 5hmC
and 5mC levels surrounding transcription start sites (TSS) was seen in the
results of the brain deduced by HK model 2 (Fig. 5B), with the levels of
5hmC consistently lower than that of 5mC. Such patterns were largely in line
with previous observations’. Importantly, the 5xC and 5hmC levels ana-
lyzed by HK model 2 across positions nearby TSS were linearly correlated

with those measured by BS-seq (Pearson’s r: 0.99; P value < 0.0001) and
TAB-seq (Pearson’s r: 0.96; P value < 0.0001) (Fig. 5C and D).

Enhanced detection of 6mA through HK model 2 framework

The conventional method of detecting 6mA based on SMRT-seq was to
compare the IPD values at adenine (A) sites from native DNA sequencing
data with control IPD values from either methylation-free whole-genome
amplified DNA or precomputed in silico IPD models'®. It was reported that
the fixed cutoff of IPD ratio for 6mA detection would introduce false
positive calls, especially from genomic regions with high sequencing depth'’.
In this study, we reasoned that the adoption of HK model 2 would improve
the performance of 6mA detection. We applied whole-genome amplifica-
tion with the presence of 6mA such that nearly all adenine sites in amplified
DNA molecules would be 6mA (named WGA-6mA dataset) (Fig. 6A). The
corresponding negative dataset could be obtained from the whole-genome
amplification with unmodified ANTP (named WGA-uA dataset; uA
denotes unmethylated adenines). The IPD values on 6mA site were
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significantly higher than those on uA sites (median: 0.90 versus 0.22; P
value < 0.0001) (Fig. 6B), suggesting the successful introduction of 6mA to
the amplified DNA.

To make it possible to detect either single or multiple 6mA sites present
in a measurement window using one generic model, we developed an
innovative normalization strategy to make the pattern of multiple 6mA
signals comparable with that of single 6mA signals (Fig. S10 A) (see Sup-
plementary Methods). We observed that the distributions of kinetic values
were similar between unmodified adenine and thymine (Fig. S10 B). All
kinetic values in a measurement window were divided by the median kinetic
value of thymines, therefore the normalized kinetic signals of uA exhibited a
distribution with a mean of 1. As the neighboring 6mA sites would confound
the target site analysis, the kinetic values regarding those “confounding sites”
were set to 1, maximally resembling the uA distribution to minimize the
confounding effect during the training (Fig. S10A). HK model 2 was trained
by the normalized data from WGA-6mA and WGA-uA datasets for 6mA
detection. As a result, the 6mA and uA could be differentiated with an AUC-
ROC of 0.99 and AUC-PR of 0.99, which was superior to the conventional
analysis based on IPD values of A sites (AUC-ROC: 0.94; AUC-PR: 0.94)
(Figs. 6C and S5D). If a cutoff of 6mA modification score was set as 0.5, the
sensitivity and specificity were 96% and 98%, respectively. The corre-
sponding false positive rate of HK model 2 was 1.7%, which was greatly lower
than the method based on the IPD metric only (10.4%) (Fig. 6D).

Next, we further validated the performance of the 6mA detection using
DNA molecules that had been treated by the Escherichia coli DNA adenine
methyltransferase enzyme (Dam), which was known to add a methyl group
to the adenine (i.e. 6mA) at the sequence context of 5-GATC-3’. Figure 6E
shows that 95.2% of GATC motifs were determined to have 6mA mod-
ifications, whereas only 0.87% of adenine sites within non-GATC contexts
had 6mA modifications. The result further confirmed the validity of 6mA
determination.

To evaluate the performance of genome-wide 6mA detection in bio-
logical samples, we applied HK model 2 to analyze microbial DNA (with an

average of 220-fold coverage). It was known that the sequence motif GATC
was characterized with 6mA modifications in Escherichia coli (E. coli) and
Salmonella enterica (S. enterica), but not in Bacillus subtilis (B. subtilis),
Enterococcus faecalis (E. faecalis), Listeria monocytogenes (L. mono), and
Staphylococcus aureus (S. aureus)’™'. 6mA methylation levels at GATC
across various microbes were analyzed by HK model 2. The predicted
median 6mA methylation levels related to GATC motifs were 95% in both E.
coliand S. enterica, whereas 2%, 1%, 2%, and 2%, for B. subtills, E. faecalis, L.
mono, and S. aureus, respectively (Fig. 7A). The results were in good
agreement with the expectation. Interestingly, apart from the well-known
GATC motif, their respective characteristic motifs associated with 6mA
were determined to be ACA(N)sTG, AAGA(N)sCTC, CRAA(N),TTG,
GCA(N);TGC, TA(N)sTA, CAGAG, respectively (Fig. 7B), which were also
comparable with previous studies’”'. These results demonstrated that HK
model 2 is a useful tool for analyzing 6mA in actual biological samples.

Taken together, we have demonstrated that HK model 2 exhibited
good performance with versatile functions in determining various types of
base modifications using various datasets in this study. The sensitivities at
given specificities, as well as precisions at given recalls, were summarized in
Tables S2 and S3 for different models. The distributions of modification
scores predicted by these models showed notable separations for different
modifications, as shown in Fig. S2.

Potential applications of using HK model 2

We next set out to investigate the potential impact of HK model 2 on clinical
and biological applications. Choy et al. recently demonstrated that the use of
HK model 1 for detecting cancer-associated methylation patterns in long
cfDNA molecules enabled the detection of patients with hepatocellular
carcinoma (HCC)’. Choy et al. established the HCC methylation score
derived from the comparison between the methylation pattern of each long
cfDNA molecule and the counterpart in reference tissues (e.g. HCC tumor
tissues and normal tissues)’. Using HK model 2, we reanalyzed Choy et al.’s
dataset comprising cfDNA molecules with 1 to 6 CpG sites and calculated
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microbes.

the HCC methylation score. We observed that HCC methylation scores in
HCC patients (median: 0.764; IQR: 0.751-0.802) were significantly higher
than those in non-HCC individuals (i.e. healthy individuals and HBV
carriers) (median: 0.733; IQR: 0.729-0.745) (P value =0.0001; Mann-
Whitney U test) (Fig. 8A). Importantly, the HCC methylation score based
on HK model 2 could lead to a higher AUC, 0.91, in distinguishing between
individuals with and without HCC, compared with that based on HK model
1 (AUC:0.75) (Fig. 8B). The performance of HCC detection could be further
improved to 0.97 if we used the dataset comprising cEDNA molecules with at
least 7 CpG sites (Fig. 8B).

One possible application of the 6mA detection by HK model 2 is in the
analysis of jagged ends of cfDNA™. It was reported that cfDNA molecules
commonly contained 5 single-stranded protruding ends, providing a pos-
sible biomarker for cancer””. The ability of 6mA detection based on single
molecule sequencing could enable a high-resolution jaggedness analysis of
cfDNA molecules. For cfDNA molecules subjected to the process of DNA
end repair with the presence of 6mA, the 6mA modification would be
incorporated into the strand opposite to a 5 single-stranded protruding
jagged end. The resulting 6mA modifications were present in those sites
close to the 3" ends of newly generated strands (Fig. S11). We observed the
increase of 6mA levels close to the 3’ end of cfDNA fragments, thus
demonstrating the feasibility of detecting jagged ends of cfDNA (Fig. 8C).

Another possible application of the 6mA detection by HK model 2 is to
infer nucleosome positioning. The 6mA modifications could be differen-
tially introduced into the chromatin depending on its accessibility states via
DNA adenine methyltransferases (e.g. Hia5)"*. The HK model 2 based 6mA
detection was applied to analyze the SMRT-seq result of the human nuclei
(K562 cell line) which was treated by Hia5'". We further determined the
nucleosome positioning in genomic regions near CTCF binding sites (i.e.
CCCTC-binding factor), which was known to be flanked with well-
organized nucleosomal patterns'*. The 6mA signals within 1kb upstream
and downstream relative to CTCF binding sites were analyzed. The 6mA
levels in genomic sites relative to CTCF binding sites displayed periodic
signals with an interval of approximately 180 bp, resembling nucleosomal
arrays (Fig. 8D). We envisioned that the distance between two consecutive
peaks of 6mA levels could facilitate the determination of nucleosome
positioning and the magnitude of 6mA levels might indicate the openness of
chromatin states.

Discussion

We have developed a deep learning framework, named HK model 2, for
analyzing multiple base modifications of DNA molecules sequenced by
SMRT-seq. The sensitivities of HK model 2 for 5mC, 5hmC, and 6mA
detection reached 98%, 90%, and 99%, respectively, at an overall specificity
of over 90%. Such a framework has been implemented using a hybrid
architecture of deep learning models consisting of CNN and transformers.

HK model 2 has demonstrated superior performance compared to several
other evaluated deep learning algorithms, as shown in the benchmarking
analyses in Table S1. In theory, CNN could effectively capture the local
feature patterns in a measurement window through the convolutional
process, whereas transformers might learn global feature patterns through
the ‘self-attention’ mechanism®. Furthermore, another essential pre-
requisite to achieving an excellent performance of the deep learning model is
to properly carry out the training dataset preparation and data processing of
the input features (e.g., signal normalization). Indeed, the CNN model tested
in Dataset 01 was found to be even better than the published CNN-based
HK model'. Such an improvement is likely due to the improved data pre-
processing. A greater subread depth typically results in higher accuracy, as
indicated in previous publications'. In this study, data preprocessing
involved aligning subreads directly to CCS to maximize their utilization,
rather than aligning them to the human reference genome, which would
reduce mappability. Additionally, the signal normalization method of HK
model 2 was performed within a window size of 50 nt surrounding a target
site (i.e., the C of the CG) instead of the whole molecule, which might reduce
the kinetical signal biases because of the difference in molecule sizes.

In this study, we provided the dedicated solutions regarding training
dataset preparation and signal processing, depending on the target type of
base modification. For example, for 5mC detection, the DNA end repair
process was performed prior to the M.Sssl treatment, minimizing the
contamination of unmodified cytosines present in the training dataset of
methylated DNA. Such an experimental protocol has been demonstrated to
be useful in improving the model performance, typically for those CpG sites
proximal to the 3’ ends of DNA fragments. For 5ShmC detection, we
designed an approach based on DNA ligation to obtain a training dataset
with a high purity of 5hmC modification. Moreover, we extended the
capability of HK model 2 to 6mA detection, using a unique signal nor-
malization to minimize the potential confounding effect of neighboring
6mA sites. Therefore, HK model 2 could have equally good performance in
detecting the 6mA modification, regardless of whether a single or multiple
6mA modifications are present in a measurement window.

Of note, the number of CpG sites in the Lig-5hmCG dataset was
currently limited. In the future, if the throughput of Lig-5hmCG increases,
one could directly train a multiclass model for differentiating uC, 5mcC, and
5hmC, by preparing the various training datasets mediated by DNA ligation
(Fig. 4B). DNA treated by the TET would introduce a certain level of 5fC and
5caC in the resulting product. Since 5fC and 5caC were reported to be 10 to
10,000-fold less abundant than 5hmC in genomic DNA across various
tissues and cells examined®, the actual impact of residual 5fC and 5caC on
the analysis of real biological samples might be minute. Such a hypothesis
would at least partly be supported by the consistent results observed between
the 5xC and 5hmC patterns in brain tissues measured by HK model 2, BS-
seq, and TAB-seq.
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In addition to the performance evaluation of HK model 2, we explored
its potential impact on clinical applications. For instance, long cfDNA has
more CpG sites, harboring the enriched tissue-specific molecular
information®’, but often having relatively low subread depth. Because of the
enhanced accuracy of 5mC detection using fewer subreads, the tissue-of-
origin analysis of recently identified long cfDNA molecules using HK model
2 would be expected to be superior to using HK model 1. Indeed, the
performance of HCC detection has been greatly enhanced to an AUC 0f 0.97
with HK model 2. For 6mA detection, we accurately determined the 6mA
modification in real biological samples (i.e. microbial DNA), which usually
sparsely contain a single 6mA site in a measurement. On the other hand, we
could determine the jagged ends of cfDNA molecules and the accessibility
profile of native chromatin fibers in nuclei in which the 6mA modifications
were artificially introduced, usually occurring across many nearby positions.
These data further demonstrated the robustness of the HK model 2 devel-
oped in this study.

Taken together, the HK model 2 is a versatile and improved approach
for detecting multiple base modifications using single molecule real-time
sequencing, augmenting current efforts in developing approaches for non-
invasive cancer detection, analyzing the properties of cfDNA jaggedness, as
well as dissecting chromatin structures.

Methods

Sample recruitment and data processing

Healthy human individuals were recruited from the Department of Che-
mical Pathology of the Prince of Wales Hospital with written informed
consent. The study was approved by the Joint Chinese University of Hong
Kong-Hospital Authority New Territories East Cluster Clinical Research
Ethics Committee. All ethical regulations relevant to human research par-
ticipants were followed. BS-seq, TAB-seq, and SMRT-seq were used in this
study. Specifications of reagent kits used for these sequencing protocols are
detailed in Supplementary Methods and Materials.

CNN-transformer mixed model

The CNN step made use of four one-dimensional convolutional (Convld)
layers, each having 64 filters with a kernel size of 5, to capture the local patterns.
The activation function of the rectified linear unit (ReLU) was used for those
convolutional layers. A batch normalization layer was applied between two
Convld layers. The convoluted results generated by the CNN step were input
to three consecutive transformer layers. The transformer layer consisted of
three operating matrices, namely query matrix (Q), key matrix (K) and value
matrix (V), by which an output, adjusted by the attention scores, would be
generated to capture the global patterns. The attention scores could be
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determined by the dot-product of Q and K. The Gaussian Error Linear Unit
(GELU) was used as an activation function in transformers. A flattened layer
was further added, followed by a fully connected layer with the use of the ReLU
activation function. The output layer with two neurons was finally applied,
with a softmax activation function to yield the probabilistic score for a CpG site
of being methylated (i.e., methylation score). The program for the model was
implemented on the basis of the Pytorch deep learning framework (https://
pytorch.org/). The datasets used for training and testing HK model 2 were
summarized in Table S4. The details are described in Supplementary Methods
and Materials.

Statistics and reproducibility

The statistical analyses and reproducibility details for model training and
evaluation are provided in the respective sections of Results and Methods.
Model performance was quantified using the area under the receiver
operating characteristic curve (AUC-ROC) and the area under the
precision-recall curve (AUC-PR) across multiple testing datasets, as sum-
marized in Table S4. Differences in ROC curves were statistically evaluated
using DeLong’s test. Differences in predicted methylation scores were
assessed using the Mann—Whitney U test. To validate the model beyond the
artificially prepared testing datasets, we further evaluated its performance
using real biological samples containing native base modifications. Speci-
fically, we assessed the accuracy of 5mC and 5hmC detection in two bio-
logical samples, as detailed in the Supplementary Methods and Materials,
demonstrating strong correlations with BS-seq and TAB-seq. The statistical
significance of these correlations was determined using Pearson’s correla-
tion. Additionally, Dam-treated DNA and microbial DNA, as described in
the Supplementary Methods and Materials, were used as independent
validation datasets for 6mA detection.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

We have deposited the sequence data for the training datasets utilized in this
study in the European Genome-Phenome Archive (EGA), hosted by the
European Bioinformatics Institute (EBI), available at https://ega-archive.
org/studies/EGAS50000000366 (accession no. EGAS50000000366). Given
that the sequence data contains genetic information from human patient
samples, our ethical framework, as mandated by the Institutional Review
Board (IRB), requires researchers to sign the Data Access Agreement to
apply for access to the data.

Code availability

The computer codes used to generate the results presented in the manu-
script are the proprietary information of Centre for Novostics, which is a
subsidiary of The Chinese University of Hong Kong. These codes have been
deposited at the University’s website (http://project.cpy.cuhk.edu.hk/
HKmodel2/) and can be made available for evaluating the results pre-
sented in the study, subject to a Software and Data Access Agreement.
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