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Emergence of a synergistic scaffold in the
brains of human infants
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The human brain is a complex organ comprising billions of interconnected neurons, which enables
interaction with both physical and social environments. Neural dynamics of the whole brain go far
beyond just the sum of its individual elements; a property known as “synergy”. Previously it has been
shown that synergy is crucial for many complex brain functions and cognition, however, it remains
unknown how and when the large number of discrete neurons evolve into the unified system able to
support synergistic interactions. Here we analyzed high-density electroencephalography data from
the late fetal period to one month after term age. We found that the human brain transitions from
a redundancy-dominated to a synergy-dominated system around birth. Frontal regions lead the
emergence of a synergistic scaffold comprised of overlapping subsystems, while the integration of
sensory areas developed gradually, from occipital to central regions. Strikingly, early developmental
trajectories of brain synergy weremodulated by environmental enrichment associated with enhanced
mother-infant interactions, and the level of synergy near term equivalent agewas associatedwith later
neurocognitive development.

The human brain is a paradigmatic example of a complex systemdisplaying
emergent structure. Despite being composed of billions of individually
functioning neurons, their collective dynamics lead to the emergence of a
unified “whole” capable of integrating information, learning, and surviving
in complex environments. The property, where a system collectively shows
structure that is irreducible to the sumof its parts, is known as synergy1, and
it is thought to play a key role in the self-organization of the brain into a
unified whole2,3. Understanding this process is a fundamental challenge in
modern neuroscience. Information theory has emerged as a core toolkit for
the analysis of modern complex systems science4, and has been used to
explore the structure of informationprocessing and cognition in the brain at
multiple scales5–7. Previous fMRI studies on adults have shown that syner-
gistic sub-systems are widespread across the cortex7,8, and that the dis-
tribution of synergies changes across the adult lifespan5.

In the development of an individual’s brain, functional synergy can
only emerge after the development of underlying structural brain networks.
It is currently well established that most structural and functional organi-
zation in brain networks takesplace during the fewmonths aroundbirth9–14.

This process is driven by a combination of genetically guided growth of the
major structural networks and an activity-dependent organization of the
functional networks15–18 into integrated and segregated ensembles that
together form the synergistic whole2,19. However, it is not known how and
when synergistic brain function appears, and whether it emerges sequen-
tially or uniformly across the newly developed cortex. Spontaneous cortical
activity in large neuronal ensembles directly facilitates the emergence of the
brain’s functional synergistic structure. Recording this activity provides a
natural test-bed to study the self-organization of higher-order dependencies
in thebrain. In this paper,weuse information theory to assess the emergence
of a “synergistic scaffold” in the functional architecture of the brain from the
late fetal period to one month after term age.

We hypothesized that synergy emerges in spatially resolved sequences
during the early development of the brain, and, moreover, that the emer-
gence of a consolidated “synergistic scaffold” links to later neurocognitive
performance at individual level. To test this, we used a recently proposed
measure of higher-order structure in complex systems: the O-Information
(Ω)20. The O-information can assess whether the statistical structure of a
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complex system, such as global EEG activity, is synergy-dominated (i.e., the
collective whole contains information that is irreducible to smaller collec-
tions of parts) or redundancy-dominated (i.e., the collective whole can be
compressed or simplified by pruning duplicated information). For a given
multivariate system X, if Ω(X) < 0, then the system is synergy dominated,
and ifΩ(X) > 0, then the system is redundancy dominated. In this study, we
determined the level and topographic distribution of O-information during
early development of spontaneous cortical activity in newborn infants. First,
we estimated the O-information across the whole brain to assess global
information structure in the EEG. Second, we extracted maximally syner-
gistic subsystems to identify regional subsets with the highest synergy. This
yielded spatially resolved tracking of the emerging synergistic subsystems in
fine-grained detail, which could then be compared to functional hierarchies
and later neurocognitive development.

Results
We collected 124-channel sleep EEG recordings from 136 preterm infants
(born at 31 ± 2.4 weeks gestational age) longitudinally during the third
trimester, between 33 and 45 postnatal weeks (see Supplementary Fig. S1).
Next, 5-min-long epochs of quiet (N = 289) and active (N = 301) sleep were
classified, source reconstructed into 58 cortical parcels using an infant head
model, and filtered into four frequency bands of interest: delta (1.5–4Hz),
theta (4–8Hz), alpha (8–13Hz), and beta (13–22Hz). Cortical signals were
used to compute O-information that reflects the balance between synergy
and redundancy in the system. For each recording we also identified the
subset of regions which comprise the most synergy in the brain (synergistic
scaffolds). These data were used to study the developmental changes of the
global O-information and the build-up of the synergistic scaffold. To define
the link to neurodevelopment, we correlated the levels of synergy in the
brain around term age to Bayley cognitive scores of the same infants at
18 months. Finally, we split the general group into two clinical subgroups:
standard care (SC, N = 62) and family nurture intervention (FNI, N = 74)
infants to compare their developmental trajectories in terms of synergistic
organization of the brain. For these groups we also compared the functional
maturation of cortical regions over the same period.

Synergy in the brain increases during early maturation
We found that O-information becomes increasingly negative with age at all
studied frequency bands in quiet sleep (Fig. 1A; ρ <−0.42, pFDR< 0.001,
Spearman test), indicating a transition from a redundancy-dominated to a
synergy-dominated structure. The effect size was the strongest at higher
frequencies (alpha, 8–13Hz, ρ=−0.57; and beta, 13–22Hz, ρ=−0.59).
These preterm infants, when assessed at postconceptional ages less than term
age, showed high positive O-information values suggesting a prevalence of
redundancy-dominated dynamics, while the O-information levels shifted
towards zero and even became negative around term age. Analysis of active
sleep EEG also revealed similar robust trends across all frequencies (Sup-
plementary Fig. S2; ρ <−0.31, pFDR< 0.001). Once again reflecting
increasing presence of synergy, and the transformation of the brain into a
more synergy-dominated system. These results are similar to prior works
demonstrating changes in connectivity networks in the preterm brain during
early development21,22, and future work focused on assessing the underlying
common drivers of these changes is warranted. Assessing the strength (O-
information) of the most synergistic ensembles of brain regions, across all
possible subsystem sizes (i.e., the number of brain regions in an ensemble), in
individual infants (Fig. 1B, top row) revealed systematic increases in negative
O-information across all temporal scales as a function of age. At the same
time, the number of brain regions in the optimal system (or “synergistic
subsystem”) grew at an accelerated pace near term age (Fig. 1B, bottom row).
In Fig. 1B, this is represented by the global minima of the curves drifting
down and to the right, indicating lower optimal O-information (more
synergy-dominance) and larger systems sizes. We also found that expansion
of the “synergistic subsystem” across the whole cortex and increase of the
overall synergy are two highly correlated signatures of early brain develop-
ment (Fig. 1C; ρ <−0.65, pFDR< 0.001 for all, Spearman test).

The synergistic scaffold expands sequentially from the frontal to
other brain regions
Next, we analyzed the early development of the spatial configuration of the
“synergistic scaffold” by comparing nodal participation frequency in three
age groups: early preterm (33–36 weeks), late preterm (37–40 weeks), and
after normal full term age (40–43weeks). Thesemaps indicate participation
frequency of the given cortical region (or “node”) in the synergistic scaffold
(Fig. 2). We used binomial statistics to test whether nodes belonging to
distinct anatomical regions (frontal, central, occipital, or temporal) were
significantly overrepresented in each scaffold. Specifically, we compared the
observed frequency of nodes from each category in the scaffold to their
expected probability at the group level. In the early preterm infants (Fig. 2,
top row), the synergistic scaffold was dominated by a symmetric frontal
cluster (p < 0.0001, for all frequencies), and a markedly less prominent
occipital cluster that was robustly present only at beta frequencies
(13–22Hz; p = 0.01). In comparison, the late preterm group showed spatial
expansion and an increase in participation frequency across subjects for the
frontal (p < 0.0001) and occipital (p ≤ 0.04) clusters in a whole frequency
range (Fig. 2, middle row). In the after-term age group, the synergistic
scaffold had expanded considerably to include the central cortical areas as
well (Fig. 2, bottomrow).However,while nodes of fronto-occipital axiswere
robustly present in the scaffold at all frequencies (p < 0.0001), the presence
of other regions were less consistent yet (not significant on the group level).
Overall, this sequential recruitment of cortical areas is consistentwith recent
studies in adults that found that high-synergy systems tended to straddle
multiple canonical functional networks7,19. Unthresholded maps of the
developmental changes in the synergistic scaffold are shown in Supple-
mentary Fig. S3.

Newborn brain synergy precedes long-term neurocognitive
development
We then asked if the level of synergy at the time of normal birth has
neurodevelopmental implications. To this end, we correlated O-information
metrics taken around term age (38–42 weeks) with later neurocognitive
performance assessed at 18 months using standardized Bayley Scales
(available forN= 41 subjects23,24). We used the Bayley Cognitive Scale, which
assesses early cognitive skills such as attention, memory, problem-solving,
and sensory processing (see section ‘Association with neurodevelopment’ for
more details). Three subjects out of this sample had two recordings corre-
sponding to this period, thus for them we used mean O-information values.
The later neurocognition was robustly correlated to the individual
O-information levels across the whole frequency range of interest (Fig. 3A;
ρ <−0.41, pFDR< 0.008). These correlations were not affected after
regressing age at EEG recording from the O-information values (see bottom
row on Fig. 3A). Other characteristics of synergistic subsystems were also
linked to later neurocognitive development. The minimum O-information
showed negative correlation with later performance (Fig. 3B, top row;
ρ <−0.32, pFDR< 0.039), suggesting that the early emergence of synergistic
structures may promote cognitive development. Similarly, the number
of brain regions in the optimal synergistic subsystem was strongly
correlated with better cognitive performance (Fig. 3B, bottom row; ρ≥ 0.46,
pFDR< 0.002), suggesting that later cognitive developmentmay benefit from
including wider brain areas in the synergistic whole. Taken together, our
results suggest that the level of overall synergistic cortical activity during quiet
sleep, as well as its spatial expansion over the cortex strongly reflect an
individual’s capacity for neurocognitive development. During active sleep,
O-information also negatively correlated to cognitive scores but did not
reach statistical significance (−0.25 < ρ <−0.18, 0.11 < p < 0.23, for all
frequencies).

Environmental enrichment modulates early developmental tra-
jectories of brain synergy
Intertwined with the genetically predefined schedules of brain
development25,26, there is growing evidence that early activity-dependent
brain development can be substantially affected by environmental

https://doi.org/10.1038/s42003-025-08082-z Article

Communications Biology |           (2025) 8:743 2

www.nature.com/commsbio


factors16,18,27–30. These “acquired effects” range from major medical adver-
sities like pretermbirth or perinatal asphyxia31–34 tomore subtle issues29,35–37.
Recent preclinical and clinical studieshave suggested that various changes in
an infants’ living environment (“environmental enrichments”)may support
improved neurodevelopment at many levels of inspection from the cellular
level38 to brain networks22,39,40, brain structure41, and many aspects of later
neurobehavioural outcomes24,42. Therefore, we assessed whether the early
emergence of synergistic brain activity could be affected by the living
environment. To this end, we took advantage of having two subgroups in
ourdataset: half of the infants hadbeen treated according toall the evidence-

based guidelines of preterm care (standard care group, SC); the other half
was assigned to a group that received additional intervention during their
stay in the neonatal intensive care unit to facilitate emotional parent-infant
connection (Family Nurture Intervention, FNI;43, which is considered to be
biologically relevant, and also a natural part of an optimal nursing
practice43–46.

The developmental trajectories of O-information, computed using
two-weeks-wide sliding time windows with 50% overlap, were clearly dif-
ferent between these subgroups (Wilcoxon rank-sum test; Fig. 4A). The SC
infants showed a bi-phasic trajectory with an initial plateau (corresponding
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Fig. 1 | Emergence of synergistic brain during the three months around birth.
A The global values of the O-information become significantly more negative at all
inspected oscillatory frequencies (Spearman) pointing to emerging synergy towards
full term (FT) age. B Relationship between optimally synergistic O-information and
the subsystem size (i.e., number of included brain regions) in individual infants (top
row) and in averaged age groups (bottom row), colored for the infant’s age at EEG
recording. The dots in the bottom plots depict the minimum of O-information
curves that reflects the size of subsystems with maximum synergy in the given age
group (the optimal “synergistic subsystem”). Note, the systematic growth of the
synergistic subsystem with age at all frequencies (optimal system size vs. age:

ρ > 0.44, p < 0.001, Spearman), with particularly rapid changes around term age.
The glass brain shows all cortical regions (full system) that are color coded
according to their anatomical location: frontal (orange), central (magenta), tem-
poral (green), and occipital (black). To find the individual synergistic scaffolds, all
possible subsets of nodes (from 3 to 57) were tested. C Relationship (Spearman)
between O-information levels and the size of the maximally synergistic subsystem
in individual EEG (computed from the curves on the top row in (B); colors code the
age at recording). Developmental expansion of the synergistic subsystem and
increase of its synergistic capacity are highly correlated (the brain becomes more
complex).
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to amaximum of redundancy) until near term age (≈38 weeks) followed by
an abrupt transition towards greater synergy, whereas the FNI infants
showed a steady increase in synergy (i.e. decrease of O-information). The
groups were consistently different across all frequencies at two time points:
35weeks (FNI > SC; p < 0.051 for all); and 38weeks (FNI < SC; p < 0.033 for
all) with the strongest effect in the theta band (4–8Hz; p = 0.007, effect size
r = 0.49). The neighboring age bins showed concordant though less sig-
nificantdifferences (FNI > SCatweek34 for 4–13HzandFNI < SCatweeks
39–40 for 4–22Hz; p < 0.1 for all). Validation analysis using active sleep
epochs (N = 301) showed similar trajectories, with group differences
appearing at the same time points (see Supplementary Fig. S4). However,
these group differences did not pass conservative Benjamini–Hochberg
FDR correction for multiple comparisons (4 frequencies × 9 time
points × 2 sleep states = 72 tests). The O-informationminima (Fig. 4B) was
lower in the SC infants (p < 0.1) at 35 weeks in theta (4–8Hz) and beta
(13–22Hz) bands, whereas at 38 weeks it became more negative for FNI
(4–22Hz; p < 0.07, pFDR < 0.14, effect size 0.32 < r < 0.46). In turn, the
optimal system size (Fig. 4C) at 35 weeks was larger in the SC group across
the full bandwidth (p < 0.1), and most prominently in the alpha-beta band
(8–22Hz; p < 0.016, pFDR = 0.036 for both, effect size r ≥ 0.29), but at
38 weeks it changed to opposite (p < 0.034, pFDR < 0.054, effect size
0.38 < r < 0.44) except in the alpha band (8–13Hz). Overall, these findings
suggest that the synergistic scaffold in the brains of FNI infants develops
more dynamically, yet steadily, before reaching term age. The cumulative
effect of environmental enrichment intervention more likely causes the
most prominent group difference just prior normal birth.

We thenwanted tounderstandwhether the environmental effects on the
synergy development is reflected at the level of local maturation of neuronal

activity, as assessed by independent, machine learning-based estimates of the
functional brain age (FBA47) at each cortical parcel. There were significant,
region-specific groupdifferences (Wilcoxon rank-sum test) in thematuration
of cortical neuronal activity (Fig. 4D). The group difference (SC > FNI) was
first seen in the frontal regions (35weeks; p = 0.007); it expanded to thewhole
cortex before term age (37 weeks; p < 0.07), followed by frontal and occipital
groupdifferences at around termage (38weeks; p < 0.05).At termage, groups
didnotdifferuntilweek42whenSC infants showedhigherFBAin frontal and
central regions (p < 0.1). FBA group differences did not reach the significance
threshold (pFDR< 0.05) after Benjamini–Hochberg correction for multiple
comparisons (4 regions × 9 time points = 36 tests).

Taken together, the environmental enrichment appears to cause co-
directional changes in the developmental trajectories of both the local
neuronal activity (FBA) and the system-wide synergy (O-information),with
the most prominent manifestation in the frontal regions (see also Fig. 2).

Discussion
Our results indicate that system-level organization of the infant brain is
characterized by an early, region-specific shift from a functional structure
dominated by redundant interactions to one dominated by synergistic
interactions. Synergistic structure first emerges in the frontal lobe before
spreading over other cortical areas in a specific spatiotemporal sequence,
and this developmental trajectory can bemodified by simple environmental
modulations. The neurodevelopmental implication of redundancy/synergy
balance was demonstrated by its significant correlation to later emerging
neurocognitive functions.

The recent work in neuroscience on synergistic information in the
brain builds on a historical body of work on self-organization in complex

Fig. 2 | Early spatial development of the synergistic
scaffold at different frequency bands. The ball size
indicates participation frequency, of each cortical
region (“node”) in the optimally synergistic
ensembles (collectively forming the “synergistic
scaffold”) in different age groups (rows), and at
different frequency bands (columns). For each
infant, maximally synergistic subsets of the whole
brain were discovered using simulated annealing122,
with the negative O-information as the objective
function (for details see “Materials and methods”).
Running the optimizer a large number of times
reveals a landscape of non-identical, but over-
lapping, synergistic ensembles, which recruit brain
regions from different areas at distinct periods of
development, so we extracted the number of times
each node was selected across all trials of all infants,
and visualize125 those that appear in > 40% of
optimal sets. Note the early prominence of frontal
synergistic scaffold, the incremental recruitment of
the occipital regions, and the late-appearing parti-
cipation of the central regions. The colors indicate
the anatomical affiliation in different cortical
regions: frontal (orange), central (purple), temporal
(green), and occipital (black).
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systems. Kelso described “synergies” as forming “atomic” components of
complex systems48: basic units of function that emerge from the coordinated
activity of multiple parts that nevertheless show a kind of “irreducible”
behavior. The highly synergistic sub-systems identified by simulated
annealing heremight correspond to such “atomic” components of the larger
synergistic scaffold. In this historical context, these kinds of synergies have
typically been studied in the context of motor control49,50 and are distinct
formally from the information-theoretic notions presented here, repre-
senting an alternative approach to the fundamental notion of an emergent
whole that is greater than the sum of its constituent parts. Future work will
focus on reconciling the diverse approaches to synergy that have been

explored in complex systems science and deepen our understanding of how
complex “wholes” emerge from the interaction of many “parts.”

Prior work has established the presence of synergy in human fMRI
data2,7,19, and that the distribution of redundancies and synergies can change
gradually during aging5, or more rapidly due to changes in the level of
consciousness51,52. Furthermore, neuroimaging studies have shown that the
cortical areas with the richest synergistic information dynamics are asso-
ciated with a variety of high-level cognitive processes and the expression of
human-accelerated genes compared to non-human primates2. Collectively,
these results provide strong evidence that synergistic information is related
to complex, higher-order cognition. The mechanistic relationship between
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Fig. 3 | Synergy-dominated organization of the maturing brain associates with
better neurodevelopment. A Correlation of the global O-information in the new-
born brain and cognitive performance at 18 months of age. The upper panel shows
the original values, whereas the lower one presents values after regressing age at EEG.
B Both properties of the optimal sub-system: minimumO-information (upper row)
and optimal sub-system size (lower row) correlate with future cognitive develop-
ment. Colors of the dots cross-link two properties (minimum O-information to

optimal system size and vice versa). Overall, larger synergistic structures with higher
level of synergy (more negative values of O-information minima) together were
associated with better outcomes across all frequency bands. All EEG measures were
taken from recordings near term age (38–42 weeks). The correlation analyses were
done using Spearman test, and significance estimates are corrected post hoc for
multiple comparisons.
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synergy and cognition is still mysterious, however, as prior work has either
been in in silico models (as in refs. 52,53) or in adults who have undergone
extreme alterations to brain function, such as reversible anesthesia or dis-
orders of consciousness following brain injury51. Our present work showed
that synergy during sleep is significantly associated with later cognitive
performance. This finding adds significantly to the prior literature, since it
shows that meaningful neurocognitive correlates of synergy can be seen
even in the sleeping brain at an ontogenetic stage prior to genuine cognitive
performance. Moreover, the present findings suggest that synergy during
pre-cognitive sleepmay evenpredict the later neurodevelopmental potential
of the brain; i.e., an ability to generate and maintain higher-order synergies

at a very early time in ontogenesis may support the developmental emer-
gence of complex cognition later in life. This extends substantially the prior
work that has shown acute correlations between synergy and level of
consciousness51,52 or age5 in the short term, but has not shown a predictive
relationship between information and cognition that extends over longer
periods of time. This is consistent with work on artificial neural networks,
where the synergy in individual “neurons” facilitates the capacity of the
system to engage inmultitasking andother integrative behaviors53 (although
analogies between artificial neural networks and human babies should be
made with caution). Similarly, the finding that environmental enrichment
early in life modulates the development of the synergistic structure suggests
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of neuronal activity. A Developmental trajectories in the global synergy (O-
information) in the SC (gray) and FNI (dark red) groups at different frequency
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developmental trajectories: FNI shows steady decrease, whereas SC is characterized
by an initial “plateau” until a rapid decline occurs after about 38weeks of age to reach
the levels comparable to the FNI group. B Comparison of SC and FNI groups for
O-informationminima across different frequencies at the two time pointsmarked in
(A) (left, 35 weeks; right, 38 weeks). C Comparison of the optimal synergistic sub-
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that the presence (or absence) of synergy is at least partially mediated by
complex multisensory experiences. Given this fact, as well as the afore-
mentioned work linking a reduction in synergy to the loss of consciousness
following anesthesia or traumatic brain injury51, our results also raise
questions about the subjective nature of infant experience, and how itmight
change over the course of early development. The question of infant con-
sciousness, or “what is it like to be an infant” is a philosophically complex
one, made all the more puzzling because everyone was once an infant, but
generally cannot recall any autobiographical details of the experience (if
there is one)54. Given the emerging literature suggesting that altered states of
consciousness are associated with diverse changes to the informa-
tion structure of brain activity, including changes to the complexity of brain
activity writ large55, we tentatively propose that the change from synchro-
nized, redundancy-dominated dynamics to higher-order, synergy-
dominated dynamics may be reflected in changes to the phenomen-
ological quality of infant consciousness over development, although the
exact nature of this relationship remains mysterious and is an area for
further study.

Synergy may provide a fundamental mechanism that supports com-
plex, higher brain functions characteristic of human behavior. Many higher
neurobehavioural abilities in humans need efficient synergy to support
communication within and between brain regions. The cellular under-
pinnings are characterized at all levels of neuronal communication, from
synapses and cell types to different spatial scales in neuronal networks56. In
the context of the present findings, neuronal networks are likely the most
fruitful level of explanation: At the microscale, comparisons to species that
are phylogenetically more distant, such as rodents, indicate that the vast
expansion of the human cortex comes with an evolutionary emergence of
much denser interneuronal circuitry57 to facilitate local information pro-
cessing.At themesoscale level, pyramidal neurons in thehumancortexhave
evolved, exhibiting increased synaptic connectivity and many other unique
input-output integration properties56,58, which together improve informa-
tion processing across cortico-cortical circuitries.

At the macroscale level, which is directly comparable to our present
results, evolution of cortico-cortical network organization59,60 appears to be
characterized by tuning the quality more than the quantity of connections.
Despite larger brain size and higher anatomic variability in the human
brain61, there appears to be a wider optimization of connection strengths
(“weights”) that supports efficient macroscale information transfer62,63. The
early growth and organization of human neuronal networks is characterized
by a prominent temporal overlap and prolongation of phases that would be
temporally far more distinct in most other species56,61,64. Such gradual net-
work development provides an ideal framework for an activity- and
experience-dependent development of macroscale synergy, i.e., a change in
the functional network characteristics that needs rapid optimization of the
connection strengths in the newly developed cortico-cortical networks.
Moreover, this rationale would offer a mechanistic explanation for the
finding that environmental enrichment may modulate the trajectories in
synergy development: While the initial growth of neuronal connections is
supported by the genetic code and endogenous neural activity15,18,26, the
following global organization including synergy in the neuronal networks is
guided by neural activity that is sensitive to environmental and other
acquired effects16,32,33,42. The frontal lead in the emergence of functional
synergy may be somewhat counterintuitive with respect to the general
frontal delay in brain maturation65–68. However, the existing literature is
mainly based on structural measures whereas synergy in network activity
characterizes informational signatures of macroscale interaction between
neuronal ensembles: changes in the frontal region here reflect changes in the
interactions between frontal neurons and potentially the rest of the brain.
Recent studies have, indeed, highlighted the developmentally and func-
tionallyhierarchical brainorganization,with clear gradientsbetween sensory
and association areas69–72. The sensory areas develop to process information
from inputs specific to the respective sensory modality that are only later
communicated to higher order systems during postnatal life. In contrast,
development of association areas, especially the frontal regions, is largely

characterized by optimizing information processing in the global cortico-
cortical networks. Thus, emergence of macroscale synergy is inherently
linked to early development of cortico-cortical circuitries in association
areas, whereas corresponding synergy emerges much later in the sensory
cortical areas.

The observed frequency dependence in the developing synergistic
system aligns with a dynamic theory which combines prevailing general and
infant-specific models of cortical activity. Due to the strong inverse rela-
tionship between spatial and oscillatory frequencies73, the lower-frequency
cortical activity arises from a larger spatial area, making the expected size of
the optimal system smaller and more redundancy-dominated. Meanwhile,
the hallmark of early cortical activity is an intermittent multifrequency
bursting that gradually fades away after term age, while the continuous
spontaneous EEG activity increases gradually and fully replaces the bursty
patterns18,74,75. These early EEG bursts are dominated by low-frequency
activity76 and are thought to provide temporal windows for interactions
between spatially constrained and functionally more specific cortical areas
across frequencies77,78. As the infant develops closer to termage: i) the slowest
waveforms are replaced by more rapid delta frequencies, ii) the higher fre-
quency activity nested in the bursts will exhibit faster oscillations, and iii) the
cortico-cortical interactions become more specific to reflect an increasing
arealization. All these changes together converge in the link between low-
ering O-information in older infants and higher EEG frequencies.

The frontal lead in synergy development is also intriguingly compatible
with our observation that the trajectories of synergy development are
modulated by environmental enrichments (FNI group). Recent studies have
established that human brain shows particularly protracted developmental
time spans across many level79: The anatomical studies from the months
around birth indicate several months-long coexistence of overlapping
macroscale connectivity80, whereas many synaptic characteristics65,81,82 or
molecular expression profiles81,83 show a strong neoteny persisting until late
childhood. Such a protracted and gradual development renders the system
modifiable or able to learn through the well-established activity-dependent
process; however, it also makes the developing brain subject to environ-
mental effects, such as perturbations by medical adversities. Here, we pos-
tulate that the trajectory of synergydevelopment in the FNI group represents
the natural course as it would happen in utero. Conversely, the biphasic
trajectory in the SC group reflects an initial slowing down of synergy
development by the prematurity-related medical adversities32, followed by a
rapid catch-up near-term age. Intriguingly, a transient developmental FNI
effect was also seen in the independent maturation measure (FBA) of the
local neuronal activity. Our current FBA results are in linewith the literature
suggesting that premature birth may lead to an apparent accelerated
maturation of newborn brain activity84,85 and structural brain development
in later life86,87. Moreover, other works on the newborns have shown that
prematurity also leads to persistent changes in large-scale functional cortico-
cortical networks31,74,88–90, which may be substantially reduced by environ-
mental enrichment22. It is important in this context, however, that early
neurodevelopmental cascades are too complex to assume a direct link from
faster changing single measures to better neurodevelopmental outcomes.
Instead, the biologically optimal development is best characterized by
charting the typical developmental trajectory of each measure indepen-
dently, and thereby, any deviance from this normal trajectory implies an
altered development. The systems-level developmental cascades of these
neuronal mechanisms call for future studies with cross-species translatable
measures, such as the O-information used in our present work.

Our present results and prior studies together suggest that environ-
mental effects may substantially modulate the early organization of func-
tional brain networks. Both the early development of cortico-cortical
network activity and the emergence of brain synergy build on co-
stabilization of the long-range axonal conduction via myelination91,92 and
the local synaptic transmission82. Experimental studies have indicated these
factors in recovery frombrain injury93,94, learning anddevelopment92, aswell
as in the brain response to early environmental enrichment
interventions95,96. While it appears widely accepted that very early
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environmental modulation, or nurturing, can improve later
neurodevelopment97, understanding the underlying neuronal mechanisms
needs substantially more systematic and translational work, preferably in
phylogenetically aligned animal models.

Our study has some limitations. The EEG dataset comes from a
clinical trial that was powered to show trial-related effects, and here we
used all available EEG data without an a priori sample size calculation.
However, the many significant and biologically sound findings in our
exploratory study support a notion that our sample size was adequate for
seeing many key effects. We cannot exclude the possibility that further
findings could be found with even larger samples, which, however, are very
rare in the human neonatal research worldwide. The data analyses inclu-
ded 5minutes of artifact-free high-density state-specific infant EEG, and
more data would always be desirable. Obtaining more quality EEG signal
from all cohort subjects is very challenging in the human infants, and
therefore most research to date is performed with much less data. How-
ever, prior studies have shown that this data length is already sufficient to
provide reliable and stable estimates from the cortical network activities22,31.
Moreover, we also validated many key findings by using EEG epochs from
two different sleep states (active sleep and quiet sleep), providing a total of
10min EEG data from two different vigilance states. Another limitation is
the comparatively small number of cortical regions included in our ana-
lysis, and the lack of good subcortical coverage. Consequently, these results
show only a partial picture of the global organization of higher-order
information in the developing brain. The fact that we used data from
sleeping infants is a significant departure from previous work on synergy
and brains2,51,52, which typically compares normal, wakeful rest against
altered states such as anesthesia, brain injury, or aging, or over the course of
aging5,98. This makes direct comparison with our results non-trivial,
although increasing the diversity of data types and experimental frame-
works will help us better understand the role that synergistic information
plays in many facets of neural activity.

There are also limitations inherent in the use of Gaussian estimators of
the O-information, as applied to EEG data, which is typically non-normally
distributed and may not be consistently stationary. Gaussian estimators
were chosen for several reasons: the first is consistency with prior studies of
synergy in brain data (e.g., refs. 2,19,51). The second is to avoid discretizing
continuous data, whichwould result in amassive loss of information, aswell
as introducing bias/variance trade-offs associated with discrete entropy
estimators99. The third was because the simulated annealing optimization
requires a large number of very rapid estimates of theO-information, which
rules out non-parametric estimators based onK-nearest neighborsmethods
such as the Kozachenk-Leonenko entropy estimator100,101 or the Kraskov
mutual information estimator102. Future developments in non-parametric
entropy and information estimators will improve our capacity to detect
non-linear, higher-order structures in electrophysiological brain data.

Finally, it is worth reflecting on the implications of these and other
results that use higher-order information theory to explore brain activity.
The standard approaches based on single regions, or pairwise region-to-
region interactions (commonlyused innetworkmodels) capture only a very
small subset of all possible dependencies that co-exist and interact in the
brain. Our present approachwith a very dense scalp EEG recording allowed
assessment of approximately 3 thousand possible directed interactions,
which is at the physical limits of spatial resolution available in studying
neuronal activity in human infants31. If we consider the possibility of higher-
order synergies up to the 5th order, then the total number of possible
dependencies expands toapproximately 7million interactions.Thenetwork
then represents only 0.0005% of the possible structure of the system
(stopping at 5th order interactions; we can, of course, go higher). This
“shadow structure”7,19 represents a vast space of largely unexplored struc-
tured brain activity. Our results here show that this space contains patterns
of multivariate information that are associated with, and possibly promote,
specific aspects of human development, cognition, and parent-child inter-
actions. Futurework exploring this higher-order spacemay yet yield further,
fruitful insights into the nature of brain, mind, and behavior.

Methods
Subjects and background information
We analyzed EEG dataset from N = 136 preterm infants (born at
31 ± 2.4 weeks; mean ± std) that was collected during the Family Nurture
Intervention (FNI) randomized controlled trial (#NCT01439269 in Clin-
icalTrials.gov) in Morgan Stanley Children’s Hospital of New York at the
ColumbiaUniversityMedical Center43. The general dataset consisted of two
subgroups: standard care infants (SC; N = 62, born 30.9 ± 2.5 weeks), and
those who additionally underwent intervention aimed to facilitate mother-
infant emotional connection (FNI; N = 74, born 31.2 ± 2.3 weeks). Sub-
groups showedno difference in the age of birth (p = 0.8,Wilcoxon ranksum
test). Review Board at Columbia University Medical Center (NY, USA)
approved study and recruitment procedures. Written consents were
obtained from mothers before the start of the intervention. The detailed
description of the FNI protocol was published previously43,103,104. In brief,
intervention for FNI infants started in average one week after delivery and
the frequency of the sessions was 3–4 times per week during the period of
hospitalization under supervision of nurture specialist. Each session lasted
about one hour, during which mothers had skin-to-skin contact with their
babies, exchanged scent cloths, touched them, were making eye contact as
much as possible, and spoke about their feelings. EEG recordings from FNI
subjects were done not during the contact sessions, but at separately
designated times. Importantly, FNI activities were provided in addition to
the standard care protocol, which was applied to all subjects in both groups.
In turn, SCwasmainly focused on themaintenance of infant temperature in
isolette, oxygen and nutrition support, prevention and treatment of infec-
tions, and parent education about temperature checking, breast feeding,
bathing, diaper change, cardiopulmonary resuscitation43.

EEG recordings
EEG data was collected longitudinally between weeks 33 and 45 of con-
ceptual age during daytime sleep using 128-channel system Electrical
Geodesics system. (EGI, Inc., Eugene, Oregon). EEG electrodes were
sponges soaked with physiological saline. After consultation with the
manufacturer, we also covered the electrode net with plastic wrap to avoid
the evaporationof the saline and to archive good electrode-scalp contact and
then also with special elastic material (“Surgilast”). Each session lasted for
about one hour and covered at least one full sleep cycle comprising periods
of active andquiet sleep105. Four facial electrodeswere excluded from further
analysis leading to final 124 EEGchannels per infant. During the recordings
the impedance of EEG electrodes was kept below 50 kiloohms. Original
recordings were done using vertex electrode as a reference, with a sampling
rate Fs = 1 kHz, and using band-pass filter 0.1–400Hz. After the recording,
all data were re-referenced to average montage.

EEG pre-processing
First, we identified periods of stable quiet sleep (precursor of non-rapid eye
movement sleep) from the whole recording using conventional criteria106.
We opted to use quiet sleep in all the analyses because EEG during this state
is phenomenologically more discriminative: it has discontinuous structure
comprising bursts of activity and in-between silent intervals74,75. Moreover,
quiet sleep EEG epochs are technically more stable: they contain less elec-
tromyographic and electrooculographic artifacts as well as noise associated
withmovement.However, for cross-validation of some key analyses we also
classified the epochs of active sleep (precursor of rapid eyemovement sleep)
which is characterized by more continuous EEG signals. Next, all selected
epochs were visually reviewed to identify prominent artifacts such as bad or
absence of skin-electrode contact, presence of electromyogram, and cable
movement. Further we applied independent component analysis (ICA) to
check for the presence of electrocardiographic artifact in every recording
and removed it where it was detected. ICAwas also used to check and clean
rare artifacts caused by interference of other medical devices in neonatal
intensive care unit. For the analysis we selected 5minutes of artifact-free
EEG (separately during quiet and active sleep) by combining ten equidistant
30-second-long windows across the whole available recording of each
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specific state. That was done to overcome variability in available EEG
lengths across different subjects and to obtain representative epochs that
characterize the whole period of each sleep state. Channels that were bad
across entire recording session were removed from further analysis
(9.4 ± 4.5 per subject; mean ± std). Our recent study showed that, for infant
recordings with high-density EEGnets, excluding this number of electrodes
does not significantly impact the reconstruction quality of the cortical parcel
signals107. The final dataset included N = 289 EEG recordings (from
N = 134 subjects) during quiet sleep and N = 301 EEG recordings (from
N = 135 subjects) during active sleep,which satisfiedbothquality and length
requirements: N = 30 infants with one recording, N = 51 with two record-
ings, N = 51 with three recordings, and N = 1 with four recordings. More
detailed information on the sample sizes and the times of EEG recordings
can be found in Supplementary Fig. S1. These recordings then were band-
pass filtered within frequency range 0.4–40 Hz and down sampled to
Fs = 100Hz.

Computation of cortical signals
Scalp-level EEG signals were reconstructed into cortical signals using three-
shell general infant head model9,108. The model included scalp, skull, and
intracranial volume boundaries approximated with 2562 vertices per
compartment and having conductivities 0.43 S/m, 0.2 S/m, and 1.79 S/m
respectively109–111. Source space was represented by 8014 dipoles with fixed
orientation and orthogonal to the cortical surface. To avoid the influence of
developmental changes and inter-individual variability in cortical geometry
onour results,weopted to project all EEGdata onto cortical template of full-
term infant which is about in the middle of the studied age range. Forward
operator was computed using symmetric boundary element method112.
Whereas, inverse operator was computed with dynamic statistical para-
metric mapping approach113 as it is implemented in Brainstorm114. All
sources were further collapsed into 58 cortical parcels using infant parcel-
lation scheme31. Next, based on their overlap with brain anatomical regions,
all parcels were categorized into frontal (N = 18), central (N = 18), occipital
(N = 14), and temporal (N = 8). Cortical signals were computed as the
weighted mean of all underlying source signals within the host parcels. To
compute functional brain age (see section below), we used broad-band
(0.4–40Hz) cortical signals.However, to studydevelopmental trajectories of
O-information measures, we further filtered cortical signals into four fre-
quency bands of interest: delta (1.5–4Hz), theta (4–8Hz), alpha (8–13Hz),
and beta (13–22Hz). All band-pass filtering in this work was implemented
by using combinations of high-pass and low-pass Butterworth filters with
the corresponding cut-offs. Filters were applied offline and in forward-
backward directions to avoid distortions of phases caused by infinite
impulse response filters. The attenuation in the stopband in one direction
was at least 15 dB.

Association with neurodevelopment
We correlated (Spearman test) O-information measures computed for
infant brain around term age (38–40 weeks) to Bayley scales (BSID-III)
cognitive scores23 assessed at 1.5 years of age. Bayley scales is themostwidely
used, standardized neuropsychological assessment, and it is often taken as
the norm in clinical research24. It consists of a larger test battery measuring
different subdomains of neurological and cognitive performance (cognition,
motor, language, social). In the present work, we studied the cognitive
domain only, because it reflects brain functions that aremost directly linked
to global interactions in the cortical activity, such as the O-information.
Specifically, the assessment of the cognitive score includes tasks that test
attention to familiar and unfamiliar objects, visual tracking, memory, pro-
blem-solving, and sensory processing abilities. Following the recommended
criteria115, we excluded subjects with moderate and severe neurodevelop-
mental delay (cognitive scores < 85) from this analysis. Initially, there were
N = 50 subjects with both EEG at this age and outcomes, butN = 9 of them
were excluded. There was no significant difference in O-information
between included into correlation analysis and excluded subjects (p > 0.11
for all frequencies; Wilcoxon rank-sum test). For subjects with two

recordings (N = 3) falling into the age range of interest, we used average of
their O-information indices. Consequently,N = 41 infants were included in
the correlation analysis. To exclude the impact of the developmental
changes, we also computed same correlations after regressing conceptional
ages from O-information measures (see Fig. 3A). Finally, we used
Benjamini–Hochberg procedure to control for multiple comparisons
(across four frequency bands).

Higher-order information analysis
To asses the emergence of higher-order, coordinated brain activity involving
multiple regions, we used measures from information theory116. When
considering how groups of three or more brain regions share information,
there is a distinction to be made between different kinds of higher-order
interaction117. Some information is stored redundantly: it is duplicated over
individual brain regions and so could be learned by observing Region 1 alone
or Region 2 alone or Regions 3 alone, and so on. The alternative is infor-
mation that is stored synergistically, in the joint-state of two or more regions.
This is information that can only be learned by knowing the state of Region 1
and Region 2 and Region 3, and so on. For a more detailed discussion of
redundancy, synergy, and logical implicature, see refs. 118,119. Synergistic
information requires a high degree of coordination betweenmultiple regions,
forming an integrated “whole” that is “greater than the sum of it’s parts”19.

To explore the distribution and redundancies across the developing
neonatal cortex, we used a recently proposed, information-theoretic mea-
sure: the O-information20. A heuristic measure, for amultivariate systemX,
the O-information of that system, Ω(X) reflects whether the information
structure of the system is redundancy-dominated (in which case,Ω(X) > 0)
or synergy-dominated (in which case,Ω(X) < 0).

For a more detailed, mathematical analysis of the O-information, see
the original proposal byRosas et al.20. Briefly, theO-information beginswith
a simpler measure that generalizes the bivariate Shannon mutual infor-
mation to arbitrarily large systems. Originally introduced by Watanabe as
the total correlation120 and then independently re-derived by Tononi,
Sporns, andEdelman as the integration121, the total correlation is definedby:

TCðXÞ ¼
XN

i¼1

HðXiÞ
 !

�HðXÞ ð1Þ

where N = ∣X∣, and H() is the Shannon entropy function. The total corre-
lation can be thought of as a measure of redundancy: TC(X) is maximal
when everyXi is a copy of every other variable. Varley et al. showed that the
O-information can be written in terms of sums and differences of total
correlations19:

ΩðXÞ ¼ ð2� NÞTCðXÞ þ
XN

i¼1

TCðX�iÞ: ð2Þ

Where X−i indicates the joint state of every element of X excluding Xi.
For instance, ifX = {X1,X2,X3,X4}, thenX

−2 = {X1,X3,X4}.Wecan intuitively
understandΩ(X) as quantifying the difference between the integration of the
“whole” and the integration the “parts.”The left-hand term, (2−N)TC(X) is
the integration of the whole X, duplicated (2−N) times (and is therefore a
large, negative number, as N is always greater than two in higher-order
interactions). The right-hand side,

PN
i¼1 TCðX�iÞ can be understood as

adding back in the integration of every lower-order ensemble that excludes
one element each time. If ð2� NÞTCðXÞ>PN

i¼1 TCðX�iÞ, then there is
integration in the whole that is not accounted for by the sum of the lower
order parts. This is whyΩ(X) < 0 is taken as a heuristic indicator of synergy.

Given the continuous nature of electrophysiological signals, we used
Gaussian estimators of the differential total correlation121:

TCðXÞ ¼ � ln jΣXj
2

ð3Þ
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where ∣ΣX∣ is the determinant of the covariance matrix of X. For every
recording, we computed global O-information and global total correlation
for the entire brain.

Simulated annealing to extract synergistic subsystems
Following Varley et al.19, we used a variant of the simulated annealing
algorithm122 to extract maximally synergistic ensembles of brain regions.
Briefly, given a fixed ensemble k brain regions, the simulated annealing
algorithm begins with a random set of k brain regions, and then swaps
regions in and out to minimize the objective function (in this case, the O-
information). Prior work in adult, human neuroimaging data has shown
that optimally synergistic O-information has a non-monotonic relationship
with k19. Consequently, we ran the optimization for every integer value of k
in the range 3–57.

Since O-information is a measure of redundancy/synergy bias, for a
given optimal ensemble of size k, it cannot be assumed that the k elements
are not “compromised” by the presence of redundancy. For example, one
could imagine that the annealing algorithm returns a set X* of five regions,
where three regions are highly synergistic amongst themselves, while the
other two regions are independent, or perhaps weakly redundant. Claiming
that theΩ(X*) represents a synergistic dependency betweenallfive elements
would be spurious. Following19, for every optimal bagX*, we used a filtering
algorithm: if the removal of any single element from X* decreases the O-
information, then we say that the setX* is not “irreducibly synergistic” and
removed it from our analysis.

Developmental trajectories
We produced developmental trajectories for infants’ subgroups (FNI and
SC) by computing mean values within 2-weeks-wide sliding windows with
50% overlap (Fig. 4A). These settings were selected as a compromise
between temporal resolution and the sample sizes. Further, clinical groups
were compared in each age bin using Wilcoxon rank-sum test. For the age
bins which showed consistent group differences inO-information across all
frequency bands (35 and 38 weeks), we also compared minima of
O-information and optimal subsystem size. The same approach was used
also for functional brain age courses (Fig. 4D). Effect size of the group
differences was estimated using rank-biserial correlation (r).

Computation of functional brain age
Functional brain age (FBA) was estimated based on the combination of
several features extracted from the 5-minute-long cortical signals. A total of
N = 43 features were extracted from the signals. These features were
designed to summarize the amplitude, frequency, and information content
of the brain signals; cross-channel/parcel measurements were removed as
regionally specific evaluation of FBAwas the aimof analysis47. Featureswere
estimated from each cortical signal and then averaged across all parcels
within an anatomical region (four regions were used: frontal, central,
temporal, and occipital). The 43 features per region were then combined
using support vector regression to calculate FBA estimate123. The combi-
nation was trained within a 10-fold cross validation, where approximately
90% of cortical signals were included in a training set, and 10% of cortical
signals were left out for testing. This process that was repeated 10 times until
all data had been tested.Due to the presence ofmultiple EEG recordings and
twins in the dataset, cross-validation selections were based on mother’s ID
number. Within each training fold, feature selection was applied using a
hybrid filter-wrapper approach to reduce the dimensionality of the input
feature vector124. As a first stage, only features with a significant correla-
tion with age (corrected for multiple comparisons; Benjamini–Hochberg
procedure)were selected (filter stage). The residual feature setwas applied to
a backwards feature selection as a second stage, with a stopping criterion
based on the Akaike Information Criterion evaluated on an internal 4-fold
cross-validation (wrapper stage). The SVR was trained using the Matlab
function fitrsvm.mwith amediumGaussian kernel (Kernel Scale = 9.8, box
constraint = IQR/1.349, ϵ = IQR/13.49 and IQR is the interquartile range

the input ages). The process of training the FBA was for each anatomical
region resulting in 4 FBAs per infant EEG recording.

Statistics and reproducibility
In this work, we used statistical tests as implemented in MATLAB 2021a.
Covariance matrices were computed from z-scored cortical signals. Cor-
relationswere assessed using Spearman’smethod.Group comparisonswere
performed using the Wilcoxon rank-sum test. To control for multiple
comparisons, we applied the Benjamini–Hochberg correction. To deter-
minewhether nodes from specific anatomical regions were overrepresented
in group-level synergistic scaffolds beyond chance, we used binomial sta-
tistics.More details on statistical analyses can be found in the corresponding
sections. See sections “Code availability” and “Data availability” for
reproducibility.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The EEG data analyzed in this work are available through a data sharing
agreement with Columbia University Medical Center (NY, USA). Data for
reproducing figures can be found in Supplementary Data.

Code availability
The MATLAB code for computing O-information is provided in Supple-
mentary Code 1, and the code for visualizing synergistic scaffolds is pro-
vided in Supplementary Code 2. TheMATLAB code for computing FBA is
available on GitHub: https://github.com/nstevensonUH/Neonatal-EEG-
Analysis.
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