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Structure of the complex of C1q-like 3
protein with adhesion-GPCR BAI3
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Yi Miao 1,2,7 , Haoqing Wang3, Kevin M. Jude 1,2,4, Jie Wang 1,7, Jinzhao Wang1,5,6,
Marius Wernig 5,6 & Thomas C. Südhof 1,2

The adhesion-GPCR Brain-specific Angiogenesis Inhibitor-3 (BAI3) plays a crucial role in organizing
synapses in the brain. However, how BAI3 engages one of its ligands, the C1q-like proteins (C1qls),
remains largely unexplored. Here, we present the single-particle cryo-electron microscopy (cryo-EM)
structure of the C1ql3-BAI3 complex at 2.8 Å resolution. The structure reveals a hexameric
configuration, where C1ql3 forms a central homotrimer that effectively captures three BAI3
molecules. These BAI3 molecules fit snugly into the grooves between the trimeric C1q
domains of the C1qls, employing calcium ion (Ca2+)-mediated interactions that differ from previously
characterized structures of C1q-like domain-mediated complexes. Furthermore, we conducted
mutant analysis and cell surface staining, which confirmed the essential contact residues involved in
this interaction. This unique binding mechanism not only enhances our understanding of the C1ql-
BAI3-mediated synaptic organization but also sheds light on the functional dynamics of BAI3 in
the brain.

BAIs are a family of adhesion-GPCRs comprising BAI1, BAI2 and BAI3
that are implicated in multiple developmental functions1–3. The function
of BAIs is thought to be mediated by their ligands, secreted C1qls and
GPI-anchored Reticulon-4 receptors (RTN4Rs, a.k.a. NoGo receptors)4–9.
The importance of C1ql-binding to BAIs in synaptic connections has
been revealed from C1ql1 and BAI3 deletion studies showing severely
reduced climbing-fiber synapse formation in the cerebellum4,5,8,9 and
dramatically impaired synapses formed by accessory olfactory nucleus
(AON) neurons onto olfactory bulb granule cells8. C1qls utilize the
globular trimeric C1q-like domain to engage BAI37, yet the mode of the
C1ql-BAI3 interaction has not been structurally resolved. Although
many mammalian proteins with diverse functions contain C1q-like
domains similar to those of C1qls, only a single C1q-like domain com-
plex structure with surface receptor has been structurally characterized.
This complex of the hexameric Cerebellin-1 (Cbln1) C1q-like domain
with dimeric N-terminal domain (NTD) of GluD210 serves as a paradigm
for C1q-like domain interactions, but if C1q-like domains engage other
partners in a similar manner is not known. C1qls are thought to form
large 18-meric assemblies11, suggesting a higher oligomeric state of the
complex and a potentially different interaction mode. We set out to
elucidate the atomic structure of BAI3 with C1qls.

Results and discussion
The extracellular sequence of BAI3 is composed of an NTD, four throm-
bospondin type-1 repeats, a hormone-binding domain (that doesn’t bind
hormones), and a GAIN domain12. We first confirmed that the BAI3 NTD
forms a stable complex with C1ql3 globular C1q-like domain as reported
earlier5 (Fig. 1a). We then determined the structure of the mouse C1ql3-
BAI3 NTD complex by single-particle cryoEM to a resolution of 2.8 Å
(Fig. 1b; Supplementary Fig. 1). At the core of the complex, three globular
C1q-like domains form a trimeric quaternary structure with four Ca2+-ions
bound at the trimeric symmetry axis consistent with structures of the iso-
lated C1q-like domain11 (Fig. 1b). Three BAI3 NTDs bind to the C1ql3
trimer (Fig. 1b). Each BAI3 NTD interacts with the C1ql3 trimer at a
composite interface between two C1ql3 molecules, creating a hetero-
hexamer (Fig. 1c).

Within the C1ql3-BAI3 interface (Fig. 1c; Supplementary Fig. 2a), one
C1ql3 copy establishes a Ca2+-mediated interaction with the BAI3 NTD.
Significantly, the Ca2+-ion is coordinated by both the C1ql3 C1q-like
domain and the BAI3 NTD. Asp180 and Asp232 of the C1q-like domain
direct the coordination of the Ca2+-ion, while Lys66 and Asp63 of the BAI3
NTD participate in the water-mediated coordination of the Ca2+-ion.
Although these water molecules are integral to the Ca2+-ion coordination,
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they were not visible in the electric potential map and so were not modeled.
Furthermore, C1ql3 Trp188, BAI3 Lys66, and BAI3 Tyr67 engage in a π-
stacking interaction that further stabilizes the complex. The secondC1q-like
domain in the binding interface also forms extensive interactions with the
BAI3 NTD, where C1ql3 Tyr244 and Asn242 engage in hydrogen bonds
with BAI3 Asp63, while C1ql3 Asn240 forms a hydrogen bond with BAI3

Glu60 (Fig. 1c). In summary, each BAI3 molecule forms a Ca2+-mediated
interface with the C1q-like domains of C1ql3 that is characterized by
extensive intermolecular interactions and spans a total of ~564 Å2.

The cryoEMstructure also allowedus to identify thedomain typeof the
BAI3 NTD. DALI searches13 uncovered top hits that were CUB domains
from various proteins, notably the CUB domain from the serine protease
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C1r of the complement activation C1 complex14 (Fig. 1d). Despite low
amino acid identities ranging from 8% to 19%, the root mean square
deviation (RMSD) values for the top ten hits ranged from only 1.9 to 3.2 Å.
Superposition of the BAI3 NTD onto the C1r CUB domain highlights a
conservedcore ofβ strands,with theprimarydistinctionbeing that theBAI3
NTD contains additional α helices outside the core β sheet that are not
usually present in CUB domains and that may mediate additional, as yet
unidentified interactions by the NTD. Alpha Fold15 predicted the core β
strands with high precision (Supplementary Fig. 2b) but failed to model the
extensive loop regions where Alpha Fold has a low prediction confidence.
Recently, the N-terminal CUB domain of another adhesion GPCR,
GPR126, has been shown to have a regulatory function in aGPCR
signaling16. While our structural studies do not provide insights into the
signaling potency of the BAI3CUBdomain, the binding of the ligandC1ql3
to this domain suggests that BAI3 NTDCUB domainmight have signaling
and/or regulatory function. It’s important to note that the GPR126 CUB
domain differs from the BAI3 CUB domain in size (~109 vs. ~170 amino
acids) and structure, lacking the additional α helices and loop regions pre-
sent in BAI3.

We sought to understand why BAI2 and BIA3 bind to C1ql, whereas
BAI1 does not, despite very similar sequences. To assess whether the NTDs
of BAI1 and BAI2 may adopt a similar structure as the BAI3 NTD and to
model their interactions with C1ql C1q-like domains, we aligned the NTD
sequences ofmouseBAI1, BAI2, andBAI3 (Supplementary Fig. 2c).Despite
sharing only ~30% sequence identity, the residues crucial for C1ql recog-
nition are conserved in BAI2 but not in BAI1. Since Alpha Fold predicts the
BAI3NTDcore structure reasonablywell, we furthermodeled the BAI1 and
BAI2 NTD into the C1ql3-BAI3 complex structure. Consistent with the
sequence alignment, BAI2 shows comparable binding to C1ql3 while BAI1
does not (Supplementary Fig. 2e, 2f). Notably, the Thr65Arg substitution
fromBAI3 to BAI1 results in steric clashes with the C1ql3 C1q-like domain
(Fig. 1e, f). Additionally, the Glu60Arg substitution in BAI1 disrupts the
hydrogen bond connection with C1ql3 Asn240. These results indicate that
all BAI NTDs adopt a similar conformation resembling CUB domains with
additional structural loop elements but that only BAI2 and BAI3, and not
BAI1 can bind C1qls. In contrast to the lack of conservation of the C1ql-
binding residues in BAI1 compared to BAI2 and BAI3, the BAI-binding
residues of C1ql3 are fully conserved in the three other C1ql isoforms
(C1ql1, C1ql2, and C1ql4; Supplementary Fig. 2d) consistent with earlier
studies7.

Next, we examined the evolution of BAI NTDs by aligning the BAI
NTD sequences from zebrafish, bovine, rat, mouse, and human (Sup-
plementary Fig. 2g). The C1ql-interacting loops were highly conserved
among BAI2 and BAI3 orthologs but key residues were consistently
substituted in BAI1 orthologs, specifically Glu60 and Thr65, indicating a
shared absence of BAI1 binding to C1qls across species (Supplementary
Fig. 2g). Additionally, the BAI2 NTD exhibited a conserved negatively
charged region not present in BAI1 and BAI3. In summary, the evolu-
tionary divergence of BAIs is consistent with their differential ligand
binding properties and functions.

To further characterize the binding of C1ql3 to BAI receptors, we
expressed BAI3 and BAI1 on the surface of HEK293T cells and performed
stainingwithC1ql3 (Supplementary Fig. 3a and Supplementary Fig. 4). Our
results confirm that C1ql3 binds to BAI3 but not to BAI1. A single residue

substitution of BAI3 Thr65 to Arg disrupts C1ql3 binding. However,
reversing the BAI1 loop to match BAI3 does not restore C1ql3 binding,
suggesting that overall domain folding and additional residues may also
influence binding. At the C1ql3-BAI3 interface, mutations of BAI3 residues
Lys66 andTyr67 toAla disruptC1ql3 binding.Conversely, singlemutations
of C1ql3, such as Asp190Ala or Tyr244Ala, retain binding to BAI3, while a
triple mutant (Asn240Ala, Asn242Ala and Tyr244Ala) disrupts this inter-
action (Supplementary Fig. 3b, c). Overall, these results indicate that specific
residues at both the BAI3 and C1ql3 interfaces are critical for their
interaction.

Finally, we aimed to understand whether C1q-like domains exhibit
differential recognitionmodes for its receptors. Todate, the structure of only
one C1q-like domain complex with a receptor has been reported, namely
that of the synaptic organizer Cbln1 with its receptor GluD210. Surprisingly,
despite the high structural homology between of C1ql3 and Cbln1, the
binding mode and binding stoichiometry of the BAI3 NTD to the C1ql3
C1q domain differs from that of the Cbln1 C1q-like domain to the GluD2
NTD (Fig. 2). The trimeric C1q-like domains of Cbln1 bind to one copy of
the GluD2 NTD, allowing hexameric Cbln1 to bind to the dimeric GluD2
NTD in a 3:1 stoichiometry (Fig. 2a). Additionally, the C1q trimeric C1q
domain has been structurally characterized with a nanobody and the Fc
region of IgG, both showing a 3:1 stoichiometry17,18. In contrast, the trimeric
C1q-like domains of C1ql3 bind to three copies of BAI3 in a 3:3 stoichio-
metry (Fig. 1b). Another striking difference betweenCbln1 andC1ql3 is the
involvement of Ca2+-ion. Four Ca2+-ions are present at the trimeric sym-
metry axis of C1ql3 (Fig. 1b), stabilizing the trimer as previous reported11.
Additionally, Ca2+-ions bound on the trimer surface directly contribute to
C1ql3-BAI3 interaction (Fig. 1c). Thus, the trimeric C1q-like domains of
Cbln1 and C1ql3 utilize different surface areas for binding to their targets,
GluD2 and BAI3.

In contrast to hexameric Cbln1, C1ql3 potentially forms an 18-mer
structure11, consisting of adimeric cysteine-rich region (CRR) and a trimeric
collagen-like domain, followed by a trimeric C1q domain. Given this
structural arrangement (Fig. 1b) and 2D classifications (Supplementary
Fig. 1a), we hypothesize that C1ql3 and BAI3 may form a hexagonal lattice
(Fig. 2b, c). This hexagonal lattice is proposed analogous to that observed for
the tumor necrosis factor (TNF) ligand and receptor families19. Overall, this
suggests that the synaptic organizers of the C1ql family have the potential to
assemble BAI aGPCRs at the synapse into larger clusters. Ligand-induced
oligomerization of BAI aGPCRs could play an important regulatory role in
GPCR signaling and may contribute to the mechanism by which C1ql3
supports synapse formation20. This offers new insights into the multi-
functional rolesofC1ql proteins in neuronal development.Wewould like to
emphasize that the concept of a hexagonal lattice remains a hypothesis.
Further investigations are needed to fully understand this intriguing ligand-
receptor pair.

In summary, we report the structure of the complex of the C1ql3 C1q-
like domain with the BAI3 NTD, demonstrating a previously not observed
geometry and binding interface for a C1q-like domain/receptor complex
and suggesting that C1q domains are versatile binding domains that may
have a panoply of functional interactions. Moreover, our findings indicate
that C1qls may cluster synaptic BAI adhesion-GPCRs, implying a specific
mechanism for C1qls as synaptic organizers and highlighting a novel aspect
of adhesion-GPCR function.

Fig. 1 | The atomic structure of BAI3 N-terminal domains bound to the C1q-like
domain trimers of C1ql3 reveals that BAI3 N-terminal domains represent an
atypical CUB domain that nestles into the asymmetric interfaces between two
C1q-like domains. a The isolated BAI3 NTD (residues 26–290) forms a tight
stoichiometric complex with the C1q-like domain trimer of C1ql3 (residues 122-
255), as monitored by size-exclusion chromatography (left) and Coomassie-stained
SDS-PAGE gels (right). b Overall structure of C1q-like domain trimer from C1ql3
(colored in different shades of orange) in a complex with BAI3 NTDs (cyan). Ca2+-
ions are shown as gray spheres, and selected N- and C-termini are identified.

cMolecular determinants of BAI3NTD (cyan) andC1ql3 C1q-like domain (orange)
interactions. Ca2+-ions are shown as gray spheres and interacting residues as sticks,
while hydrogen bonds or salt bridges are indicated by dashed gray lines. d Structure
superposition of the BAI3 NTD (cyan) with the C1R CUB domain (magenta; top hit
ranked by DALI search). e Structure superposition of mouse Alpha Fold predicted
BAI1 NTD (light magenta) to BAI3 NTD (cyan). f Detailed C1ql3-BAI NTD
interaction with Alpha Fold predicted BAI1 NTD (light magenta) superposed to
BAI3 NTD (cyan). T65 mutation from BAI3 to R78 in BAI1 leads to steric clashes
with interacting C1ql3.
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Methods
Protein expression
The C1ql3 constructs were cloned into the pEG BacMam vectors and
expressed in Expi293F™ GnTI- cells, following the manufacturer’s
recommended protocol (Thermo Fisher Scientific). Expi293 cells
were cultured to a density of 3 × 106 cells/mL. DNA was introduced
into the Expi293 cells using 2.7 μL of GIBCOTM ExpiFectamineTM
293 Reagent per mL of cells. Enhancers were incorporated 18 h post-
transfection, and cells were subsequently incubated for either 48 or
72 h before harvesting. The purification of the expressed proteins was
carried out through Ni2+-NTA affinity column chromatography,
followed by size exclusion chromatography (SEC) using 1X HBS
buffer (10 mM HEPES, pH 7.2, 150 mM NaCl) in the presence of
2 mM CaCl2. For cell surface staining experiments, C1ql3 and its
mutant were cloned with HA tag into pEG BacMam vectors and

expressed in Expi293F™ cells, the purification procedure is identical
as described above.

The Mouse BAI3 N-terminal domain (NTD) encompassing residues
26–290 was cloned into the pVLAD8L vector, as previously described21,
which encodes a 3 C protease cleavage site, an Fc-tag and a C-terminal His
tag following BAI3 NTD. The Bacmam virus is packaged as previously
described21. HEK293S GnTI− cells were grown to a cell density of 2 × 106

cells per mL before infecting with the BacMam virus. A final concentration
of 5mM sodium butyrate was applied to the cells. The HEK293 GnTI− cell
line was generously provided by Prof. H.G. Khorana’s lab at the Massa-
chusetts Institute of Technology, Cambridge, MA, USA. Cell supernatant
was harvested 48-hour post-infection, and the BAI3 NTD protein was
purifiedbyNi2+-NTAaffinity columnchromatography. Fc tagwas removed
by 3 C protease cleavage, and BAI3 NTD was further purified though size
exclusion chromatography in 1 X HBS buffer.
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Cryo-electron microscopy sample preparation and data
collection
To prepared C1ql3-BAI3 samples for cryo-EM analysis, proteins were
mixed at 1: 1.1molar ratio, followedby size exclusion chromatography in 1x
HBS buffer with 2mMCaCl2. Fractions corresponding to the complexwere
collected and concentrated. Aliquots of 3.2 μL of 0.7 mg/mL complex in the
presence of 0.01% Fluorinated Octyl Maltoside were applied to glow-
discharged 300 mesh UltraAuFoil® (1.2/1.3) or Quantifoil® (1.2/1.3) grids.
The grids were blotted for 3 seconds using a VitrobotMark IV and plunged
into liquid ethane. Grids were screened by a 200 kV Glacios microscope
(Thermo Fisher Scientific) before collection at 300 kV Krios microscope
(Thermo Fisher Scientific). Data were collected at a magnification corre-
sponding to a 0.653 Å per physical pixel. The dose was set to a total of 50
electrons per Å2. Data collection was performed using SerialEM22 with a
nominal defocus range set from −0.8 to −2.4 μm. 3 total datasets were
collected, including 2 datasets using UltraAuFoil and Quantifoil without
stage tilt and 1 dataset using Quantifoil and 30-degree stage tilt. All data
merged were collected on the same microscope.

Image processing
All image processing was performed in cryoSPARC23. Movies were motion
corrected using patchmotion correction followed by patch contrast transfer
functions (CTFs) correction. Notably, motion correction and CTF correc-
tion were performed separately in cryoSPARC for the three datasets. The
initial particles were picked using Topaz picker24. Multiple rounds of
reference-free 2D classification were performed for each dataset individu-
ally, and then to generate an intermediate stack of 502,102 particles. These
particles were then used in ab initio reconstruction into three classes.
Duplicate particles were removed to generate a final stack of 167,880 par-
ticles, whichwas refined by non-uniform refinement and local refinement25.
This resulted in a 2.8 Å reconstruction of the C1ql3-BAI3 NTD complex
(Supplementary Fig. 1).

Model building and refinement for cryoEM
TheC1ql311 and BAI3Alpha Fold15models were docked into themap using
UCSF Chimera26. The resultant model was then manually built in Coot27,
followed by automated refinement using Phenix real space refine28. The
detailed statistics were shown in Table 1.

Cell surface staining
The cell surface staining experiments were performed similarly as pre-
viously described6. Briefly, HEK293T cells were transfected with 0.625 μg
total DNA (0.125 μg mCherry + 0.5 μg FLAG-tagged BAI expression
plasmid). After 24 h, 100 nM final concentration of HA tatgged C1ql3
protein or mutant was added in DMEM media and cells were incubated
at room temperature for 1 hr. Cells were washed once in PBS prior to
fixation using 4% PFA/4% sucrose/PBS for 20min at 4°. Fixed cells were
stained with primary antibody (Rabbit Anti-FLAG Antibody, Sigma,
F7425 and Mouse anti-HA Antibody, Covance, MMS101R) and sec-
ondary antibody (Goat anti-Mouse IgG (H+ L) Highly Cross-Adsorbed
Secondary Antibody, Alexa Fluor™ 488, Thermo Fisher Scientific,
A-11029 and Goat anti-Rabbit IgG (H+ L) Highly Cross-Adsorbed
Secondary Antibody, Alexa Fluor™ 647, Thermo Fisher Scientific,
A-21245). Cells were mounted on microscope slides and images were
recorded using Nikon confocal microscope. Final image analysis and
figure processing were performed using Fiji software.

Statistics and reproducibility
No statistics analysis was performed in this manuscript. CryoEM refine-
ment and data validation statistics were reported from cryoSPARC and
PHENIX23,28. Raw data for cryoEMwas deposited to https://www.ebi.ac.uk/
empiar/ and could be utilized to reproduce the structural characterizations.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The structures have been deposited into Electron Microscopy Data Bank
under the accession code 43605 and Protein Data Bank under the accession
code 8VWY. Raw data are deposited to https://www.ebi.ac.uk/empiar/
under accession code 12083. The raw data for size exclusion chromato-
graphy is provided in Supplementary Data 1. All other data is deposited in
Stanford Data Repository https://purl.stanford.edu/qm670gq0127. The
information will be publicly available as of the date of publication.
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Table1 | Cryo-EM data collection, refinement, and validation
statistics

C1ql3-BAI3 NTD (EMDB-43605) (PDB 8VWY)

Data collection and processing

Magnification 130,000

Voltage (kV) 300

Electron exposure (e–/Å2) 50

Defocus range (μm) −0.8 to −2.4

Pixel size (Å) 0.653

Symmetry imposed C3

Initial particle images (no.) 6,958,616

Final particle images (no.) 167,880

Map resolution (Å) 2.8

FSC threshold 0.143

Map resolution range (Å) 2.6–3.4

Refinement

Initial model used (PDB code) 4QQH, Alpha Fold

Model resolution (Å) 3.1

FSC threshold 0.5

Map sharpening B factor (Å2) −128.7

Model composition

Non-hydrogen atoms 6293

Protein residues 825

Ligands 7

B factors (Å2)

Protein 67.81

Ligand 56.74

R.m.s. deviations

Bond lengths (Å) 0.006

Bond angles (°) 0.579

Validation

MolProbity score 2.54

Clashscore 11.76

Poor rotamers (%) 6.10

Ramachandran plot

Favored (%) 94.76

Allowed (%) 5.24

Disallowed (%) 0
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