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The intricate relationship between trophic levels in marine ecosystems remains largely unexplored,
particularly in the Southern Ocean. To investigate the complex composition of water constituents,
notably thephytoplanktoncommunity,weusedmachine learning techniques toclassify six bio-optical
classes from a comprehensive ocean-color data time-series. In situ data from the Southern Ocean
further characterized these classes by predominant phytoplankton types. Bio-logging data from
southern elephant seals revealed that 60% of prey-catch attempts were concentrated within the
diatom-dominated class, despite its lower regional frequency. Seals exhibited enhanced foraging
activity and prolonged residency periods, up to 42 consecutive days, in diatom-rich waters compared
to 5-10 days in other classes. These findings suggest a preference among southern elephant seals for
diatom-rich waters, indicating a selective foraging activity influenced by the phytoplankton
community’s structural composition rather than total biomass alone. This preference underscores the
intricate interplay between marine top predators and ecosystem dynamics, hinting at mechanisms
through which phytoplankton structure shapes seal activity.

The SouthernOcean accounts for up to half of the annual oceanic uptake of
anthropogenic CO2 and supplies nutrients that sustain the global ocean’s
biological productivity1. Recent observations indicated that large-scale
changes are occurring in the SouthernOcean, such as circumpolarwarming
that exceeds the global average, freshening due to ice melt, and changes in
the hydrological cycle1. Indeed, climate change models predict that ocean
warming would be more pronounced at higher latitude regions, causing
large-scale changes in marine ecosystems2,3.

Climate change is notably influencing the phytoplankton community
structure4, which is the base of the global oceanic food web and contributes
tomore than half of global primary production5. Thus, any climate-induced
change in the structure of the SouthernOcean phytoplankton communities
could ripple through the food chain, generating a trophic cascade and
ultimately affecting top predators such as the southern elephant seal (Mir-
ounga leonina)6. The behavior and performance of these predators give
insight into the spatial and temporal variation of the lower trophic levels,
shedding light on ecosystem-level changes7. Indeed, the southern elephant
seal (SES) proved to be an exceptional candidate for bio-logging, providing
crucial information about their physical, biogeochemical, and ecological

environment, even in themost remote regions of the SouthernOceanwhere
humanmonitoring is limited3,8–11. Recent observations indicated a decrease
in the blood δ13C values of SES pups over a decade (2004–2018) within the
Indian sector of the Southern Ocean, suggesting ecological changes in the
region3. SES pups receive their nutrients solely from their mothers’ milk
which reflects the adult female SES foraging activity. With no significant
changes in the at-sea distribution or apparent shifts in the habitual foraging
grounds of adult female SES, this decrease was hypothesized to be linked to
alterations in the phytoplankton community structure3. For instance, the
decrease could be attributed to the replacement of 13C-rich phytoplankton,
such as diatoms, with 13C-depleted nano- and picophytoplankton12. Taken
together, these findings imply a potential association between the foraging
activity of SES and the dynamics of the phytoplankton community in the
Southern Ocean. Therefore, disentangling the relationship between the
phytoplankton community structure and the SES in thepresent era is crucial
to understanding potential cascading responses to climate-induced changes
in theSouthernOcean. Inour analysis,weutilized “prey-catchattempt”data
as an indication of SES foraging success andprey availability. This is due to a
recent publicationbyChevallay et al.13, where the foraging activity of the SES
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was studied relying on a miniature echo-sounder (i.e., micro-sonar)
allowing to assess acoustic prey size and prey response behavior to
approaching SES. This study suggested that the probability of success for
each SES prey-catch attempt is very high and that “prey-catch attempts”
could act as an indicator of successful prey captures. It also showed that the
mean prey size ranged from 5.0 to 9.0 cm (first and third quantiles, Q1–Q3)
with a mean prey size of 7.2 ± 3.1 cm. Therefore, we could assume that an
increase in the rate of prey-catch attempts signifies an increase in foraging
success.

A recent study analyzed a time series of Aqua-MODIS remote sensing
reflectance (Rrs) products to address climate-induced changes in the water
optical signature14,15. The Rrs is the ratio between the water-leaving radiance
and the downwelling irradiance, acting as an indicator of water constituents
(i.e., phytoplankton cells in open water) interacting with light. This study
showed that the optical information is changing at the surface of the oceans,
potentially hinting at changes in the phytoplankton communities.Given the
fact that the Southern Ocean is one of the most under-sampled regions of
the global ocean due to the vastness and remoteness of the area, ocean-color
remote sensing is an efficient tool tomonitor the phytoplankton assemblage
of this ecosystem9,16. Earlymethods utilizing ocean color data were centered
around estimating chlorophyll-a (Chl-a) concentration as it is commonly
used as a proxy for the phytoplankton biomass in surface waters17. Recently,
research has focused on estimating characteristic properties of phyto-
plankton communities, such as the dominant phytoplankton functional
type (PFT)18, the size structure19, or the relative abundance of several PFTs
relying on specific optical signatures20–22. Indeed, the optical signature per-
ceived by ocean-color satellites holds valuable information on the com-
munity composition of phytoplankton and has been used to address
questions related to long-term ecosystemic changes in the upper ocean
layer15.

Due to the lack of a dedicated regional algorithm that investigates the
phytoplankton community structure from satellite data in the Southern
Ocean, we chose to investigate the SES environment (Fig. 1) using the
satellite-derived optical signatures as a proxy of phytoplankton community
changes. In this work, a long time-series (2003–2021) of ocean color satellite
images, centered around the Kerguelen Islands (Fig. 1), was used to define
different bio-optical “water-type” classes. The choice of the studied region
was to account for all areas that are accessible to theKerguelen elephant seals
during foraging trips. To identify the classes, we employedmachine learning
techniques, classifying the data through a self-organizing map and a hier-
archal ascending classification. The parameters defining the classes,
Chlorophyll-a (Chl-a), sea surface temperature (SST), and the remote
sensing reflectance at different wavelengths (Rrs(λ)), highlight different
aspects of the phytoplankton communities presented in this region. The
Chl-a is a proxy of the total phytoplankton biomass, the SST describes the
physical conditions of the region as a proxy of time, seasons, heat transport,

and currents, and the Rrs(λ) could detect different phytoplankton groups
through specific spectral changes in response to their pigment content and
theirmorphology15,20. A daily time series of maps representing the temporal
and spatial distribution of the water-type classes was generated and used to
visualize monthly climatologies. Utilizing the Southern Ocean in-situ high-
performance liquid chromatography (HPLC) and automated flow cyto-
metry (MAP-IO) data, we then associated each class with a certain phyto-
plankton community structure. Finally, we studied the relationship between
female SES residency time and prey-catch rate according to the phyto-
plankton assemblages encountered represented by the water-type classes.
The objective was to demonstrate if the seals are expressing a selective
preference amongst the different classes, and consequently amongst dif-
ferent phytoplankton community structures, during foraging trips, and if
there is a causal relationship between the presence of a specific class and the
overall foraging activity of the seals. This would signify if the seals’ foraging
activity is influenced by the phytoplankton community structure, or solely
by the phytoplankton biomass, regardless of the type of phytoplankton
present.

Results and discussion
Regional characterization of bio-optical water types in terms of
phytoplankton community structure
After processing and analyzing the satellite data, we identified 6 water-type
classes that adequately represent themajor patterns in this region in termsof
Chl-a, SST, and the Rrs(λ). Boxplots illustrating the ranges of Chl-a con-
centrations and SST per class, along with a line graph showing the mean
normalized Rrs spectral shapes across different wavelengths, were con-
structed to characterize the classes using the classificationmethod (Fig. 2a).
Class 2 exhibits the lowest Chl-a concentrations (approximately
0.05mgm−3) and thehighest SST range,which is almost always above20 °C.
Classes 1, 3, 4, and 6 display moderate to high Chl-a concentrations
(0.1–0.25mgm−3),whereas class 5distinctly shows thehighestChl-a values,
reaching up to 0.4mgm−3. These results indicate that class 5 represents the
most productive waters, while class 2 corresponds to oligotrophic waters
confined to the lowest latitudes of the studied region. Furthermore, classes 2
and 5 exhibit contrasting characteristics in terms of the Rrs spectrum,
reflecting ultra-oligotrophic conditions for class 2 and eutrophic conditions
for class 5.

To characterize the water-type classes in terms of phytoplankton
community structure, we integrated multi-source in-situ datasets (Supple-
mentary Note 1), including HPLC pigment analyses and MAP-IO flow
cytometry data (Table 1). The HPLC dataset provided insights into domi-
nant pigments, reflecting the composition of phytoplankton communities.
We should note that pigments overlap within phytoplankton taxonomic
groups (for example fucoxanthin being present in both diatoms and hap-
tophytes), and therefore complementary sources such as cytometry data are

Fig. 1 | The studied area of interest with Southern
elephant seal tracks. Map showing the region of
interest in the Southern Ocean where the satellite
images were retrieved (blue) along with the elephant
seal tracks compiled between 2010 and 2020
(orange).
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needed. For this, the MAP-IO flow cytometry dataset complementarily
validates these classifications through measurements of cell fluorescence
and size-class abundances. Together, these datasets enabled a robust char-
acterization of the water-type classes.

From the HPLC datasets, class 2 is distinguished by pigments such as
zeaxanthin and divinyl-Chl-a (Table 1), consistent with prokaryote-
dominated phytoplankton communities. The MAP-IO dataset further con-
firms the presence of prokaryotes, as it shows notable contributions from the
OraPicoProk group, defined as photosynthetic cyanobacteria, typically
identified as Synechococcus spp. 23. Consequently, class 2 is labeled as being
dominated by prokaryotes. Classes 1 and 4 are characterized by the pigments
zeaxanthin and 19′-Hexfucoxanthin, indicative of contributions from pro-
karyotes (picophytoplankton) and haptophytes (nanophytoplankton),
respectively. For class 1, the MAP-IO dataset indicates the presence of
picophytoplankton, with high relative contributions from the OraPicoProk
group and the polyphyletic group RedPico, defined as cells with a diameter
<3 μm. Classes 1 and 4 describe a co-dominance, with dominant contribu-
tions fromprokaryotes andhaptophytes. Classes 3 and 5 are characterized by
both 19′-Hexfucoxanthin and fucoxanthin pigments, the latter being

indicative of thepresence of diatoms.According to theMAP-IOdataset, class
3 is described by contributions from the RedPico and RedNano groups. The
RedNano group, a polyphyletic group that includes phytoplankton cells
ranging in size fromapproximately3 to 20μm, is consistentwith thepresence
of haptophytes and diatoms. Therefore, class 3 is identified as a class with co-
dominant contributions from haptophytes and diatoms. Class 5 is char-
acterized by the RedNano and RedMicro groups, with the latter being con-
sistentwith largediatomcells ordiatomchains>20 μm.Asclass 5 exhibits the
highest fucoxanthin concentrations and the greatest fluorescence contribu-
tions from the RedNano andRedMicro size classes, it is identified as diatom-
dominated. Finally, class 6 is characterized by 19′-Hexfucoxanthin, with
contributions from the RedPico and RedNano size classes, further indicating
the presence of haptophyte-dominated communities.

To further compare our findings, we analyzed the correspondence
between PHYSAT spectral signature classes and each water-type class
determined by our approach (see SI, Fig. S1). The distribution of PHYSAT
classes across different water-type classes revealed distinct community
structures within each class. Since PHYSAT identifies water-leaving radi-
ance anomalies while minimizing the influence of biomass-based signals,

Fig. 2 | Characterization of the water-type classes in terms of the satellite data in
addition to a monthly class climatology over the area of interest. a Boxplots (red
line = median; upper and lower box limits = 75th and 25th percentiles; dotted line
limits: upper and lower adjacents; red crosses = Outliers) showing the Chl-a con-
centration and the SST ranges per class, in addition to the mean normalized Rrs

spectral shapes per class, determined after the classification of the satellite data via a
self-organizing map and a hierarchal ascending classification. b Climatology of the
classes over the studied region for the months where elephant seal prey–catch
attempt (PrCA) data is available, between 2003 and 2021.
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this result indicates that the classes are optically distinct and represent
unique phytoplankton structures, independent of Chl-a concentration.
Specifically, class 5 represents auniquephytoplanktoncommunity structure
dominated by diatoms. In contrast, classes 3, 4, and 6 are characterized by
heterogeneous communities dominated by haptophytes (initially labeled as
Phaeocystis-like phytoplankton by PHYSAT), while classes 1 and 2 corre-
spond to prokaryote-dominated phytoplankton communities. This multi-
source data analysis underscores the significant distinctions among classes
in terms of phytoplankton community structures.

To highlight the major patterns in the spatio-temporal variability of
these bio-optical water-type classes, a monthly climatology of the classes
was constructed (2003–2021, dominant class per pixel) over the studied
region during the months where SES observations are available, i.e.,
October through January (Fig. 2b). Water-type class 3 was the most
prevalent and consistent over the whole region. It is clear that the water-
type classes are influenced by currents and fronts. For instance, class 2
waters are limited to the subtropical zone and exhibit high-temperature
gradients, evidencing the presence of a subtropical front, which is a
density-driven front. Class 5 waters appear to be related to the polar
frontal zone, and its spread is influenced by the Antarctic circumpolar
current. In addition to that, this class, rich in Chl-a and dominated by
diatoms, is consistently present in the eastern side of Kerguelen. The
Kerguelen Plateau supports one of the most productive regions in the
Antarctic Circumpolar Circulation and enriches waters thousands of
kilometers downstream via lateral advection24, indicating a potential link
between class 5 and biological advection resulting from currents and
fronts. Seasonally persistent phytoplankton blooms have been shown to
occur over the northern plateau, southern plateau, and eastern flank of
the southern plateau of Kerguelen25. These persistent blooms are sus-
tained by a consistent supply of dissolved iron26. Therefore, the consistent
appearance of class 5, characterized by the highest Chl-a (an indicator of
total phytoplankton biomass) and dominated by diatoms (rapidly
increase in the presence of nutrients), agrees with the available literature24.
In fact, in a recent study27, an extensive 26-year-long compilation of
phytoplankton pigments in the Southern Ocean was studied, and it was
shown that diatoms and haptophytes dominate the region around Ker-
guelen, specifically extending eastwards. Curiously, from Fig. 2b, we can
see that the occurrence of class 5 is diminishing and being replaced by
class 4 when approaching December-January. This could be explained by
the competition present in this region between diatoms and haptophytes,
where there is a seasonal cycle of diatom-haptophyte dominance28.

Linking Southern Elephant Seal activity to bio-optical water-type
classes; influence of the phytoplankton community structure
After describing each water-type class in terms of phytoplankton commu-
nity structure, we introduced the SES data and looked at the relationship
between the water-type classes and the SES foraging data. The SES data
consisted of unique seal identifiers, the latitude, longitude, and time of
observation, and the frequency of prey capture attempts (PrCA), a proxy of
the seals’ foraging activity. Each SES datapoint was associated, according to
the location and date on a 4 km resolution gridded image, with the corre-
sponding water-type class. The PrCA was also normalized based on the
variance for comparative purposes among seals and was denoted as
NormPrCA.

First, foraging trips of two tagged SES were used for this analysis.
Each track targeted a different regime, with the first to the West of
Kerguelen, a less productive region, and the second to the East in a more
productive region (bloom/post-bloom region) (Fig. 3). Regardless of the
direction or foraging region, it can be seen that most bio-logging
observations are originating from class 5, the most productive class
dominated by diatoms. This signifies that regardless of the foraging
regime or location, SES encounter better foraging conditions within
productive diatom-dominated waters and, thus, remain in class 5 for the
majority of their foraging trip. It is also clear that the NormPrCA peaks
are observed when the SES are present in class 5 waters.T
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To answer whether these findings can be generalized as SES-
preferred conditions, the following analysis was performed on the entire
dataset of all SES individuals (N = 79), allowing a more generalized view.
The frequency of the classes over the whole region was compared with the
frequency of the classes where the SES were recorded by the bio-loggers,
whether a prey-catch attempt occurred or not, over the same time frame
(Fig. 4a). Class 3 is the most frequently occurring water-type class over the
whole region with an overall frequency of around 34%, followed by class 4
at 20%, class 1 at 18%, and class 5 at 16%. However, when looking at the
frequency of water-type classes visited by the elephant seals, the frequency
of class 5 is remarkably greater than all other classes at around 60%,
followed by class 3, the most prevalent class regionally, at 30%. In addi-
tion to that, it can be seen that the SES demonstrate the highest foraging
activity within the waters of class 5.

To better display the significance of the frequency of each water-
type class visited by the seals, we calculated the time length of the stay of
the seals within the waters of a single class in terms of consecutive days
(Fig. 4b). For a time length between 1 and 5 consecutive days, the SES
remain and record observations mostly in classes 3 and 5 with a relative

frequency of around 40% and 30%, respectively. However, as the time
length of the stay in a water-type class increases, it can be seen that the
SES remains mostly in class 5. For 10 consecutive days and greater, the
SES is solely recorded within class 5, reaching a maximum of 42 con-
secutive days within this water-type class. The high frequency for class 3
in the 1–5 consecutive day range could be explained by the fact that it is
the most prevalent class regionally and, during the foraging trip, the SES
could come across this class, but they would not reside in it for a long
period of time. During their foraging trips, SES typically follow three
distinct phases: (1) an outbound transit phase, where they travel away
from the island in search of an optimal foraging ground, (2) a feeding
phase, during which they remain in a specific area for an extended
period, and (3) a return transit phase, where they travel back to the
island29. The optimal feeding ground is hypothesized to be influenced by
prey aggregations, specific prey types, or oceanic features such as inter-
frontal zones and physical ocean structures29. Figure 4 indicates that the
highest number of consecutive foraging days occurs exclusively in class 5
waters, suggesting that this class offers the most favorable conditions for
SES, where their foraging activity is maximized.

Fig. 3 | The tracks of two individual seals during their foraging trips as a function
of water-type classes and normalized prey-catch attempts. Two individual SES
tracks with different foraging regimes during 2018, where “2018–2041” forages to
the west of Kerguelen between 23 October and the second of January, while
“2018–2040” forages to the east between 22October and the first of January. The plot
on the right highlights the value of the NormPrCA at each bio-logging observation.

The plot on the left highlights the water-type class at each SES bio-logging obser-
vation collected during the foraging trips. The mismatch between observations'
density in both plots is mainly due to unavailable satellite matchups when cloud
conditions or poor-quality pixels occur. Bar graphs for each SES showing the fre-
quency of eachwater-type class encountered during the trip (blue bars), as well as the
mean NormPrCA plotted per class (orange star and line), are included.

Fig. 4 | Linking the water-type classes with the Southern elephant seal foraging activity. a The frequency of class occurrence in the whole region (blue bars) and in the
regions visited by the seals (yellow bars) in addition to the average normalized PrCA per class. b The relative occurrence of consecutive days per class, based on 79 SES.
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Some early studies have shown that no clear relationship between the
foraging activity of predators and phytoplankton existed30,31. However,
Guinet et al.32 demonstrated that the diving activity of marine predators
could be related to the Chl-a concentration. It has been later shown that the
deep-diving southern elephant seals recorded more prey-encounter events
and performed significantly shallower dives below high-density patches of
phytoplankton33. In our study, the highest PrCA levels were associated with
class 5, which is characterized by the highest Chl-a concentrations (Fig. 2a,
Table 1).

However, this work clearly shows that it is not only the influence of
Chl-a concentration that dictates the favorable foraging conditions of the
SES, but also the phytoplankton community structure present. A Spearman
rank correlation was performed between theNormPrCA and the Chl-a and
water-type classes (Suppl. Fig. S2). The strongest positive correlation was
found between NormPrCA and class 5 (Rsp = 0.19) and was double that of
Chl-a (Rsp = 0.09). This signified that the foraging activity of the SES does
not depend on the Chl-a concentration, a proxy of phytoplankton biomass,
but suggests a direct link with the presence of a diatom-dominated com-
munity structure.

Finally, to look at any link between prey size andwater-type classes, we
used new data on SES acoustic prey size determined from micro-sonar
devices deployed on 9 SES between 2018 and 202013 (Supplementary
Note 2). The water-type class corresponding to each observation was
retrieved, and the prey size distribution targeted within each class, along
with the averagenumberofprey encounteredperdaywithin eachclass,were
analyzed (Suppl. Fig. S3). It was shown that there were no significant dif-
ferences in the size of the prey targeted within all classes; however, a sig-
nificantly larger amount of preywas targetedwithin class 5 compared to the
other classes, aligning with the PrCA conclusions.

Unless the nutritional value of SES prey, having comparable sizes,
varies according to the different water-type classes, our results strongly
support that SES might exhibit a preference in the size distribution of tar-
geted prey and that these estimates of prey size, as sampled by SES, might
represent a narrow proportion within the size spectrum of mid-trophic
levels in the SO. Future studies should aim at better characterizing how the
biomass and composition of the Mid-Trophic levels may vary according to
the water-type classes, but this is beyond the scope of this study.

Three non-exclusive hypotheses could explain how a preferred water-
type class, characterized byhighChl-a andadiatom-dominated community
structure, could influence the foraging activity of the SES. (1) An increase in
phytoplankton biomass increases the availability of prey to the SES; how-
ever, if the biomass of phytoplankton is the major driver of the foraging
activity of SES, there should have been a stronger correlation betweenPrCA
and the Chl-a concentration. (2) Increases in the phytoplankton abundance
form dense patches on the surface of the ocean. Phytoplankton cells,
according to their pigment content,morphology, and tendency to aggregate
into chains, impact light attenuation differently34–36. The attenuation
properties of cells result in a shading effect underneath the surface and draw
myctophids, the main prey of SES, to shallower depths, thus facilitating
vertical access to prey for the seals during the day. (3) And finally, in the
presence of diatoms, a food web more favorable to the elephant seals is
formed and better foraging conditions are observed. A possible mechanism
is that diatom-rich waters could enhance prey availability indirectly by
attracting zooplankton species that serve as primary prey for myctophids
and squid, key components of the SES diet. This would create an alternative
pathway linking phytoplankton community structure to SES foraging
activity, potentially complementing or even competing with the lightscape
theory. Further investigation into prey distribution and behavior in relation
to phytoplankton composition would be necessary to disentangle these
effects. This final hypothesis could explain the selective preference the seals
are showing for class 5 as their main foraging grounds.

Conclusion
In this work, a machine learning approach was used to classify the different
water types observed in a large region in the Southern Ocean in terms of

several bio-optical variables. The classes were then characterized using in-
situ data from that same region to associate a phytoplankton community
structure to each class. It was shown that the female SES display a selective
preference to forage for prolonged periods of time within chlorophyll-rich
diatom-dominatedwaters. Itwas also shown that these SESdemonstrate the
highest foraging activity within these waters. It seems that the presence of
diatoms positively influences the activity of the SES. Future studies should
further explore the dynamics of this relationship. The activity of the SES
should be compared during daytime and nighttime to support or refute the
hypothesis of the shading effect. Bio-logging studies should be performed
utilizing micro-sonar and bioluminescence sensors, among others, and
information about themid-trophic levels should be examined37,38, clarifying
the relationship between the lowest (phytoplankton) and highest (SES)
trophic levels39. It would also be interesting to investigate if any relationship
exists between the bioluminescence present, measured through a bio-
logging device, and the different phytoplankton functional types. Finally, it
would be worth investing time in conducting a comprehensive trends
analysis for the water-type classes/phytoplankton community structure in
the Southern Ocean, which can allow us to track any long-term change in
the overall phytoplankton community structure in that region, and how it
may influence the activity of the SES.

Methods
Bio-optical water-type classification
The self-organizing map (SOM), introduced by Kohonen40, is an unsu-
pervised classification method. It is based on the k-means algorithm, with
the addition of a topological ordering. Thus, the SOM is used to reduce the
dimensionality and enhance the interpretability of data, where closely
related data would be grouped into one neuron, and neighboring neurons
would consist of more similar data, which are relatively close in the actual
data space (Euclidean Norm).

A long time-series of 8-day averaged satellite images (level 3 mapped
—4 km spatial resolution), between 2003 and 2021, was utilized to train a
self-organizing map (hereafter SOMRegional, Suppl. Fig. S3). These images
were centered over a large region around Kerguelen, between 36.2°E and
107.2°E, and between 31.9°S and 62.6°S (Fig. 1), and included the Chl-a,
SST, and the Rrs(λ) products (at λ = 412, 443, 490, and 555 nm). The Chl-
a and the Rrs data were retrieved from the GlobColour project (http://
www.globcolour.info) and consisted of merged data from multiple
satellite sensors. The selected Chl-a product was the ‘CHL1’, which
corresponds to the Chl-a estimation using an algorithm adapted for case
1 waters. These waters represent the open sea where phytoplankton are
the main contributors to ocean color. After validating with in-situ HPLC
Chl-a data from the Southern Ocean, this satellite Chl-a product was
shown to be up to 70% correlated with in-situ Chl-a, having an average
RMSE of 0.16mgm−3 (n = 5451, p = 2.5e−299). The SST product was
retrieved from the NASA EarthData Ocean Color project (https://
oceancolor.gsfc.nasa.gov/l3/) and provided by the MODIS sensor aboard
the Aqua satellite.

Our choice of the range and number of satellite reflectance bands
was based on previous works that used similar classification approaches
for comparable applications17,18,20. In the clear open ocean, the informa-
tion contained in the remote sensing reflectance (Rrs) bands is limited
beyond 555nm due to the strong absorption by water, as also mentioned
in Xi et al.41.

The input data, i.e., Chl-a, Rrs(412,443,490,555 nm), and SST, were
standardized and scaled to homogenize the weights. The SOMRegional was
initialized with 198 neurons in order to reconcile the interpretability and
representativity of major patterns found in the data. It classifies similar
observations in termsof the input products, into a single cluster or neuronof
the SOM representing a distinct water type. Additionally, the patterns in
neighboring neurons would be more similar than distant ones. The gen-
erated SOMRegional was a two-dimensional hexagonal grid of 198 neurons
(18 × 11), where each neuron represented a pattern observed in the studied
area in terms of the 6 satellite products.
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A hierarchal ascending classification (HAC) was utilized to group
neighboring neurons to further partition the SOMRegional and control the
degree of specificity required (Suppl. Fig. S4). The HAC is an automatic
classification method that calculates a partition hierarchy, each partition
grouping neurons, in an iterative process and based on a metric of
similarity (Ward metric, while assuring the topology conservation
between neurons within the SOMRegional map). Therefore, the HAC
allows the clustering of the SOMRegional neurons representing close or
similar patterns in terms of Chl-a, SST, and Rrs spectrum, and defines
bio-optical classes. The HAC dendrogram (Suppl. Fig. S5) showed that
six bio-optical or “water type” classes highlight the major patterns found
in the SOMRegional, or the studied area. This is determined when a sharp
increase in the index of dissimilarity is first observed between the dif-
ferent partitions on the dendrogram.

Characterization of bio-optical water types in terms of phyto-
plankton community structure
To characterize the water-type classes in terms of phytoplankton commu-
nity composition, three datasets were introduced in this study: an HPLC
pigment dataset, anHPLC-derivedChl-a fraction for phytoplankton groups
and finally the MAP-IO flow cytometry dataset.

The first dataset consists of near-surface HPLC secondary phyto-
plankton pigments compiled in El Hourany et al.20 and Soppa et al.42,
between 1997 and 2014 (Southern Ocean datapoints: N = 4173). Each
pigment is used as a marker for major phytoplankton groups42,43 based on
the diagnostic pigment analysis approach (DPA) (see Suppl. Table S1).
Supplementary Table S1 shows the pigments included in this dataset with
their associated phytoplankton group. The aim of using this dataset is to
shed light on the complexity of the phytoplankton community structure.

The second dataset, the MAP-IO flow cytometry dataset, sampled
between 2021 and 2023, was introduced44,45 (Southern Ocean datapoints:
N = 941). The phytoplankton size classes and groups analyzed are the red
(Red-) and the orange (Ora-)Micro, Nano, Pico, Pico Prok, and finally, the
HsNano (nanophytoplankton with relatively high sideward light scattering
properties) and RedPico_High Fluroscence groups. These groups are
expressed in terms of red fluorescence per ml, as the sum of the mean red
fluorescence pulse shape per groupmultiplied by its abundance (MOTFLR/
ml), and the abundance of cells per ml. A description of the groups is found
in ref. 23.

Among the two databases, only data points corresponding to the
Southern Ocean (<32°S) were taken into account (Fig. 5). Satellite match-
ups for each of the input products used to train the SOMRegional were

Fig. 5 | The spatial distribution of the in-situ data used. Map showing the dis-
tribution of the in situ surface HPLC (n = 4173; blue circles) and MAP-IO flow
cytometry (n = 941; purple circles) observations used. TheHPLC data points plotted

on the map comprise the publicly available dataset from Soppa et al.42. TheMAP-IO
flow cytometry dataset is also publicly available on SEANOE from Thyssen et al.45.
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retrieved. Eachdata point of this joint databasewas associatedwith aneuron
of the SOMRegional based on the satellite matchups and, consequently,
associatedwith a specificwater-type class. A quality control threshold based
onRrs (as in the work of ElHourany et al.

20) was used to limit the affectation
of abnormal and unseen situations while calculating the distance between a
datapoint (characterized by Rrs at 4 wavelengths) and the closest neuron to
it; this distance is expressed in terms of the number of standard deviations
from the referent vector of the closest neuron.Only data points close enough
(3 standard deviations) to their associated neuron are accepted. By that, any
datapoint outside the region of interest (Fig. 1), and not similar to any
situation encountered within the region of interest throughout the time-
series in terms of the remote sensing products, was removed by the quality
control procedure.

By doing so, each neuron, and therefore each water-type class, is
characterized by a distribution ofHPLC pigments, Chl-a concentrations for
the three phytoplankton groups, and the MAP-IO information on the
quantity and group structure of cells.

In addition to that, the satellite-derived PHYSAT data was also
introduced. The algorithm behind PHYSAT aims to identify classes char-
acterized by dominant phytoplankton functional (PFT) type based on the
detection of spectral anomalies in the normalized water-leaving radiance.
These spectral anomalies are linked to specific PFTs by using coincident in-
situ measurements of pigment inventories4. The PHYSAT database was
retrieved from the GlobColour website (http://www.globcolour.info). The
data includes a monthly time series of global images representing the
dominant PFT per month between 2003 and 2010 at a 9 km spatial reso-
lution. Five PFTs are detected through this algorithm: nanoeukaryotes,
cyanobacteria, prochlorococcus, diatoms, and phaeocystis-like. Due to the
limited time-frame of the PHYSAT data (reaching 2010 only), the poor
spatial resolution, and the need for a SouthernOcean-specific algorithm for
water-type description, the PHYSAT product was exclusively used to
complementarize the delimited bio-optical class and to highlight qualita-
tively different phytoplankton communities within each class.

Southern elephant seal and water-type classes analysis
The bio-logging data usedwere compiled from several previously published
literature and data8,33,46,47. As stated in the previous studies, the SES were
treated in accordance with the IPEV ethical and Polar Environment
Committees guidelines. The compiled processed SES data allowed us to
study the influence of the phytoplankton communities on the SES foraging
activity.

Data highlighting the events of prey capture by adult female SES come
from79 total deployments of bio-loggers between2010and2020.Theywere
collected in the area of the Kerguelen Islands and included: unique seal
identifiers, dates and coordinates of measurement, and the number of prey
capture attempts (PrCA), which were later normalized based on the prey
capture attempts of each individual seal (variance) for comparativepurposes
(NormPrCA). The PrCA was calculated from head acceleration data
recorded by accelerometers deployed on the heads of the SES8,46. The entire
dataset included 227,293 PrCA observations over 681 total days. The PrCA
data were available within a limited time frame for each year, ranging from
the endofOctober to the beginningof February. This is explainedby the fact
that post-breeding-tagged female elephant seals forage at sea for 65–80days,
departing in late October (after the breeding period) and returning to land,
where the bio-logging tags are collected, throughout January to molt8.

The SES can be equippedwith different tags. These latter consisted of a
range of satellite tags and data loggers. The SES were usually equipped with
GPS loggers in combination with Argos satellite loggers and archival data
loggers (SPLASH10), transmitting Argos location data and collecting GPS
location data. The SPLASH10 devices also included a time-depth recorder
(TDR) which recorded pressure, light, and temperature levels at 1 or 2-s
intervals. In addition to that, conductivity-temperature-depth satellite-relay
data loggers (CTD-SRDLs) combined with either TDR loggers, or TDR-
accelerometer data loggers, sample acceleration as well as pressure. These
data loggers were glued on the heads of the female SES using quick-setting

epoxy. Further details about the devices and the sampling parameters can be
found in Guinet et al.8.

In this study, we used only the data logged from the TDR-
accelerometer. TDRs recorded dive depth and duration, allowing identifi-
cationof foragingdives,while accelerometers capturedhigh-frequencyhead
movements indicative of prey strikes. PrCA events were detected by ana-
lyzing rapid head-jerk movements, which have been validated as indicators
of prey capture inmarine predators46,47. These accelerometer-derived signals
were synchronized with TDR dive profiles to ensure they occurred during
active foraging. Tags transmit their pooled information upon the surfacing
of the SES between dives8.

Some seals have partial tracks recorded since some bio-loggers would
stop recording during the foraging trip. However, in our study, this only
influenced the relative occurrence of consecutive days per class result
(Fig. 4b) by giving more weight to the lower ranges of consecutive days.

Each PrCA observationwas associated with a water-type class through
the retrieval of satellitematch-upsbasedon thedate and locationof each seal
observation. For each observation, we identified the closest 10 × 10-pixel
box (each pixel at 4 km resolution) surrounding the coordinates of the
observation on the same day. From this data, we estimated two key quan-
tities: (1) the frequency of water-type classes within the 10 × 10-pixel area
(only when 50% of pixels are available within this area), which was used for
correlation analysis (Suppl. Fig. S2), and (2) the class of the closest pixel,
which was directly assigned to the observation for further analysis. Around
54% of PrCA observations were assigned to satellite matchups.

This dual approach allowed us to account for both the dynamical
aspect of the distribution of water-type classes around each observation and
the immediate conditions at the precise location and time of the seal’s
activity.

Statistics and reproducibility
All statistical testswere performedusingMatlab, and the results are reported
as mean ± standard deviation (std) when appropriate. The significance of
the correlation analysis was highlighted with p-values (significant if p-value
less than 0.05). The plots and tables were constructed in a way to show data
variability and distribution.

The reproducibility of our results is possible. All the methods are
sufficiently described and all underlying data, in addition to supplementary
code and Matlab libraries, are publicly available (sources or public reposi-
tories mentioned).

For the SES data, they were collected and detailed in the framework of
previously published studies8,33. For this study, the previously collected and
processed SES data were compiled over 10 years. Sample sizes were deter-
mined based on available bio-logging devices ready to be deployed and
experimental feasibility. Data from 79 adult female SES were used in this
study and are available in full with sufficient description on https://doi.org/
10.5281/zenodo.11120351.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data used and generated in this study are available at the following public
repository48: https://doi.org/10.5281/zenodo.11120351. Chl-a, Rrs, and
PHYSATsatellite images are found at thehttp://www.globcolour.infoportal.
SST data can be found on the NASA EarthData Ocean Color portal https://
oceancolor.gsfc.nasa.gov/l3/, andprovidedby theMODIS sensor aboard the
Aqua satellite. HPLC data from El Hourany et al.49 can be found on https://
doi.org/10.5281/zenodo.10361485and from Soppa et al.42 at https://doi.org/
10.3389/fmars.2017.00203.

Code availability
The code used to train the SOM is available as a MATLAB script in the
following public repository48: https://doi.org/10.5281/zenodo.11120351.
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