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DNAm age differences between infinium
methylationEPICv1 vs EPICv2 in buffy
coat, PBMC, and saliva samples
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This study aims to evaluate differences between Infinium MethylationEPIC (EPICv1) and Infinium
MethylationEPICv2 (EPICv2) arrays in estimating DNAm age with eleven DNAm clocks using buffy
coat, peripheral blood mononuclear cell (PBMC), and saliva from 16 healthy middle-aged individuals.
DNAm ages were estimated using six principal component-based (PC) clocks (PCHorvath1,
PCHorvath2, PCHannum, PCPhenoAge, PCGrimAge, and PCDNAmMTL) and five non-PC clocks
(DunedinPACE, DNAmFit, YingCausAge, YingAdaptAge, and YingDamAge) across all biological
samples. Agreement between arrays was assessed using Spearman correlation, Bland-Altman plots,
and Wilcoxon Signed-Rank test. The 16 individuals with median age of 48 [43.5;53.8] years, were
predominantly female, Chinese and non-smokers. High correlations (p > 0.8) were observed between
EPICv1 and EPICv2 except for DunedinPACE, YingDamAge and YingAdaptAge. PC-based clocks
showed lower systematic bias (MAPE:0.118-8.98%) compared to non-PC-based clocks (MAPE:5.31-
21.2%). Saliva samples demonstrated greatest variability between arrays. EPICv2 introduces
systematic biases especially in non-PC-based clocks and between different biological samples.

Deoxyribonucleic acid (DNA) methylation (DNAm) involves the addition
of a methyl group to the cytosine base of cytosine-phosphate-guanine
(CpG) sites in DNA and plays a crucial role in gene regulation'”. Global
DNA hypomethylation and local CpG island hypermethylation patterns are
associated with ageing and replicative senescence*’. DNAm clocks are
algorithms developed to estimate DNAm age based on DNAm levels at sites
distributed across the genome. Biological age refers to an individual’s age
defined by the level of age-dependent biological changes, such as molecular
and cellular damage accumulation®. DNAm clocks were developed using
DNAm levels measured with the Illumina HumanMethylation27K
(HM27K), Infinium HumanMethylation450K (HM450K) and Infinium
MethylationEPICv1 (EPICv1) BeadChip arrays. Human Infinjum Bead-
Chip assays have progressed through several generations, including

HM27K, which focused on analysing promoter CpG methylation®. HM450,
its successor, expanded the number of CpG sites to include gene body CpG
methylation, highlighting the role of gene body methylation in regulating
gene expression’. EPICv1 further broadened the scope by focusing sig-
nificantly on cis-regulatory elements, acknowledging the importance of
tissue-specific methylation signatures in these enhancers®. EPICv1 has since
been extensively utilised to profile DNA cytosine modifications due to their
cost-effectiveness, precise quantification, and user-friendly data analysis,
particularly beneficial for large cohort studies’.

The recently launched Illumina InfinitumMethylationEPICv2 Bead-
Chip (EPICv2) introduces several significant advancements, including use
of lower input DNA and improve coverage in enhancer, super-enhancers
and CTCF binding regions, over its predecessor, EPICv1*®. The EPICv2
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retains 83% of the CpG sites from EPICv1 and 81% from HM450°. The
removal and addition of certain CpG sites and signal background deviation
in EPICv2 may introduce bias in DNAm age estimation due to the absence
of certain CpG sites and deviation in methylation levels®. In addition,
methylation levels differ between biological samples, introducing differing
DNAm age predictions™™". For instance, there are differences in
DNAmGrimAge2 between blood and saliva samples from mothers (aged
39-42 years) who were free of major medical conditions and disabilities".
Previous studies examining DNAm age estimation across EPICv2 and
EPICv1 were limited to cell line models® and whole blood samples from 5-
year-old children'”. These sample choices constrain interpretation, as cell
lines may not reflect DNAm patterns of human biological samples, and
paediatric samples deviate from the adult blood samples typically used to
train DNAm clocks'>. Moreover, these studies evaluated only a subset of
available DNAm clocks, notably omitting fourth-generation clocks that
offer biological interpretability, such as YingCausAge, YingAdaptAge, and
YingDamAge™"*.

The first aim of this study is to analyse the number of missing CpG sites
in eleven human DNAm clocks across EPICv] and EPICv2 arrays and to
assess the enrichment of these missing CpG sites within specific genomic
features and CpG contexts. The second aim is to evaluate the agreement of
DNAm age estimations using the EPICv2 array compared to the EPICv1
array utilising buffy coat, peripheral blood mononuclear cells (PBMC) and
saliva obtained from healthy middle-aged individuals.

Results

Participant characteristics

Participant characteristics are given in Table 1. The median age of the
participants was 48 [43.5; 53.8] years, with 9 of 16 participants being female
and 14 of 16 participants being Chinese. Thirteen of 16 participants self-
reported as non-smokers. Most participants (11/16) had self-reported
alcohol consumption less than once per week. The median of Body Mass
Index (BMI), waist-to-hip ratio, brachial systolic pressure and brachial
diastolic pressure of the participants were 22.2 [21.1;23.3] kg/m?, 0.79 [0.76;
0.82], 115 [109;126) mmHg and 74.8 [69.4;79.3) mmHg,

DNAm clock CpG coverage in EPICv1 and EPICv2 arrays

The number of CpG sites included in the 11 DNAm clocks and the CpG
coverage using EPICv1 and EPICv 2 is shown in Table 2. The number of
CpG sites utilised in the 11 DNAm clocks ranges between 71 and 1331.
EPICv1 includes all CpG sites for most DNAm clocks except Horvathl,
Hannum, DNAmFitAge and YingCausAge with 5.38%, 8.45%, 1.44%,
28.2% missing CpG sites respectively. Less than 10% the CpG sites are
missing in EPICv2 in most DNAm clocks including Horvath1, Hannum,
PhenoAge, Horvath2, YingAdaptAge and YingDamAge. However, for

Table 1 | Participant demographics characteristics (N = 16)

Characteristic Value

Age, years 48 [43.5; 53.8]
Female, n/N 9/16

Chinese, n/N 14/16
Undergraduate, n/N 11/16

Private housing, n/N 8/16
Non-smoker, n/N 13/16
Alcohol consumption, n/N 14/16

Body Mass Index, kg/m? 22.2[21.1;23.3]
0.79[0.76; 0.82]
115[109; 126]

74.8 [69.4; 79.3]

Waist to hip ratio

Brachial systolic pressure, mmHg

Brachial diastolic pressure, mmHg

Data are presented as median [interquartile range] unless stated otherwise.

GrimAge, DNAmMTL, DNAmFitAge, DunedinPACE and YingCausAge,
15.6% to 24.6% CpG sites are missing in EPICv2. The CpG loci identifiers of
the missing CpG sites of each DNAm clock in EPICv1 and EPICv2 are given
in Table S1A and Table S1B respectively. For genomic feature, the missing
CpG sites of most DNAm clocks are enriched in the gene body and the
intergenic region (Table S2). For CpG context, the missing CpG sites of most
DNAm clocks are enriched in CpG islands and open sea (Table S3).

DNAm age correlation in EPICv1 and EPICv2 with the same bio-
logical sample types

The Spearman correlations between DNAm clocks assessed using EPICv1
and EPICv2 arrays showed consistently high correlations across all biolo-
gical samples in all PC clocks, YingCausAge and DNAmFitAge (p > 0.844)
(Fig. 1). PC-based DNAm clocks showed higher correlation between
EPICv1 and EPICv2 than non-PC-based DNAm clocks. YingDamAge and
YingAdaptAge exhibited high Spearman correlations between EPICv1 and
EPICv2 in buffy coat and PBMC samples (p > 0.815). YingDamAge and
YingAdaptAge had moderate correlations between EPICv1 and EPICv2 in
saliva sample (p =0.629 and p =0.553 respectively). DunedinPACE had high
correlation between EPICv1 and EPICv2 in buffy coat and saliva samples (p
> 0.774), and moderate correlations in PBMC samples (p =0.512).

Agreement and difference of DNAm clocks between EPICv1 and
EPICv2 across different biological sample types

The agreement of DNAm ages between EPICv1 and EPICv2 was evaluated
using Bland-Altman plots, as shown in Fig. 2. The mean difference (SD),
limit of agreement and MAPE are summarised in Table S4. Across all
biological samples, mean differences were positive for PCHorvath1 (range:
1.03 to 4.03 years), PCHorvath2 (range: 0.66 to 2.77 years), PCHannum
(range: 0.27 to 1.20 years), PCDNAmMTL (range: 0.002 to 0.009 kb), and
DunedinPACE (range: 0.045 to 0.094). Mean differences were negative for
PCPhenoAge (range: -1.96 to -0.82 years), PCGrimAge (range: -0.72 to
-0.34 years), DNAmFitAge (range: -4.35 to -2.34 years), YingCausAge
(range: -8.17 to -3.48 years), and YingDamAge (range: -6.27 to -3.60 years).
For YingAdaptAge, the mean difference was negative in buffy coat (-4.55
years) and saliva (-4.67 years), but positive in PBMC (1.62 years). The
smallest absolute mean difference between EPICvl and EPICv2 was
observed for PCHannum in buffy coat (mean difference + SD: 0.27 + 0.80)
and the largest absolute mean difference between EPICv1 and EPICv2 was

Table 2 | Number of CpG sites of DNAm clocks and CpG sites
not retained in EPICv1 and EPICv2

DNAm clocks No of CpG  CpG sites not retained in arrays

sites in

i EPICv1, EPICv2, EPICv1 and

clock, N n (%) n (%) EPICv2

’ overlap, n

Horvath1 353 19 (5.38) 13 (3.68) 3
Horvath2 391 0 (0%) 17 (4.35) 0
Hannum 71 6 (8.45) (8.45) 1
PhenoAge 51118 0 (0%) 18 (3.51) 0
GrimAge 1113 1(0.1%) 185 (18.0) 0
DNAmMTL 140 0 (0%) 30 (21.4) 0
DNAmFitAge 627 9(1.44) 154 (24.6) 2
DunedinPACE 173 0 (0%) 29 (16.8) 0
YingCausAge 585 165 (28.2) 91 (15.6) 51
YingAdaptAge 999 0 (0%) 3 (6.31) 0
YingDamAge 1089 0 (0%) 9 (7.25) 0

EPICv1: lllumina InfiniumMethylationEPICv1 BeadChip. EPICv2: lllumina
InfiniumMethylationEPICv2 BeadChip. EPICv1 and EPICv2 overlap: Overlap of missing sites in both
EPICv1 and EPICv2 for each DNAm clock.

Communications Biology | (2025)8:654


www.nature.com/commsbio

https://doi.org/10.1038/s42003-025-08021-y

Article

Spearman Correlation of DNAmM Ages
between EPIC v1 and EPIC v2

YingCausAge 0.876 0.882 0.844
YingDamAge 0.841 0.815 0.629
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Fig. 1 | Heatmap of Spearman correlation between DNAm ages in EPICvl and DNAm ages in EPICv2. Each cell corresponds to correlation coefficient (p), coloured in
blue or red for low Spearman correlation (p < 0.7) and high Spearman correlation (p > 0.7) respectively.

observed for YingCausAge in PBMC (mean difference + SD: -8.17 + 3.12
years). Lower MAPE between EPICv1 and EPICv2 were observed in PC-
based DNAm clocks (MAPE: buffy coat: 0.118 to 4.28%; PBMC: 0.176 to
3.57%; saliva: 0.278 to 8.98%) compared to non-PC-based DNAm clocks
(MAPE: buffy coat: 8.27 to 15.0%; PBMC: 5.31 to 21.2%; saliva: 6.52 to
14.3%). The 95% limits of agreement across DN Am clocks were consistently
widest in the saliva samples compared to both bufty coat and PBMC samples
across all DNAm clocks.

Differences in DNAm ages between the EPICv1 and EPICv2 across 11
DNAm clocks in buffy coat, PBMC, and saliva were assessed using Wil-
coxon Signed-Rank test (Fig. 3 & Figure S1). Across all biological samples,
significant differences in DNAm ages between EPICv1 and EPICv2 were
observed for PCHorvathl, PCHorvath2, PCPhenoAge and DNAmFitAge
(Fig. 3). In both PBMC and buffy coat, significant differences were observed
for DunedinPACE, YingDamAge and YingCausAge. In buffy coat, sig-
nificant differences were observed for PCGrimAge and YingAdaptAge. No
significant difference was observed in any biological samples for PCHan-
num and PCDNAmTL. The smallest absolute median difference between
EPICvl and EPICv2 was observed in PCHannum (0.306 years) and the
largest absolute median difference was observed in YingCausAge (8.43
years). The results of Wilcoxon Signed-Rank test are summarised in Table 3.
Individual-level comparisons of DNAm age estimates between EPICv1 and
EPICv2 revealed consistent increase or decrease of DNAm ages across all
biological samples (Figure S1). Cell compositions estimated using DNAm
data across all biological samples also showed high spearman correlation
and high agreement between EPICv1 and EPICv2 in most cell compositions
except for Neutrophils and Eosinophils in PBMC (Figure S1 and S2).
EpiDISH did not estimate the Eosinophils in buffy coat and Eosinophils,
CD8T and B cells in Saliva.

Discussion

DNAm clocks were highly correlated between EPICv1 and EPICv2, except
for DunedinPACE in PBMC samples and YingDamAge and YingAdaptAge
in saliva samples. However, statistically significant differences were
observed in DNAm age derived from EPICv1 and EPICv2. Saliva samples
displayed the highest variability of difference between EPICv1 and EPICv2

for DNAm ages as compared to buffy coat and PBMC samples. Cell com-
positions estimated using DNAm data across all biological samples also
showed high spearman correlation and high agreement.

The high correlation and high agreement of DNAm ages between
EPICv1 and EPICv2 are attributed to the preservation of most CpG sites
from existing DNAm clocks in EPICv2 and the high correlation between
the DNAm levels at shared CpG sites of EPICv1 and EPICv2 observed in
four human cell lines (GM12878, LNCaP, K562, and HCT116)°. In most
clocks, statistically significant differences in DNAm ages between
EPICv1 and EPICv2 were found. The consistent direction of within-
person DNAm age differences between EPICv1 and EPICv2 indicates
that the observed discrepancies are due to systematic differences
introduced by arrays used, rather than random inter-individual varia-
bility. There is no distinct enrichment of missing CpG sites within
genomic regions and CpG contexts in EPICv2 compared to EPICv1, thus
this systematic offset could be attributed to the greater number of
missing CpG sites used to measure various DNAm clocks in EPICv2
compared to EPICv1. Furthermore, the missing CpG sites imputation
such as GLMNET could not fully compensate this discrepancy and
might introduce noise for CpG sites that are completely missing from
EPICv2""". Previous studies have found that each clock contains CpG
sites with unreliable methylation beta values, which can affect the
reproducibility of DNAm ages'®. The possibility of cell composition
effect should be minimally as the biological sample used for both arrays
are identical and the cell compositions predicted by EpiDISH exhibited a
high spearman correlation and agreement between the arrays. There-
fore, the systematic differences observed between EPICv1 and EPICv2
suggest that direct comparisons of DNAm ages derived from different
arrays should be interpreted with caution, especially for small clinical
trials and population studies with small effect size'”'*. Researchers and
clinicians should account for these cross-array biases™ and development
of better imputation or cross-array calibration algorithms would be
essential to enhance the reliability of existing DNAm clocks in EPICv2".

PC-based clocks exhibit lower mean differences and smaller
variability of differences between EPICv1 and EPICv2 than non-PC-
based clocks across biological samples. This is consistent with previous
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Fig. 2 | Bland-Altman plots comparing DNAm
ages estimates by 11 different DNAm clocks,
between the EPICv1 and EPICv2 arrays stratified
by biological samples (Buffy coat, PBMC, and
saliva). Black line indicates the mean difference,
with the red box marked up the 95% of the limits of
agreement, and grey line indicates the zero of the y-
axes, across three different biological samples on
each clock.
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study, which have shown that principal component analysis (PCA)
enhances the reliability and reproducibility of DNAm age estimation™.
This is achieved by aggregating information from many age-related
CpGs to improve the signal quality and reduce the effect of inherent
technical noise associated with individual CpGs®. Future construction

of DNAm clocks should consider the incorporation of PCA to enhance
the reliability and reproducibility of the DNAm clocks.

Saliva samples displayed the highest variability in DNAm ages differ-
ences between EPICv1 and EPICv2. This can be attributed to the hetero-
genous cell types in saliva, including epithelial cells and leukocytes,
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Fig. 3 | Box plots showing the differences in DNAm ages between EPICv2 and
EPICv1 (V2 - V1) across various DNAm clocks and stratified by biological
samples (Buffy Coat, PBMC, and Saliva). Significance test was done by Wilcoxon
signed rank test, where *, ** and *** indicates statistically significance after Bonferroni

correction. *** indicates p-values < 0.0000909. ** indicates p-values < 0.000909. *
indicates p-adj < 0.00455. Note: PCDNAmMTL has a unit of kb and DunedinPACE has
no unit as it is defined as pace of ageing of an individual ageing relative to the normative
rate of one year of ageing per year of calendar time.

potentially leading to greater variations in DNAm ages™ . Blood-based
tissues, buffy coat and PBMC, tend to have higher quality DNA with less
variability of stability, purity, and quantity compared to saliva, contributing
to less variability in DNAm ages estimation****. However, there is only a
saliva specific cell-type deconvolution algorithm for children and not
adults”. Modifying the array probes can impact cell composition, as indi-
cated by the moderate correlations observed in some cell composition
predictions. Therefore, cell composition adjustment in saliva and develop-
ment of cell-type deconvolution algorithms specific to saliva and EPICv2
array would be essential for saliva to be used in cohort studies or commercial
epigenetic tests™.

The Illumina EPICv2 array offers cost effective DNAm profiling
for large cohort studies. However, this platform provides limited cov-
erage of the whole methylome (937,690 out of 28 million CpGs,
3.5%)°*. To address these limitations, whole-genome bisulphite
sequencing (WGBS) has emerged as the gold standard for compre-
hensive methylation analysis, enabling the identification of complete
mechanistic processes underlying DNAm levels across 28 million
CpGs”. Traditional bulk DNAm measurements, whether from arrays or
WGBS, represent the average DNAm levels in populations of cells,
potentially diluting the tissue-specific and cell type-specific ageing
signatures”. Single-cell WGBS allows high-resolution examination of
DNAm patterns, revealing whether age-related DNAm changes are
uniform across cells or emerge from population-level variations”. This
insight can help explain the variability in DNAm age estimations
between tissues”’. Therefore, single-cell WGBS would be essential to
understand the mechanism of epigenetic regulation in ageing and
enable the construction of a DNAm clock with CpGs causally linked to
ageing processes with minimal discrepancies in DNAm age estimations
between biological samples”.

This study is the first comprehensive analysis of DN Am age difference
between EPICv1 and EPICv2 in three commonly used biological samples
including buffy coat, PBMC and saliva. The small sample size, ethnicity
consisting of mostly Chinese and age range of 40-60 years may limit the
generalisability of the findings and the robustness of imputation.

This study underscores the necessity of platform-specific considera-
tions in DNAm age estimation. The observed systematic offsets between
EPICv1 and EPICv2, particularly in non-PC-based clocks and high varia-
bility of differences in saliva samples, suggest that future research should
incorporate PC analysis in the construction of DNAm clocks and a method
to adjust for these biases. The small effect sizes changes or difference
observed in DNAm age measurements from EPICv2 should be interpreted
cautiously, as they may reflect systematic platform differences rather than
meaningful age-related changes, given that these clocks were not originally
trained on EPICv2.

Methods

Study design

This study is a cross-sectional analysis nested within the randomised clinical
trial Does Alpha-ketoglutarate supplementation lower BiologicaL agE in
middle-aged adults (ABLE) study”®, which evaluates the effect of Calcium
Alpha-Ketoglutarate (Ca-AKG) on biomarkers of aging in individuals 40-60
year of age. A total of 16 screening participants were included in this sub-
study and before randomization. All participants provided written informed
consent. The study has been approved by NUS IRB (NUS-IRB-2021-946)
and registered at clinicaltrial.gov (NCT05706389).

Participants characteristics
Demographic and lifestyle characteristics, including age, gender, race,
education level, type of housing, smoking status and alcohol
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Table 3| DNAm age differences between EPICv1 and EPICv2in
buffy coat, PBMC, and saliva assessed using Wilcoxon
Signed-Rank test

DNAm clocks  Biological Median difference [IQR] p-value
samples
PCHorvath1 PBMC 1.05[0.629; 1.57] 0.000305**
Buffy coat 1.24[0.877;1.47] 0.0000305***
Saliva 4.23[2.94; 5.36] 0.000061***
PCHorvath2 PBMC 1.4[1.16; 1.62] 0.000061***
Buffy coat 0.572[0.279; 0.933] 0.0000916**
Saliva 1.56 [1.07; 5.26] 0.0000916**
PCHannum PBMC 0.493[0.176; 0.93] 0.029
Buffy coat 0.423 [-0.141; 0.677] 0.175
Saliva 0.306 [-0.0598; 2.97] 0.0654
PCPhenoAge PBMC -0.761 [-1.38; -0.376] 0.00214*
Buffy coat -2.17 [-2.38; -1.5] 0.000061***
Saliva -1.65 [-2.49; -0.45] 0.000427**
PCGrimAge PBMC -0.489 [-0.599; -0.16] 0.0335
Buffy coat -0.71 [-0.943; -0.396] 0.000214**
Saliva -1.02 [-1.23; -0.23] 0.00629
PCDNAmMTL PBMC 0.0079 [0.00231; 0.02] 0.00763
Buffy coat 0.00135 [-0.00358; 0.0108] 0.597
Saliva -0.00457 [-0.0111; 0.0112] 0.782
DNAmFitAge PBMC -1.9[-4.27; -0.957] 0.00101*
Buffy coat -4.12 [-6.25; -2.65] 0.000153**
Saliva -4.13 [-6.37; -0.939] 0.000763**
DunedinPACE PBMC 0.104 [0.0738; 0.159] 0.00336*
Buffy coat 0.103 [0.0409; 0.119] 0.0000916**
Saliva 0.0653 [-0.00428; 0.105] 0.0443
YingAdaptAge ~ PBMC 2.08 [-0.56; 4.89] 0.144
Buffy coat -4.56 [-7.72; -1.86] 0.0000916**
Saliva -3.65 [-7.81; 0.0805] 0.011
YingDamAge PBMC -6.51[-9.02; -4.57] 0.000153**
Buffy coat -6.95 [-8.11; -3.43] 0.00101*
Saliva -5.69[-11.2; 0.138] 0.159
YingCausAge PBMC -8.43[-10.1; -6.37] 0.0000305***
Buffy coat -6.28 [-7.52; -4.51] 0.00058**
Saliva -3.46 [-7.59; 0.498] 0.0386

*, ** and *** indicates statistically significance after Bonferroni correction. *** indicates p-
values < 0.0000909. ** indicates p-values < 0.000909. * indicates p-values < 0.00455

consumption status were collected from participants through partici-
pant survey after biological samples collection. Race is classified as
Chinese and Caucasian. Education levels are classified as undergraduate
and graduate. Housing types are classified as private housing and public
housing. Smoking status is defined as non-smoker and ex-smoker.
Alcohol consumption is self-reported and detailed in terms of the
number of servings and the frequency of intake per week, in the past year.
Alcohol consumption is categorised as never, less than once per week,
and more than once per week within the past year. Height and weight
were measured using a Seca 213 Stadiometer (Germany) and a Seca 813
digital floor scale with high capacity (Germany), respectively. The body
mass index (BMI) was subsequently calculated as weight/height® (kg/
m?). Waist and hip circumferences were measured using a Seca 201
Ergonomic circumference measuring tape, Germany, and the waist-to-
hip ratio was subsequently calculated.

Biological samples collection and preparation

All blood and saliva were collected after a minimum of 8 hours of overnight
fasting, in the morning, between 8.30 and 9.30 am™. A total of 8 mL of
venous blood was collected, followed by collecting 4 mL of saliva through
passive drooling into a saliva collection tube (Isohelix, Kent, UK) pre-filled
with a guanidine-free DNA stabilisation buffer. Whole blood and saliva
samples were transported at a temperature of 4 °C and processed within
1 hour after the sample collection. The saliva collection tube was transferred
and stored in a -80 °C freezer.

The Anticoagulant Citrate Dextrose Solution, Solution A (ACD-A)
blood tubes were gently mixed by inversion after collection, and then cen-
trifuge at 2500 rpm for 15 min at 23 °C with brake off (acceleration: 9,
deceleration: 0). After aliquoting the top layer of plasma, the buffy coat was
drawn and stored at -80 °C freezer. Whole blood was diluted with
phosphate-buffered saline (PBS), layered over 15 mL of Ficoll media, and
centrifuge at 400 g for 30 min at 23 °C with brake off (acceleration: 9,
deceleration: 0). The PBMClayer was extracted, washed twice with PBS. The
cell pellet was thoroughly resuspended after each wash. The PBMC cell
count was performed using the Countess IT FL Automated Cell Counter and
stored at —80 °C freezer. The biological samples stored at -80 °C freezer were
delivered with dry ice for DNA extraction.

DNA for biological samples were extracted using the Qiagen QIAamp
DNA Mini Kits and further processed in a single batch to minimize the
batch effect. Quality of DNA samples were evaluated using the Agilent Tape
Station (Agilent, Santa Clara, CA). Quantification of DNA from study
participant were performed using the Qubit™ fluorometer (Thermo Fisher
Scientific, Waltham, MA). The EPICvl and EPICv2 were used for high-
throughput measurement of DNA methylation on a genome-wide scale. For
each methylation chip experiment, approximately 1ug of genomic DNA
from each study participant and from each biological specimen was bisul-
phite treated using the Zymo EZ DNA Methylation Kit (Zymo, Irvine, CA)
to convert non-methylated cytosine nucleotides to uracil for subsequent
methylation profiling. The bisulfite treated DNA were denatured into single
strands and hybridized to the Infinium EPIC BeadChip via allele-specific
annealing to either the methylation-specific probe or the non-methylation
probe. Hybridization to the chip was followed by single-base extension with
labelled di-deoxynucleotides. Hybridized BeadChips were subsequently
stained, washed, and scanned to determine intensities of methylated and
unmethylated bead types using Illumina’s iScan system.

DNAm analysis

Identical DN Am samples of buffy coat, PBMC and saliva biological samples
were processed in parallel on the EPICv1 and EPICv2 Beadchips (Illumina
Inc,, San Diego, CA). Each sample was prepared from a single DNA
extraction and analysed on both array versions to ensure direct compar-
ability of DNAm measurements. DNAm age was predicted using methy-
lation data from EPICv1 and EPICv2 BeadChips across different biological
samples (buffy coat, PBMC, and saliva). Noob normalisation was performed
to correct for biases associated with type I and type II CpG sites”. Eleven
human DNAm clocks were calculated, 6 principal component-based
DNAm clocks (PC clocks) consisting of Horvathl DNAm
age(PCHorvath1)”, Horvath2 DNAm age (PCHorvath2)’, Hannum
DNAm age (PCHannum)”, DNAm PhenoAge (PCPhenoAge)”, DNAm
GrimAge (PCGrimAge)3 * and DNAMTL (PCDNAmTL) (an estimator for
telomere length in kilobases)™ and non-PC clocks including DunedinPACE
(pace of ageing), DNAmFit”, YingCausAge”, YingAdaptAge® and
YingDamAge™. The PC clocks were calculated, in accordance with estab-
lished protocols™. The units of measurement for the DNAm clocks utilised
in this study are in years, with the exception of two clocks PCDNAmTL
(unit in kilobase, kb)* and DunedinPACE (no unit). DunedinPACE is
defined as pace of ageing of an individual ageing relative to the normative
rate of one year of ageing per year of calendar time™. Cell compositions were
predicted using EpiDISH for all biological samples including saliva™. Note
that, although EpiDISH was not specifically trained on saliva data, its esti-
mates for saliva serve as approximations. Regularised generalised linear
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regression model (GLMNET) was used to impute missing CpG sites used in
the calculation of DNAm clocks and cell compositions in EPICv2*. This
imputation approach leverages the substantial overlap of CpG sites between
EPICv1 and EPICv2 arrays, using these shared sites as predictors to estimate
methylation values for missing sites. The GLMNET algorithm employs
elastic net regularization, which combines L1 and L2 penalties to handle
high-dimensional data while preventing overfitting.

Assessment of missing CpG sites and enrichment

This study assessed CpG site coverage for 11 human DNAm clocks across
the EPICv1 and EPICv2 arrays, quantifying missing CpG sites and evalu-
ating their enrichment within specific genomic regions and CpG contexts
using the Bioconductor packages including IlluminaHumanMethylation
450kanno.ilmn12.hgl9, EPICanno.lm10b4.hgl9 and EPICv2an-
no.20al.hg38 and clock coefficients from Biolearn*'. The CpG loci identi-
fiers, unique alphanumeric codes assigned by Illumina to specific CpG sites
in the genome, were compiled for the missing sites. Genomic regions refer to
distinct elements within the genome with specific biological functions or
structural characteristics. These genomic regions include 1* Exon (first
exon), 5 UTR (5 Untranslated Region), Body (coding region), IGR
(intergenic region), TSS1500 (region within 1500 base pairs upstream of the
transcription start site), TSS200 (region within 200 base pairs upstream of
the transcription start site) and 3’ UTR (3’ Untranslated Region)*. CpG
contexts refer to the occurrence and position of CpG within the genome.
These CpG contexts consist of island, opensea, shelf and shore®.

Statistical and reproducibility

Descriptive statistics were performed and data presented as median and
interquartile interval (IQR) or number and percentage (%). Analyses
involved comparing DNAm age predictions between EPICvl and
EPICv2 using Spearman correlation and Bland-Altman plots to assess
agreement between EPICvl and EPICv2. A Spearman correlation
coefficient (p) greater than 0.7 indicates good agreement, p value
between 0.5 and 0.7 was defined as moderate agreement, and p value
below 0.5 was defined as poor agreement between the two methods®.
The mean difference of EPICv2 and EPICv1 was defined as the average of
the measurements of EPICv2 -EPICv1. The standard deviation of dif-
ference was calculated as well. The mean difference in Bland-Altman
plots was interpreted as DN Am ages in years for all DNAm clocks except
PCDNAmMTL and DunedinPACE. For PCDNAmTL, the mean differ-
ence was interpreted as telomere length in kilobases (kb). For the
DunedinPACE clock, the mean difference was interpreted as the mean
difference in the pace of ageing. To standardise the difference across
various DNAm clocks, the mean absolute percentage error (MAPE) was
calculated to compare across DNAm clocks*. Box plots were used to
visualize the difference of DNAm ages between EPICv1 and EPICv2 and
significance differences were tested by Wilcoxon Signed-Rank test.
Bonferroni multiple testing correction was applied by number of DNAm
clocks (n = 11). All statistical analyses were performed using R (version
4.4.1) or Python (3.12.0). All tests are two-sided with significance at
P <0.05, unless otherwise stated. Each comparison group consisted of
16 samples. Specifically, 16 buffy coat, 16 saliva, and 16 PBMC samples
were analysed at both EPICV1 and EPICV2. All datasets used in this
study are provided and links are provided for software used.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The data supporting the findings of this study are available from Prof.
Andrea B. Maier upon appropriate approval. Please note that access to the
data may be subject to certain restrictions to comply with ethical guidelines
or institutional policies. Data used for figures and Supplementary Figs. are
provided in Supplementary Data 1-4.

Code availability

All original R code (version 4.4.1) used to generate the CpG missing sites of
each clocks is available on GitHub: https://github.com/TayJianHua/
EPICv2-vs-EPICv1-DNAm-comparison. Clocks coefficients and clock
calculation codes are available in: https://bio-learn.github.io/clocks.html.
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