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for BMI and Type II diabetes in the Native
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Polygenic scores (PGS) are promising in stratifying individuals based on the genetic susceptibility to
complex diseases or traits. However, the accuracy of PGS models, typically trained in European- or
East Asian-ancestry populations, tend to perform poorly in other ethnic minority populations and their
accuracies have not been evaluated for Native Hawaiians. In particular, for bodymass index (BMI) and
type-2 diabetes (T2D), Polynesian-ancestry individuals such as Native Hawaiians or Samoans exhibit
varied distribution from other continental populations, but are understudied, particularly in the context
of PGS. Using BMI and T2D as examples of metabolic traits of importance to Polynesian populations
(alongwith height as a comparison of a similarly highly polygenic trait), herewe examine the prediction
accuracies of PGS models in a large Native Hawaiian sample from the Multiethnic Cohort with up to
5300 individuals. We find evidence of lowered prediction accuracies for the PGS models in some
cases, particularly for height. We also find that using the Native Hawaiian samples as an optimization
cohort during training does not consistently improve PGS performance. Moreover, even the best-
performing PGS models among Native Hawaiians have lowered prediction accuracy among the
subset of individuals most enriched with Polynesian ancestry. Our findings indicate that factors such
as admixture histories, sample size, and diversity in GWAS can influence PGS performance for
complex traits among Native Hawaiian samples. This study provides an initial survey of PGS
performance among Native Hawaiians and exposes the current gaps and challenges associated with
improving polygenic prediction models for underrepresented minority populations.

Genome-wide association studies (GWAS) have identified thousands of
genetic variants associated with a plethora of human complex traits and
diseases1,2. The success of GWAS has enabled a burgeoning field of post-
GWAS analysis, including the computation of polygenic scores (PGS) for
predicting the genetic risk for an individual based on their genotypes and
available GWAS summary statistics to common diseases or complex

traits3,4. On the basis of the GWAS summary statistics, the PGS is calcu-
lated as the sum of the trait-associated alleles an individual carries,
weighted by the estimated effect sizes of the alleles. Recent developments
have focused on extending PGS modeling to include variants and their
appropriate weights genome-wide5. Such genome-wide PGS tend to be
more efficacious in predicting outcome than a simple approach of
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selecting only variants that surpassed the genome-wide significance
threshold in a GWAS6–8.

As the sample sizes of GWAS increased, the resulting PGS has become
more effective in risk stratification, early disease detection, and the devel-
opment of precision medicine9–12. However, available GWAS data are
heavily biased towards European-ancestry individuals13,14, posing a chal-
lenge for PGS due to its poor transferability between populations. In par-
ticular, PGS trained with European populations exhibit reduced prediction
accuracy when applied to non-European populations15–17. This poor
transferability has been demonstrated for several ethnic minority popula-
tions but has not been evaluated for Native Hawaiians, who make up the
largest Pacific Islander population in the U.S18.

Native Hawaiians are known to have a higher risk of obesity, diabetes,
and cardiovascular disease, among others, both within Hawaiʻi and
nationally19–23. They also have the highest mortality rate for several types of
cancer compared to other ethnic groups24–26. In addition, as consequence of
centuries of colonization and globalization, Native Hawaiians are largely
admixed27–29, with a primary ancestry component descended from Poly-
nesian ancestors (~40%) and recent (within the last 300 years or so)
admixtures from European (~30%) and East Asian (~29%) immigrants,
among others. These ancestries for Native Hawaiians are correlated with
elevated risks of certain metabolic diseases, including body mass index
(BMI) and type-2 diabetes (T2D)19–21,23. Despite these elevated disease risks,
the Native Hawaiian population is largely understudied and
underserved27,29. We generally lack the genomic resources and knowledge
for this population to reap the benefits of genetic research and genomic
medicine27,30,31.

Predictions based on PGS are one area that is under-investigated for
Native Hawaiians and can be potentially improved. To date, no systematic
evaluation of PGS, particularly formetabolic traits and diseases such as BMI
and T2D, have been conducted for the Native Hawaiians. We focused on
these traits as they are themost available and because they are closely linked
to obesity, diabetes, and cardiovascular disease – diseases that show elevated
risks within the Native Hawaiian population22,32,33. Furthermore, T2D was
identified as one of the diseases forwhich theNativeHawaiian communities
expressed the most concerns21,34. We additionally included height in our
study as a comparison trait, since it is a highly polygenic (as are BMI and
T2D) trait for which we have an extensive understanding of the genetic
architecture, thus potentially providing a testing ground to evaluate any
transferability issue of PGS. Given the underrepresentation of Polynesian
ancestries in genomic studies and references, poor transferability of PGS
models trained in the largest GWAS dataset is expected as is often observed
with other populations and ethnic minorities. On the other hand, it is
unclearwhether the admixture alleviates some of the transferability issues of
PGSat thepopulation level. Because admixture levels vary across individuals
within a population, even if admixture alleviates some of the transferability
issues, it could create disparity within Native Hawaiian communities
depending on an individual’s genomic similarity to the underrepresented
Polynesian ancestries. It is thus crucial to evaluate the transferability of PGS
in this population and assess any disparities specific to Native Hawaiians in
order to begin bridging this gap.

We conducted the present study using data from the Multiethnic
Cohort (MEC)35. We leveraged the data of approximately 5300 Native
Hawaiian (MEC-NH), as well as populations as proxies for East Asian- and
European ancestries (approximately 19,600 Japanese Americans, MEC-J;
approximately 8500 White Americans, MEC-W), who were genotyped on
theMulti-Ethnic Global Array (MEGA) andGlobalDiversity Array (GDA)
arrays to evaluate the prediction accuracy of PGS for BMI, height, and T2D.
We trained PGSmodels using summary statistics from the largest available
consortium GWAS from European (EUR), East Asian (EAS), or multi-
ethnic populations for BMI, height, and T2D. Additionally, we assessed the
efficacies of published PGSmodels from the PGS catalog36 in MEC-NH. In
each case, we also investigated the model efficacy in subsets of Native
Hawaiians with higher estimated Polynesian ancestry. We stress that we
utilized this study design to examine health disparities within the Native

Hawaiian population, and as a way to evaluate how these models may
transfer to other Polynesian-ancestry populations. We used empirical (and
potentially noisy) estimates of genetic ancestries to assess the impact on the
accuracy of currently available PGS models due to admixture over the last
10–12 generations, which is a product of the colonization of the Hawaiian
archipelago byWestern countries. Interpretations of these estimates beyond
the research context are socially complex and thus should not supplant
current practices based on genealogical records and self-reports. These
estimates also do not imply any hierarchies or socially meaningful sub-
divisions in the Native Hawaiian communities.

Results
Overview of the study design
Wefocusedon evaluating the efficacyof PGSmodels inNativeHawaiians in
this study, using the MEC Japanese andWhite Americans as comparisons.
We focused on three traits, BMI, height, and T2D (Supplementary Table 1),
and took two different approaches to construct PGS models for evaluation
(Fig. 1). We collected from literature the largest East Asian-ancestry (EAS),
European-ancestry (EUR), and multi-ancestry (META) meta-analysis
GWAS summary statistics for each trait (Supplementary Table 2) to train
PGS models. Based on the summary statistics for a particular trait, we used
independent, non-overlapping, MEC subsets as reference for linkage dis-
equilibrium (LD) (N = 500) and for PGS optimization (N = 3000), and then
validated the PGS model in an additional held-out sample (N = 1000)
(Methods, Supplementary Table 3).We trained and optimized PGSmodels
in either EUR-, EAS- or multi-ancestry cohorts, and tested the transfer-
ability of the best performing genomic PGS models in Native Hawaiians
(Design I in Fig. 1; Supplementary Table 3).

Secondly, we explored the potential of leveraging the Native Hawaiian
cohort as the optimization cohort to improve the accuracies of PGSmodels
within MEC-NH (Design II in Fig. 1; Supplementary Table 3). Because the
Native Hawaiian population, or even the larger Polynesian-ancestry Pacific
Islander populations, are generally much smaller in sample sizes compared
to the available consortium GWAS from continental populations, it is
generally infeasible to amass the sample sizes necessary for a well-powered
GWAS that will be informative for PGS construction.We thus investigated
whether theMEC-NHcould be used for identifying the optimal PGSmodel
to improve upon on the accuracy (hence alleviate the transferability issues)
of PGS, even though the GWAS summary statistics were still derived from
EAS, EUR, or multi-ancestry meta-analysis.

Reduced prediction accuracy when applying EAS- or EUR-
trained PGS to Native Hawaiians in some scenarios
We first assessed the transferability of PGS to the Native Hawaiian popu-
lation (Design I in Fig. 1). In this case, we identified GWAS summary
statistics to build and optimize the PGS model using population-matched
cohorts from the MEC, with MEC-J and MEC-W as representatives of the
East Asian and European-ancestry cohorts, respectively (i.e. EAS GWAS
were optimized usingMEC-J; EUR GWAS were optimized usingMEC-W;
Multi-ancestry GWAS were optimized using either MEC-J or MEC-W
separately. MEC-J andMEC-W also provided the respective reference for a
pattern of linkage disequilibrium, or LD). We then evaluated the perfor-
mance of the PGS in held-out MEC-J, MEC-W, and MEC-NH individuals
by partial or pseudo R2. Poor transferability is indicated if there is a
noticeable drop-off in prediction accuracy when a PGSmodel optimized in
one population (e.g. EAS GWAS optimized in MEC-J) is tested in another
population (e.g., MEC-W or MEC-NH validation cohort).

As expected, PGSmodels optimized inMEC-J orMEC-W showed the
highest prediction accuracy in validation cohorts fromthe samepopulations
(Fig. 2). For instance, forBMIbasedonGWASsummary statistics fromBBJ,
the best PGS model optimized in MEC-J achieved the highest partial R2 in
held-out MEC-J samples among the validation cohorts tested (partial
R2 = 0.059), while the best PGS model based on GWAS summary statistics
from GIANT+UKB and optimized in MEC-W achieved the highest
partial R2 in held-out MEC-W (partial R2 = 0.088). Moreover, consistent
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with the expectation of poor transferability, PGS trained inEAS tend tohave
reduced prediction accuracy in the other continental population. For
instance, for BMI, EAS-trained PGSmodel had reduced partial R2 inMEC-
W(0.022 vs. 0.059; one-sided p = 0.041 by bootstrapping), andEUR-trained
PGS model performed more poorly in MEC-J (0.043 vs. 0.088; one-sided
p = 0.045). PGS models trained from multi-ancestry meta-analysis GWAS
sometimes reduced the gap in prediction accuracy between MEC-J and

MEC-W, though they do not necessarily have higher population-specific
prediction accuracies depending on the traits examined (Fig. 2).

When validating EAS- or EUR-trained PGS in the Native Hawaiian
cohort, transferability was not consistently poor, depending on the trait or
theGWASsummary statistics used for training (Fig.2). Forheight, therewas
a noticeable reduction in prediction accuracy (e.g. for EAS-trained PGS
basedon theBBJGWAS, partial R2 = 0.253 inMEC-J to 0.048 forMEC-NH;

Fig. 1 | The overall study design of PGS evaluation in Native Hawaiians. The
GWAS summary statistics were downloaded from large consortiums and biobanks
(BBJ, UKB+GIANT, BBJ+ TWB, and META). Each population-specific GWAS
(EAS, EUR) was used to train PGSmodels with the matchingMEC cohort as the LD
reference and optimization cohort (MEC-J for EAS, MEC-W for EUR). Multi-
ancestry meta-analysis GWAS (META) were used to train PGS with either EAS or
EUR populations, each in turn as both LD reference and optimization cohort. In
Design I, EAS- or EUR-optimized PGS were validated in held-out MEC-J, MEC-W,

and MEC-NH samples. Comparisons of PGS prediction accuracy between MEC-
NH andMEC-J or MEC-W provide the metric for transferability. In Design II, PGS
models based on EAS or EUR GWAS used MEC-NH for optimization, and the
performance in held-out MEC-NH were then compared to the corresponding
metric in Design I to assess potential improvement of prediction by PGS. See Sup-
plementary Table 2 for detailed descriptions of the GWAS datasets used for this
study and Supplementary Table 3 for a tabular summary of the study design.
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one-sided p < 0.001). In contrast, EAS- or EUR-trained PGS for BMI
showed little drop-off when evaluated in MEC-NH (Fig.2). T2D PGS
models showed similar pattern as height, though the overall prediction
accuracies (on the liability scale) were lower (Fig.2). For example, EUR-
trained PGS based on the DIAMANTE European GWAS performed sub-
stantially better in MEC-W than MEC-NH (e.g. pseudo R2 on the liability
scale=0.143 inMEC-Wvs. 0.047 inMEC-NH;p < 0.001). EAS-trainedPGS
based on the DIAMANTE East Asian subset, though still appears to be the
most efficacious among MEC-J, were generally poorly predictive across
ancestry groups, perhaps reflecting its substantially smaller sample
sizes (Fig.2).

PGS optimized in Native Hawaiians did not necessarily improve
the PGS transferability
In the absence of a large-scale GWAS in Polynesian-ancestry populations,
another possibility to improve the PGS prediction accuracies for Native
Hawaiiansmay be to use theMEC-NHcohort for optimization. In this case,
the reference LD sample used is consistent with the ancestry of the GWAS,
but MEC-NH individuals are used to identify the best performing PGS
model for validation in an additional held-outMEC-NH cohort (Design II,
Fig.1; Supplementary Table 3). We then compared PGS models derived in
this manner with those optimized usingMEC-J andMEC-W (fromDesign
I, shown in Fig. 2). When validated in held-out MEC-NH samples, we

observed that in general, PGS models optimized in MEC-NH did not
necessarily have better prediction accuracy in the validation cohort (Fig. 3);
NH-optimized PGS models largely had similar prediction accuracies
compared to those optimized using MEC-J and MEC-W (Fig. 3). The
notable exceptions are for BMIwhen using GWAS summary statistics from
UKB+GIANT37(partial R2 = 0.115 vs. 0.081; one-sided p = 0.031 by
bootstrapping) and for height when using GWAS summary statistics from
BBJ+TWB (partial R2 = 0.118 vs. 0.074; one-sided p = 0.039 by boot-
strapping. But note that more accurate models exist using GWAS from
UKB+GIANT); in these cases, optimization using MEC-NH provided an
improvement in prediction accuracies. These improvements were not
observed consistently across GWAS datasets for the same trait or across
different traits within the same GWAS dataset. We thus conclude that
optimization in MEC-NH did not necessarily lead to improved PGS
accuracy compared to using the optimization cohort with consistent
ancestry as the cohort generated the GWAS summary statistics and may
need to be considered on a case-by-case basis.

Prediction accuracy of publicly available PGS models for Native
Hawaiians
We constructed the evaluated PGSmodels based on some of the largest and
most recent GWAS meta-analysis datasets for BMI, height, and T2D (Sup-
plementary Table 2). In addition, there are a number of published PGS

Fig. 2 | The transferability of EAS- and EUR-trained PGS for BMI, height,
and T2D. The genomic PGS model with the highest prediction accuracy in opti-
mization cohorts was validated in held-outMEC-J,MEC-W, andMEC-NH cohorts.
This figure summarizes the results of analysis in Design I, Fig.1, and details of the
model parameter for the best performing PGSmodel can be found in Supplementary
Table 4. The PGS construction method that resulted in best model is represented by

circles (for C + T approach) or triangles (for LDpred2 approach). The standard
errors for the R2 were calculated using 1000 sets of bootstrap samples. For BMI and
height, random 1000 individuals from each ofMEC-J, MEC-W, andMEC-NHwere
used for validation. For T2D, all cases and controls that were not used in training
were used for validation: 3313 cases and 6700 controls forMEC-J, 468 cases and 3110
controls for MEC-W, and 389 cases and 549 controls for MEC-NH.
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models for these traits in thePGScatalog (URLhttps://www.pgscatalog.org/),
some of which may have used different GWAS datasets or different meth-
odologies for constructing PGS. We thus validated in MEC-NH all of the
BMI (N = 102), height (N = 87), and T2D (N = 139) PGSmodels available as
of July 2024, and compared them with our top-performing PGS (Supple-
mentary Data 1).

We found that the PGS developed in this study aligns closely with the
best-performing public PGS models for BMI in terms of prediction accu-
racy, while for T2D there are better performing models in the PGS catalog
than what we could develop here (Fig. 4). While not a metabolic trait of
emphasis in this study, we found that there exist substantiallymore accurate
PGSmodels of height forMEC-NH thanonesdeveloped and evaluated here
(P < 0.001). Notably, some of these top performing models (PGS004779-
PGS004782; Fig.4) used an ensemble PGS approach, instead of the two
approaches we adopted here, and trained in South Asians38.

Reduced PGS prediction accuracy in the Native Hawaiiansmost
enriched with Polynesian ancestries
At the population level, the accuracy of PGS models in trait predictions or
stratification in MEC-NH could, in part, be influenced by admixture.
Within the population, Polynesian ancestries exist on a continuum, but
because they are the componentof ancestries least similar to the ancestries of
individuals participating in the GWAS datasets, there may be disparity in
PGS prediction accuracy among individuals with different proportions of
Polynesian ancestries39. Thus, we explored the accuracy of PGS in subsets of
1000 Native Hawaiians with highest Polynesian ancestries (termed here as
PNS), and compared to the 1000 randomly selection individuals.We found
that PGS models are less accurate in the PNS subcohort. For instance, the
partial R2 for the top performing PGS model for BMI (PGS004734) was
0.118 in randomly selected MEC-NH, but 0.084 when applied in PNS. In
fact, across the three traits, the top-performing PGS catalog models we

Fig. 3 | The impact of MEC-NH as optimization cohort on PGS prediction
accuracies in held-outMEC-NH for BMI, height, and T2D. For each combination
of GWAS-trait PGS models that was previously optimized in MEC-J or MEC-W in
Fig.2, the same data was then optimized using MEC-NH samples here (Design II,
Fig.1). Previously optimized PGSmodels and theMEC-NH-optimized models were
both validated in the same held-out MEC-NH cohort to evaluate if optimization in
MEC-NH would improve the prediction accuracy in Native Hawaiians. Details of

the model parameter for the best performing PGS model can be found in Supple-
mentary Table 5. The PGS construction method that resulted in the best model is
represented by circles (for C + T approach) or triangles (for LDpred2 approach).
The standard errors for the R2 were calculated using 1000 sets of bootstrap samples.
For BMI and height, a random subset of 1000 MEC-NH individuals was used for
validation. For T2D, 389 cases and 549 controls from MEC-NH were used for
validation.
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found in MEC-NH generally showed reduced prediction accuracy within
thePNS subsets (Fig. 5;P = 8.43x10−6 by thebinomial sign test). In contrast,
the PGS model in this study using the MEC-NH for optimization showed
relatively little reduction in performance between randomly selectedMEC-
NH and PNS (Fig. 6; Supplementary Table 6), although the prediction
accuracies were variable compared to validation results previously (Fig. 3),
reflecting the smaller samples used here. Thismay also explain why in some
cases the prediction accuracies in randomly selected MEC-NH were lower
than that in the same number of PNS individuals, though the differences
were generally not significant except for the case of height when using the
multi-ethnic meta-analysis GWAS40 (partial R2 = 0.087 and 0.209 in MEC-
NH and PNS, respectively, Fig. 6; one-sided P = 0.028). Nevertheless, these
findings suggest that while optimizing PGS in MEC-NH may not neces-
sarily lead to improved transferability across NativeHawaiians in general, it
could lead tomore robust predictionaccuracies ofPGSmodel amongNative
Hawaiians enriched with Polynesian ancestries, and thus may be more
applicable to other Polynesian-ancestry populations across the Pacific.
Unfortunately, becausemost of theMEC-NHdatawere used for optimizing
the PGS model, we have fewer individuals enriched with Polynesian
ancestry to use as validation, resulting in larger error bars and less stable

estimates of the prediction accuracy of the PGS models, and preventing us
from evaluating PGSmodels for T2D as we ended with insufficient number
of cases and controls.

Discussion
In this study, we conducted a systematic assessment of the prediction
accuracies and transferability of PGS models for Native Hawaiians. We
assessed PGS models constructed in this study as well as models that are
publicly available from the PGS catalog. We focused on BMI, height, and
T2D, as these are traits or diseases that showed different distributions
between Native Hawaiians and other continental populations, and where
Polynesian ancestries may be correlated with disease risk19. While we
observed that EAS-trainedPGSmodels have reduced prediction accuracy in
MEC-W (theMEC cohort representing EUR ancestries) and vice versa, our
results revealed that these PGS models at times showed comparable pre-
diction accuracies in the Native Hawaiian cohort, especially for BMI.
Empoweredby theNativeHawaiian cohort in theMultiethnicCohort Study
(N ~ 5300 with genome-wide genotyping array data), we were also able to
evaluate whether using the MEC-NH individuals for optimizing the PGS
model could improve PGS prediction accuracies for this population, even

Fig. 4 | A Comparison of PGS between the optimal PGS from this study and PGS
from the PGS-catalog. PGSmodels available on the PGS catalog (URL https://www.
pgscatalog.org/) as of July 1, 2024 were downloaded for BMI, height, and T2D, and
validated in the MEC-NH individuals here (the same held-out validation MEC-NH
as in Figs. 2 and 3). Blue points represent the PGS constructed in this study with the
highest prediction accuracy inMEC-NH. Circles and triangles indicate that the PGS

was derived from C+ T and LDPred2 approaches, respectively. Gray points depict
PGS from the PGS catalog. Only the top 10 performing PGS models from the PGS
catalog were shown; the complete data can be found in Supplementary Data 1. The
standard error for the R2 was calculated using 1000 sets of bootstrap samples. For
BMI and height, random 1000 MEC-NH individuals were used for validation. For
T2D, 389 cases and 549 controls from MEC-NH were used for validation.
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though our findings suggested limited improvements. Furthermore,
because the Native Hawaiian population displays a continuum of genetic
ancestry due to its colonial history, with Polynesian ancestries being the
majority ancestry, we also evaluated PGS prediction accuracies among the
Native Hawaiians most enriched with Polynesian ancestries (PNS). For
publicly available PGSmodels for BMI, height, and, to a lesser extent, T2D,
we did observe a reduction in prediction accuracy when applied to the PNS
subcohort. While we cannot discount the influence of potentially
shared environments or other social determinants of health, our results
suggest that recent admixture with European or East Asian ancestries may
be mediating the PGS performance, and these PGS models in general may
be even less applicable to the Polynesian-ancestry populations across the
Pacific at large.

Across the traits, populations, and GWAS datasets that we examined
here for training PGS models for Native Hawaiians, irrespective of the
degree of reduction in prediction accuracy, we found that training with
European-basedGWASgenerally produced better-performing PGSmodels
over other GWAS used in training. For instance, the prediction accuracy by
partial R2 of height PGS model from the GIANT dataset37 (N > 700,000),
optimized in MEC-W, was 0.198 in validation MEC-NH, compared to

0.074 for PGSmodel derived from BBJ+ TWBGWAS data41 (N~260,000)
with optimization in MEC-J (one-sided P < 0.001; Fig.2). This is thus
reflective of the bias in GWAS, where GWAS for European-ancestry
populations are still much larger, and thus more powered and informative
for PGS, than for East Asian-ancestry populations. Another hint of this bias
can also be observed when PGSwas constructed frommulti-ancestrymeta-
analysis data. In this case, the same GWAS dataset was optimized inMEC-
W or MEC-J separately, but the resulting PGS still had higher prediction
accuracy in held-out MEC-W (partial R2 = 0.286) thanMEC-J (0.199; one-
sided P = 0.023), respectively. This is potentially due to the European-
ancestry populations still representing the majority of the dataset in the
multi-ancestrymeta-analysis ( ~ 628,000 European-ancestry individuals vs.
~ 179,000 East Asian-ancestry individuals in Sakaue S., et al. 40). Therefore,
in addition to increasing sample sizes of future GWAS, increasing repre-
sentation and diversity of these GWAS will also help improve the PGS
accuracy, particularly for a population such as the Native Hawaiians (or
African Americans and Latinos) who are not yet a major constituent of
multi-ancestry GWAS. This may be particularly important since using the
under-represented population for optimization, without fundamentally
changing the representation of the GWAS data, did not appear to make
meaningful improvements (Fig.3). Future evaluation should focus on
methods (e.g.,38,42,43) that can incorporate GWAS summary statistics or PGS
models from multiple populations in building a PGS model for Native
Hawaiians. Such an approach leveraging GWAS frommultiple populations
could either integrate GWAS from multiple large-scale continental GWAS
or integrate smaller but population-specific GWAS such as those from
NativeHawaiiansorSamoans44,45, or at least incorporate knownpopulation-
specific associated variants. However, the latter two approaches may still
suffer from noise in the summary statistics due to the smallness of these
Polynesian-specific studies. Therefore, a focused effort to expand on edu-
cation, collaboration, and recruitment with the Polynesian-ancestry com-
munities to enable future GWAS will likely be an essential first step.

While we generally advocate for greater inclusion of diverse popula-
tions in futureGWAS,which both increase the sample size and the diversity
of the GWAS, it could also be difficult to predict the impact on prediction
accuracy of the PGS which may be dependent on the trait architecture. For
instance, switching from a smaller European-only GWAS to a (marginally)
largermulti-ancestryGWASdidnot produce PGSmodelswith improve the
prediction accuracies for BMI in Native Hawaiians (partial R2 = 0.081 vs.
0.078; Fig. 2). It is therefore important to assess the prediction accuracy
empirically, particularly for ethnic minority populations such as the Native
Hawaiians.

The variable performance of PGS models in MEC-NH depending on
the trait, the GWAS dataset, and the approach for optimization, led to the
inconsistent observation of transferability of PGS models between con-
tinental populations to MEC-NH. That is, PGS models trained in other
continental populations are not necessarily consistently poor-performing in
MEC-NH. However, we also observed a greater drop-off in performance,
particularly for models from PGS catalog, for the PNS subcohort. Our
evaluations thus suggested that continental-level admixture, over the last
300 years or so, may havemasked the egregious transferability problems for
PGS models for these complex traits in Native Hawaiians and that predic-
tion accuracies likely vary at the individual level within theNativeHawaiian
community. We again stress that our use to quantify the proportion of
ancestries was solely for the purpose of research use, as a means to evaluate
potential disparity in how PGS can be informative within the Native
Hawaiian population. These ancestry estimates are potentially noisy,
dependent on external references used, and could induce social harmwhen
taken out of the particular research context. Nevertheless, variation in
genetic ancestries may influence one’s disease risk at the individual level.
Therefore, assessments of one’s polygenic risk profile through
approaches46,47 that incorporate genetic ancestries, either at the genomic or
local level, ideallywithout explicit inference of discretely labeled ancestries39,
may improve prediction accuracies for Native Hawaiians or for admixed
populations in general.

Fig. 5 | Prediction accuracies of models from PGS catalog in the random Native
Hawaiian and Native Hawaiian with highest Polynesian ancestry validation sets.
Each PGS model from PGS catalog was assessed in validation datasets from MEC-
NH, either from randomly selected individuals (white points) or individuals with
highest Polynesian ancestry (yellow points). The standard errors for the R2 were
calculated using 1000 sets of bootstrap samples. For BMI and height, the validation
cohort consisted of randomly selected 1000 MEC-NH or the 1000 individuals with
the highest estimated Polynesian ancestry among the entire MEC-NH cohort (see
Methods). This was not restricted to the 1000 individuals reserved for validation in
Figs. 2–4 as none of the MEC-NH individuals were used in construction of the
publicly available PGS models. For T2D, because only 768 individuals could be
defined as either a case or control (346 cases, 422 controls) among the 1000 indi-
viduals with highest Polynesian ancestry, we compared to 768 individuals (318 cases,
450 controls) randomly selected among all MEC-NH individuals with T2D case/
control status.
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Wealso found that sample size anddiversity inGWASmay complicate
the construction and application of PGS in underrepresented populations.
This is another obstacle for Native Hawaiians, as the collection and use of
genetic data from indigenous populations are fraught with past misuse that
led to general mistrust from the community48–50. For a population already
small in size, the availability of cohorts to optimize these PGSmodels is also
muchsmaller than that available for other continental populations,which in
turn prevents the community in reaping the benefits of genomic medicine.
Thus, an ongoing discussion, engagement, and involvement of the com-
munity centered around issues of participation in research, genetic data
collection, and data sovereignty will be required.

Finally, our results may not generalize to other traits and diseases, and
future studies may also focus on outcomes such as cardiovascular diseases
for which the Native Hawaiians are also known to be susceptible22,51, or
asthma, for which the Native Hawaiian communities expressed explicit
concern and should be made as research focus21,34. These future directions
will further encourage community participation in research and improve
the generalizability of our conclusions here. It is with the multi-pronged
strategy of inclusion in genetics research, reduction of biases, and focus on
community concerns that we can reduce the disparity in PGS model per-
formance and alleviate health disparity in general.

Material and Methods
GWAS summary statistics and PGS Catalog datasets
To comprehensively evaluate the transferability of PGS for the Native
Hawaiian population, an admixed population with substantial East Asian
(EAS) and European (EUR) ancestries23, we have utilized EAS and EUR
GWAS, as well as multi-ethnic GWAS, summary statistics for training PGS
models for BMI, height, and T2D. We collected and curated some of the
largest available GWAS summary statistics data from recent
publications37,40,41,52–54 (Supplementary Table 2). In addition to training PGS
models from these latest GWAS, we also obtained and tested allmodels from
the PGS-catalog database (http://www.pgscatalog.org/) related to these three
traits, published in the database as of July 1, 2024 (Supplementary Data 1).

In all cases, we downloaded the datasets in GRCh38 coordinates or
converted the coordinates to GRCh38 genome build using triple LiftOver55

to ensure alleles are aligned in genomic regions that may have inverted
between genome builds. Additionally, we verified the order of reference and
alternative alleles in the GWAS summary data by comparing it to the
GRCh38 reference genome. We also removed the indels in the GWAS
summary statistics data.

Study cohorts and notes on population descriptors
To optimize the PGS models for each trait and to evaluate the prediction
accuracy and transferability of eachPGSmodel,we leveraged the individual-
level genetic data from the Multiethnic Cohort (MEC) study35. MEC
encompasses five major ethnic groups: Japanese Americans, Native
Hawaiians, African Americans, Latinos, and Non-Latino Whites. All par-
ticipants were 45-75 years old at cohort entry, recruited from Hawaii and
Los Angeles County. Recruitment was conducted via drivers’ license and
voter registration files to ensure broad representation across the
population35. Bilingual recruitment materials were provided to address
potential language barriers. Within the cohort, up to approximately 70,000
individuals have available genome-wide array data. We utilized the sub-
cohorts genotyped with the Illumina Multi-Ethnic Global Array (MEGA)
and Global Diversity Array (GDA) arrays, in total containing 19,677
(MEGA: 5022; GDA: 14,655) Japanese Americans (MEC-J), 11,316
(MEGA: 829; GDA: 10,487) Non-Latino White (MEC-W), and 5388
(MEGA: 4144; GDA: 1244) Native Hawaiians (MEC-NH). MEC-J and
MEC-W subcohorts were used as benchmarks for the prediction accuracies
of PGS trained and optimized in East Asian and European populations,
respectively.

The labels andgroupings of these individuals are basedon self-report at
baseline using terminology that was in practice in the early 1990s when the
surveys were distributed to participants. In the survey, participants were
asked to provide self-reported ethnic or racial background, marking all that
applies, with the options of “Black or African-American”, “Chinese”,
“Filipino”, “Hawaiian”, “Japanese (includes Okinawan)”, “Korean”,

Fig. 6 | Prediction accuracies of models from this study in the random Native
Hawaiian and Native Hawaiian with highest Polynesian ancestry validation sets.
The PGSmodels were based on EAS-, EUR- or multi-ancestry GWAS, but using the
MEC-NH for optimization. The resulting models were previously validated in 1000
randomly selected MEC-NH individuals in Fig. 3. Here, for fair comparison we
validated the same models in a subset of 200 individuals out of the 1000 previously
used for validation, but this time comparing 200 randomly selected individuals

(white points) to 200 individuals with highest estimated Polynesian ancestries
(yellow points). Circles and triangles indicate that the PGS was derived from C+ T
and LDPred2 approaches, respectively.We did not perform the analysis for T2D due
to too few case/control samples, particularly among those with high Polynesian
ancestries. The standard errors for the R2were calculated using 1000 sets of bootstrap
samples.
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“Mexican or otherHispanic”, “White orCaucasian”, or “Other”.MostMEC
analyses categorize participants into one of the five major racial/ethnic
groupsmentioned above that were targeted during recruitment, prioritizing
group memberships in the following order: “African-American”, “Hawai-
ian”, “Latino”, “Japanese”, “White”. Thus, if an individual reports “Chinese”
and “Hawaiian” in the survey, they would be classified as Native Hawaiian
for these analyses. Among the 0.3% of individuals where no response was
given for the participant, but existed for the mother and father, a race/
ethnicity was created from the parent’s information; otherwise the indivi-
dual is labeled as “Other.” While the MEC subcohorts used in this study
(MEC-J, MEC-W, andMEC-NH) representmultiple levels of self-reported
ethnicities, nationality, and genetic ancestries, we continue to use these
labels for consistency with other MEC studies and for ease of recognizing
and interpreting the historical experience of health disparity for some of
these populations, including potential benefits in genomic health through
polygenic predictions. We recognize these labels are imperfect proxies for
genetic ancestry, but note that our study focuses on a cohort of individuals
from a community that emphasize self-identity or genealogical record for
group membership (in place of estimated genetic ancestry), who have
experienced significant disparity due to social determinants of health, who
feel strongly of this identity, and who encompass multiple ancestries on a
continuum thatwould be difficult and unethical to delineate or recategorize.

In limited cases where we examined the potential disparity of PGS
prediction within Native Hawaiian communities or evaluated their gen-
eralizability to other Polynesian populations, we utilized estimated genetic
ancestries. Genetic ancestries for the MEC-NH individuals genotyped on
the MEGA array were estimated previously19 through unsupervised
ADMIXTURE analysis, combining the MEC with reference samples from
1000 genomes. Additional individuals genotyped on the GDA array here
were combined with theMEGA array individuals, and together, the genetic
ancestrieswere re-estimatedusing the sameapproach.Asbefore, atK = 4we
found that MEC-NH individuals exhibited known components of ances-
tries from European, East Asian, and African (interpreted based on 1000
Genomes reference samples), as well as a component of ancestry that is
unique to the MEC-NH, presumed to be Polynesian in origin.

Phenotype definitions and quality controls of genetic data
Height and weight were based on participant self-report (in inches or
centimeters or in pounds or kilograms, respectively) at the baseline ques-
tionnaire, from which BMI was derived. T2D cases were defined based on
positive indications on any the three criteria: self-reportedT2Ddiagnosis by
a physician or medical professional on any of the five questionnaires (from
1993-2016), the use of medication for treatment of diabetes, or Medicare
claimdata based on ICD-9 codes (249-250.99) or ICD-10 codes (E11.X)56,57.
All other individuals who were still responsive on the last questionnaire
(questionnaire 5 between 2012-2016) but were not otherwise deemed a case
are considered the controls. Themajority of the case definitions are basedon
Medicare claim data with ICD codes specific to T2D, but self-report defi-
nitionsbasedonquestionnaires donotdifferentiateT2D fromT1D.There is
a chance of mis-reporting in the self-report definition, though it is expected
to be small given a minimum age of 45 to enter the cohort.

Individual-level data quality control for individuals genotyped on the
MEGA array had been previously done and reported; individuals addi-
tionally genotyped on the GDA array followed a similar procedure. Briefly,
this includes removing individuals with genotype missingness greater than
5% or mismatched in sex. We also removed SNPs with missingness greater
than2%, those thatwereduplicated, those thatmapped tomultiplepositions
or multiple identifiers when lifted over to hg38, monomorphic or failed
Hardy-Weinberg equilibrium test (P < 1e-10). The genotyping data were
then imputed genome-wide using TOPMed imputation reference panel
(version 2). We did not filter out any self-reported Native Hawaiian indi-
viduals on the basis of estimated genetic ancestry, since it is a well-known
admixed population with a continuous cline of multiple ancestry
components19. Furthermore, it is the community belief that estimated
genetic ancestries should not be used as an exclusion criterion for

communitymembership and should not supplant well-established customs
of self-identity or genealogical records. Therefore, we included all self-
reportedNativeHawaiianswithin theMECas a single population. At times,
we did evaluate the efficacy of PGS models for a subset of MEC-NH with a
higher proportion of estimated Polynesian ancestry (the top 1000 indivi-
duals, which corresponded to approximately 65%, of Polynesian ancestry;
the distribution of admixture proportions can be found in previous
publications19,30). We did so both for a better evaluation of using PGS in
realizing precisionmedicine at the individual level and for assessment of the
generalizability of PGS models to other Polynesian-ancestry populations.

We randomly subset the individuals into three non-overlapping
groups when evaluating PGS models for BMI and height: 500 individuals
per population for LD reference, 3000 individuals per population for opti-
mizing the PGS model, and 1000 individuals per population for validating
the PGS model (Fig. 1). For T2D, we randomly selected 500 individuals for
whomwe only have the genetic data as LD reference, and then 800 cases as
well as 1500 controls for a total of 2300 individuals per population for
optimization.We then used all remaining available cases and controls from
each cohort for validation: 3313 cases and 6700 controls for MEC-J, 468
cases and 3110 controls for MEC-W, 389 cases and 549 controls for MEC-
NH. For individuals used as LD reference or as validation, we randomly
selected individualswhowere genotypedon theMEGAarray orGDAarray,
respectively, for each of MEC-J, MEC-W, and MEC-NH. For individuals
used in optimizing PGS model, we selected from those genotyped on the
MEGA array for MEC-J and MEC-NH and from those genotyped on the
GDA array for MEC-W due to the availability of samples.

Polygenic Score development and evaluation
Two commonly used approaches were utilized in this study to construct the
PGS model: Clumping and Thresholding (C+ T)7,58 and LDpred28.
LDpred2 was adopted as comparisons of most genomic PGS construction
methods showed similar accuracy, and LDpred2 compared favorably
among them59. Moreover, while approaches using genome-wide summary
statistics for PGS constructions (such as LDpred2) tend to provide models
that outperform those based on the C+ T method, there are examples of
traits and diseases where C+ Tmethod provided more accurate and more
simplistic models60. We thus include both approaches in our evaluations.

The C+ T method involved clumping SNPs in LD based on r2, and
distance (kb) parameters, and thresholding SNPs based on specific
thresholds of p-values. On the other hand, LDpred2 employed the Bayesian
method to estimate the effects of genetic variants on a specific trait and
considered the LD information between genetic variants61. We followed
previous studies62 in constructing PGS models from C+ T and LDpred2,
with the following modifications. For the C+T, we used p-values thresh-
olds of: 0.1, 0.2, 0.5, 0.05, 0.01, 0.005, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5, 5e-6, 1e-6,
5e-7, 1e-7, 5e-8; r2 values (based on the LD reference sample of 500 indi-
viduals) of: 0.2, 0.1, 0.01, 0.005, and distance in kilobases (kb) window sizes:
250, 500.Together,we evaluated 128 combinations of parameters to identify
the optimal PGS (by partial R2 and pseudo R2 for quantitative and dichot-
omous traits, respectively; see below) in the optimization sample of 3000
individuals. For LDpred2, we used a grid of values for hyper-parameters/
tuning parameters - causal variants (ρ), ℎ2 (the SNP heritability), and
sparsity (whether tofit somevariant effects to exactly zero) to constructPGS.
Weused ρ froma sequenceof 17values from0.01 to 1 on a log-scale, a range
ofℎ2 within (0.7, 1, 1.4) × estimated heritability, and a binary sparsity option
of either on and off (LDPred2-grid models). In addition, we tested a model
assuming infinitesimal causal effects, where each variant is assumed to
contribute to disease risk (LDPred2-inf model). In total, we evaluated 103
PRS models using LDPred2.

To evaluate the association of a PGS model in either the optimizing
sample or validation sample, we evaluated a regressionmodel using the PGS
for each individual as the predictor variable and the trait or disease as the
response variable using R (version 4.0.0). Linear models regressed BMI and
height against age and age2, and the trait was stratified by sex.We extracted
the residuals from the model using the R package stats v3.6.2 and the
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residuals() function and inverse normalized the residuals using the R
package normv1.0 and the qnorm() function. Finally, wemerged the results
from males and females. For covariates, we additionally included ten
principal components from a Principal Component Analysis (PCA) of
the dataset to adjust for the impact due to ancestry andpopulation structure.
For T2D, we used logistic regression, with covariates age, sex, and ten
principal components. The primary metric of PGS model efficacy is the
partial R2 for quantitative traits and pseudo R2 on the liability scale (referred
to as the liability R2 throughout our study) for dichotomous traits. Partial R2

was calculated using the R package rsq v2.5 and its function rsq.partial().
Pseudo R2 was calculated using the R package DescTools v0.99.43 and its
functionPseudoR2(). Toobtain thepseudoR2withonly thePGS score effect
in the dichotomous trait, we calculate the difference in pseudo R2 between
the full model (including PGS) and the partial model (without the PGS
score). We then converted the pseudo R2 to the liability scale following the
method described in Lee et al. 63, using an estimated lifetime risk of 44.95%
and 28.95% forMEC-J andMEC-W, respectively64,65.We could not identify
published estimates for lifetime risk for Native Hawaiians, but noted that
they are known to have even higher risk of T2D, and thus used 60%. Using
alternative values of 50% or 70% did not qualitatively change our results. To
calculate the standard errors of or to test the difference in partial or liability
R2 for PGS models, we conducted 1000 sets of bootstrap resampling. The
transferability of PGS is evaluated based on differences of the partial or
liability R2 between two populations or between two PGS models.

Statistics and reproducibility
The statistical analysis and reproducibility of experiments have been dis-
cussed throughout theMethods section when describing the study design.
In general, samples were randomly selected, stratified by population labels
for comparisons, without regard to phenotype distribution or outcome. The
study design and sample sizes used for each of LD reference, optimization,
and validation are shown in Fig. 1 and Supplementary Table 3. The statis-
tical analysis performed to evaluate significanceor assess standard errors are
provided in text or in Figure legends. We did not perform replications or
havemultiple technical replicates, though bootstrap resampling was used to
estimate statistical errors.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Genetic data utilized in this study is available on dbGAP (accession number:
phs002183.v1.p1). GWAS summary statistics were downloaded from lit-
erature; see Supplementary Table 2 for reference. For the downloaded PGS
models from the PGS catalog, see Supplementary Data 1. The best newly
generatedPGSmodels in this study (shown in Fig. 4) are provided at https://
doi.org/10.5281/zenodo.15123413. All other data are available from the
corresponding author upon reasonable request.

Code availability
Thepipeline used for training, optimizing, and validating thePGSmodels in
this study is publicly available through GitHub: https://github.com/
imyingchulo/gprs and https://doi.org/10.5281/zenodo.15117356.
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