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Abstract choice representations during
stable choice-response associations
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An increasing body of evidence has demonstrated neural representations of choices independent of
the motor actions used to report them – so-called abstract choices. However, it remains unclear
whether such representations arise due to dynamic changes in choice-response associations or
reflect a general property of decision-making. Here, we show that in the human brain, choices are
represented abstractly even when choice-response associations remain stable over time. We
recorded neural activity using magnetoencephalography while participants performed a motion
discrimination task, with choice-response mappings held constant within blocks. We found neural
information about participants’ perceptual choices independent of both motor response and visual
stimulus. Choice information increased during the stimulus and peaked after the response. Moreover,
choice and response information showed distinct cortical distributions, with choice-related signals
strongest in frontoparietal regions. Thus, abstract choice representations are not limited to dynamic or
action-independent contexts and may be a general feature of decision-making.

Many of our every-day decisions are tightly coupled to a particular motor
action. Likewise, most of the tasks exploring the neural underpinnings of
perceptual decision-making have inextricably linked choices with the
motor-responses required to report them1–5, for example, in motion dis-
crimination, a rightward eye movement or button press for a downwards
motion choice. This is in keeping with one of the dominant accounts of
perceptual decision-making, which suggests that choices are embodied6–8.
This intentional framework suggests that choices emerge as plans to commit
a particular action.

However, we are also able to make decisions that cannot immediately
be followed by a specific action. This implies that the brain can represent
choices independently of actions, whichwe here refer to as abstract choices.
How this is achieved, and under what contexts such representations may
persist, has been a matter of continued debate2,3,6,8–12. In recent years, there
has been a greater focus on uncoupling choices and actions in perceptual
tasks, to identify potentially independent neural representations. Indeed,
many of these studies have found choice signals which arise before the
choice-response mapping is known, therefore abstracting them from any
representation of the motor-response13–17. More importantly, the same
abstract choice signals were identified regardless of whether the choice-
response mapping was known in advance or not17, indicative of an abstract
choice stage across different action contexts.

The extent to which abstract representations of choice occur across
different task contexts remains unclear. One possibility is that an abstract
choice stage is specifically recruited when flexible shifting between choice-
action mappings is required. Previous studies separating choice and action
representations have typically used either post-stimulus (action-indepen-
dent) mapping14–16,18,19 or trial-by-trial switching either between action-
independent and action-linked decisions17 or between different pre-
stimulus choice-action mappings20. Alternatively, an abstract choice stage
may play a general role in decision-making, even when little to no flexibility
of choice-action associations is required.

We investigated these alternatives in the human brain by holding the
choice-response mapping stable over extended periods of time. Human
participantsperformedanup-downvisualmotiondiscrimination taskwhile
we recorded neural activity using magnetoencephalography (MEG).
Importantly, using a blocked task design and specific analyses, we were able
to disentangle choice and response representations. We found neural
activity selective for the stimulus, motor response and choice. Crucially,
choice information was independent of the choice-response mapping. This
abstract choice representation ramped up during the stimulus period,
consistent with evidence integration over the motion stimulus, and peaked
after the response. Our results show that choices are represented abstractly,
even when the association between choice and motor response remains
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stable over time. This suggests that abstract choice representationsmay play
a more general role than purely action-based frameworks have previously
implied.

Results
Task and behaviour
We recorded MEG in 16 human participants (20 prior to exclusions; see
Methods) while they performed an up-down visual motion discrimination
task (Fig. 1A). On each trial, the participants viewed a streamof 24 random-
dotmotionpulses (83msper pulse). After an auditory go-cue they indicated
whether they perceived more up- or downward motion with a left or right
button press. Themapping between choice (up or down) and response (left
or right button) was manipulated block-wise, such that all trials within a
single block of 96 trials had the same choice-response mapping (e.g., left
button press for upward motion, right for downward). The mapping was
indicated to theparticipants at the beginningof eachblock.Themapping for
each block was determined pseudo-randomly, such that mappings were
balanced across stimulus conditions (see below).Most often, thismeant that
the choice-response mapping switched between blocks but could also
remain stable over multiple blocks (Fig. 1B). We found no significant effect
of switching themapping on overall performance at the beginning of a new
block (first 1 trial: t = 1.03, p = 0.32, cohen’s d = 0.37; first 5 trials: t = 1.1,
p = 0.29, cohen’s d = 0.37; paired t-tests, average proportion correct repeat
vs switch blocks).

Each of the 24 motion pulses showed either upward or downward
motion. The motion direction was determined randomly on a pulse-by-
pulse basis, such that each individual pulse had an equal probability of being
an up or downwardmotion pulse (Fig. 1C). The strength ofmotion for each

pulse was determined by the motion coherence, which was held constant
within a block.Therewere three coherence levels in total– low,mediumand
high. Lowandmediumcoherence levelswere determined by staircases prior
to the task to achieve about 66% and 75% performance, respectively. In the
high coherence condition, 100%of thedotsmoved in the specifieddirection.
The order of the coherence blocks was determined pseudo-randomly, such
that the coherence levels were balanced.

The coherence staircases had the desired effect that the three coherence
levels were well-separated (Fig. 1D, left; mean coherence: 66%, 81%, 100%
for low, medium and high coherence, respectively). Behavioural perfor-
mance corresponded well with the expected performance for the respective
coherence levels (Fig. 1D, right; mean correct performance: 65%, 74%, 82%
for low, medium and high coherence, respectively).

Neural information about motion direction andmotor responses
We quantified neural information about the direction of motion pulses
and about motor responses for each participant using a cross-validated
multivariate analysis of variance (cvMANOVA)17,21,22. We applied
cvMANOVA on preprocessed MEG data across all sensors (see Meth-
ods), resulting in a measure of neural information analogous to classifier
performance. Importantly, cvMANOVA independently assesses the
variability related to a specific variable of interest while excluding con-
founds related to other variables.

We were able to quantify neural information about individual motion
pulses, which can be observed as the shifting peaks of information across
time relative to stimulus onset (Fig. 2A).Whenwe aligned individual pulses
by their onset time and averaged neural information across pulses, we found
significant information for each coherence level (Fig. 2B; p = 0.03, 0.02,
0.017 for low, medium and high coherence, respectively, cluster permuta-
tion statistics). Motion information peaked about 300ms after pulse onset
and continued for several hundredmilliseconds. Information aboutmotion
direction increased with increasing motion coherence, although this effect
was not statistically significant (F = 1.23, p = 0.30, one-way ANOVA of
average pulse information 200–400ms post pulse onset with factor coher-
ence, eta2 = 0.07).As the cvMANOVAalso included the subjects’ choice and
motor response as factors, neural information about motion pulses was
independent of these factors.

We also found significant neural information about motor responses
for each coherence level (Fig. 2C; p= 0.002, 0.003, <0.001 for low, medium,
and high coherence, respectively; cluster permutation). Again, as the
cvMANOVA also included the subjects’ choice as a factor, neural infor-
mation about the response was independent of the choice. Response infor-
mation started to rise in the second half of the stimulus period, consistent
with early motor response preparation, and peaked after the go-cue. We did
not observe any differences in the response information as a function of
coherence (F= 0.01, p= 0.99, one-way ANOVA of average response infor-
mation 0–1 s post stimulus offset with factor coherence, eta2 = 0.0007).

In summary, we found robust neural information about the sensory
stimulus that subjects had to decide upon and about the motor response
with which subjects reported their choice.

Neural information about choices is independent of responses
Wenext tested if we could find neural information for the perceptual choice
independent of the motor response and stimulus. To do so, we first cor-
rectedneural activity for any influenceof the stimulus, so that neural activity
related to choice would not be confounded by the correlations that arise
between stimulus and choice for above-chance performance. We imple-
mented a pulse-based stimulus correction because, unlike for the response
or choice variable, merely including the average stimulus motion as a factor
in the cvMANOVA would not render other information independent of
stimuli at the pulse level (see Methods). Critically, the employed correction
was conservative, i.e., would lead to an underestimation of choice infor-
mation dependent on the behavioural performance. As performance dif-
fered between coherence levels, we restricted the subsequent analysis to the
data averaged across coherence conditions. Furthermore, as the

Fig. 1 | Up-Down motion discrimination task and behavioural performance.
A On each trial, participants (n = 16) were required to discriminate the average
motion direction of 24 random-dot motion pulses. Choice was indicated with a left
or right button press. The mapping of choice to response was pseudo-randomised
block-wise (96 trials per block), such that in one block a left button press corre-
sponded to an ‘up’ choice, and in another block to a ‘down’ choice. Grey arrows
depict average pulse motion, shown here for visualisation purposes only.
B Histogram of the proportion of successive blocks with stable choice-response
mapping.CRatio of ‘up’ to ‘down’motion pulses as a percentage of trials. Each pulse
was drawn randomlywith equal probability. 12:12 corresponded to an equal number
of ‘up’ and ‘down’ pulses on a trial, for which participants were rewarded randomly.
D Motion coherence and correct performance for the three coherence levels (low,
medium, high). Coherence was pseudo-randomly varied across blocks. Low and
medium coherence levels were adjusted for each participant to target 66% and 75%
correct performance, respectively, using staircases prior to the task. High coherence
was 100%. Error bars denote SEM across subjects.
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cvMANOVAalso included the response as a factor, choice informationwas
assessed independently from the motor response. In other words, we
assessed abstract choice information.

We found significant neural information about the perceptual choice
(Fig. 3A;p = 0.001, cluster permutation, corrected)which rampedupduring
the stimulus period (t = 2.39, p = 0.015 one-tailed t-test for the stimulus
presentation interval, cohen’s d = 0.58) consistent with evidence integration
over the motion pulses and peaked after the go-cue. When we aligned the
analysis to the response time based on the reaction time on each trial
(Fig. 3B), we found significant choice information (p = 0.001, cluster per-
mutation, corrected) that largely peaked right after the response and
declined thereafter.

Throughout the experiment, themapping between choice and response
was repeated across some blocks but switched across other blocks. Thus, we
tested if abstract choice information differed between blocks with a repeated
or switched choice-response mapping. Choice information was significant
for both blocks (repeat: t = 2.44, p = 0.025, cohen’s d = 0.80; switch: t = 3.20,
p = 0.0093, cohen’s d = 1.05; one-tailed t-test 1.5 to 3 s post stimulus onset)
and there was no significant difference between blocks (t = 0.16, p = 0.88,
cohen’s d = 0.09; paired t-test 1.5 to 3 s post stimulus onset).

Choice and response information exhibit distinct cortical
distributions
To further contrast choice and response information, we employed a
searchlight analysis and quantified their cortical distribution across time,
averaged across hemispheres (see Methods). We found distinct patterns of
informationboth across space and time (Fig. 4A). For response information,
we observed a central peak after the go-cue, which continued well into the
response period. In contrast, choice information was strongest in parietal

and frontal regions during the stimulus period. This pattern continued into
the response period, with additional central contributions.

Choice information includes response-independent and
response-linked components
Our experimental design and analysis approach ensured that the identified
choice information was independent of the motor response, i.e., that the
identified neural variability that was explained by choices could not be
explained by motor responses. However, choice and response information
may still recruit overlapping neural populations. To test this, we quantified
the cross-variable information between choice and response (seeMethods)
in an epoch that showed significant information about both variables (1.5 to
3 s post-stimulus onset).We found that the absolute choice-response cross-
variable information was significantly lower than expected if they involved
perfectly overlapping neural populations (Fig. 4B; z =−3.52, p = 0.0004,
Wilcoxon signed-rank; Cliff’s δ = -0.84). However, absolute cross-variable
information was also significantly above chance, indicating that the repre-
sentations of choice and response were not completely orthogonal (Fig. 4C;
z = 3.21, p = 0.0013, Wilcoxon signed-rank; Cliff’s δ = 0.78; real vs. shuffled
choice labels). This suggests that choice and response informationarise from
neural populations that are largely disparate but may have a small degree of
overlap.

Discussion
We found neural information about perceptual choices independent of
motor responses in the human brain. Importantly, we did so in a task where
the choice-response mappings remained stable over many trials. This
contrasts with the previous studies where choice-motor mappings changed
on a trial-by-trial basis. In these, choice-motormappingswere either known
before stimulus presentations17,20, or not13–19, but always changed on a trial-
by-trial basis. Thus, our results are, to the best of our knowledge, the first to
show that abstract choice representations are not limited to tasks that
require a quick and flexible mapping of choices onto responses and may
therefore reflect a more general property of the perceptual decision-making
process.

The fact that we found abstract choice representations even when the
choice-response association was stable over time suggests that these
representations are more ubiquitous than previously thought. The inten-
tional framework of decision-making has long viewed representations of
choice to be synonymous with convergence upon an action plan, framing
abstract decision contexts almost as outliers6,8. While there has been a wave
of evidence for abstract choice representations when the choice-response
mapping is not known in advance of the stimulus, only recently has there
been evidence to suggest that these persist evenwhen themapping is known
in advance17,20. Our findings extend this evidence to a task with a stable
choice-response mapping, akin to those commonly used to study action-
linked decisions. Thus, our task strongly favoured a purely action-linked
decision-making process. Nonetheless, we observed abstract choice infor-
mation arising from a distinct neural population to that of the response.

Fig. 2 | Neural information about motion direc-
tion and motor response. A Neural information
about the direction of each motion pulse averaged
across coherence levels. P1 and P23 denote the first
and second-to-last pulse respectively. Time axis
spans stimulus onset to offset.BNeural information
averaged across pulses 1-23, aligned to pulse onset,
for each coherence level. C Neural information
about the side on which the button was pressed (left
vs. right) for each coherence level. Horizontal bars
denote temporal clusters of significant information
(p < 0.05; cluster permutation, corrected). Solid lines
and shaded regions indicate the mean +/− SEM of
information across participants (N = 16).

Fig. 3 | Neural information about choice. A Neural information about the parti-
cipants choices (up vs. down) averaged across coherence conditions and aligned to
stimulus onset (n = 16). B Choice information aligned to the time of response
(n = 14). Horizontal bars denote temporal clusters of significant information
(p < 0.05; cluster permutation, corrected). Solid lines and shaded regions indicate the
mean +/− SEM of information across participants.

https://doi.org/10.1038/s42003-025-08129-1 Article

Communications Biology |           (2025) 8:752 3

www.nature.com/commsbio


Furthermore, our results address a criticism of abstract choice tasks,
that participants may still plan response actions even when the mapping is
not known in advance12. If individuals preferentially associate a specific
choice with a specific motor response, this could mean that choice repre-
sentations that appear to be abstract still reflect motor-linked processes.
However, in such a case, the neural populations underlying choice and
motor-response would be identical, which is not the case in our data. Whilst
we observed some degree of overlap, our cross-variable information analysis
shows that even on an individual level, the neural populations supporting
choice and motor-response are largely distinct. In addition, if such asso-
ciations occurred randomly on a trial-by-trial level, the neural patterns
supporting both choices would not be separable, and we would therefore not
find abstract choice information. Together, these findings contradict a purely
intentional framework and suggest that abstract representations of choice are
not limited to contexts in which an action cannot immediately be planned.

We found that choice information was present in a network of brain
areas distinct from that for the motor response, with parietal and frontal
areas showing significant choice signals. These results are broadly consistent
with previous findings in non-human primates13,20 and humans14,17,18,23 that
implicate fronto-parietal networks in abstract choice representations. They
also complement a recent study, which localised an indirect measure of
choice activity to fronto-parietal networks when motor-responses are held
stable24. Nevertheless, the involvement of specific brain regions in particu-
larly in parietal cortex, remains a topic of ongoing research and debate11,13,18.

Our results lead us to several interesting questions. What is the precise
role for abstract choice representations when an action can be planned
directly? A recent study from Charlton & Goris20 found that information
about the choice emerged earlier than that about the response, suggestive of a
choice stage prior to the action planning. In our study, choice and response
information emerged at similar times, although the different strengths of the
signals complicates direct timing comparisons. In any case, even without a
serial processing of choice and action plan, it could be beneficial to represent
choices in an abstract reference frame. For example, when learning to navi-
gate our natural environment, the coupling between particular choices and
actions varies with changes of our viewpoint or the dynamic properties of the
visual scene. In this case, it could be advantageous to know the perceptual
choice associated with particular visual stimuli and outcomes, in addition to
the latter’s association with specific actions. Furthermore, evidence from
studies on serial dependencies using threshold stimuli has demonstrated an
effect of previous perceptual choices on the current choice25,26. The fact that
the percept itself, independently of the stimulus or the motor-response, can

lead to attractive biases suggests that abstract choice representations could
contribute to maintain perceptual stability in noisy environments. In addi-
tion, since motor-response serial dependencies typically result in repulsive
biases26–28, there may be distinct mechanisms at work that push and pull to
balance perceptual stability with exploration strategies or muscle fatigue.

Inwhich contexts do these abstract choice representations arise? In our
study, it was methodologically necessary to change the choice-response
mapping several times to measure choice information independently of the
visual stimulus and themotor response.While the blocked designwasmore
stable than a trial-by-trial design, it could still be that the infrequent changes
of the choice-response mapping led to choices being represented in an
abstract format, generalising across block types. This leaves open the pos-
sibility that in contextswhere the choice and associated action are evenmore
tightly coupled, decision-making operates in a fully intentionalway,without
abstract choice representations. However, given that our natural behaviour
involves many instances of both abstract and action-linked perceptual
decisions, it seems intuitive to implement neural processes that allow to
fluidly switch between these different contexts. To this end, choices could be
represented abstractly across all contexts, potentially simultaneously with
action-linked choice signals, and utilised when required.

Methods
Participants
20 healthy, right-handed human participants (5 female; mean = 27 years, 4
years SD) tookpart in the current study and received amonetary reward.All
participants had normal or corrected-to-normal vision. Prior to the
recording, participants provided written informed consent. The study was
approved by the ethical committee of the Medical Faculty and University
Hospital of the University of Tübingen and conducted in accordance with
the Declaration of Helsinki. All ethical regulations relevant to human
research participants were followed.

Behavioural task and stimuli
Participants performed a symmetric motion discrimination task. On each
trial, theywere asked to reportwhether a trainof 24motionpulses contained
more upwards or downwards motion. Responses were made with a left- or
right-hand button press. Importantly the mapping between choice and
motor response varied block-wise, such that a left button press would
correspond to an up or down choice depending on the block.

At the start of each trial, participants were required to fixate a small
white point at the centre of the screen and continued fixating for the

Fig. 4 | Distinct neural populations underlie
choice and response. A The spatiotemporal cortical
distribution of choice (upper row) and response
(bottom row) information for 5 temporal intervals,
with respect to stimulus onset (0 s). Only significant
clusters of information are shown (p < 0.05; cluster
permutation). B Cross-variable information
between choice and response. Absolute cross-
variable information was significantly lower than
expected for identical neural patterns of choice and
response information. C Absolute cross-variable
information between choice and response was sig-
nificantly higher than expected by chance for data
with shuffled choice labels. Each dot represents a
single participant (n = 16). All analyses are for the
time interval 1.5-3 s post stimulus onset.
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duration of the trial. Once they obtained fixation, 16 alternating up/down
motion pulses (1/12 = 0.08333 s pulse duration) were presented (1.33 s total
duration), centred around fixation. For the last 0.3333 s of this pre-stimulus
pulse train, an auditory onset cue signalled the start of the stimulus pulses.
Subsequently, 24 stimulus pulses (1/12 = 0.08333 s pulse duration) were
presented (2 s total stimulus duration), each showingmore up or downward
motion. After the stimulus pulses, a post-stimulus pulse train of alternating
up/down pulses began. At the same time, an auditory offset cue (0.1667 s
duration) signalled the end of the stimulus-train and acted as a go-cue for
participants to respond. After the response, participants received auditory
feedback about their performance. Following the feedback, a random even
number of alternating up-down pulses (4-14 pulses) was presented before
the next trial began.

Participants sat at a viewingdistance of 50 cm from the screen. Fixation
occurred within a window of 2 degrees (7 subjects) or 1.34 degrees (9
participants) of visual angle.Thefixationdotwas awhite dotwith a radius of
0.1 degrees.A singlemotionpulse consisted of a random-dot kinematogram
with 700 white dots, each with a radius of 0.1 degrees. The dots were
presented within a circular aperture on a black background (6.7 degrees
radius), with an additional circular aperture without dots surrounding the
fixation point (2 or 1.34 degrees radius). Each dot moved either upward or
downward at 10 degrees per s. The proportion of dots moving upwards vs.
downwards was determined by the motion coherence of which there were
three levels – low,medium andhigh. At the high level, all dotsmoved in one
direction. Low and medium coherence levels were determined using two
2:1 staircases (144 trials each) prior to each experiment, to achieve about
66% and 75% correctmotion discrimination performance, respectively. For
each coherence level, there were 10 possible ‘up’ pulses, which were flipped
to produce 10 possible ‘down’ pulses. During the experiment, for each of the
24 stimulus pulses, the pulse direction and specific pulse (1 of 10) were
drawn randomly with equal probability. For stimuli with the same number
of ‘up’ and ‘down’ pulses (12:12), subjects received randomized feedback.

The auditory onset and offset tones had a frequency of 200 and 300Hz,
respectively. The auditory feedback consisted of two tones: one linearly
increasing from 200 to 600Hz and the other in the reverse direction. The
mapping of the two tones to feedback (i.e., correct or incorrect) was varied
block-wise.

Each block consisted of 96 trials. Participants typically completed 4
repetitions of each of the 3 types of coherence level blocks, totalling 12
blocks. Each repetition included one block at each coherence level. The
choice-motormapping, auditory feedbackmapping, and coherence level for
each block were determined pseudo-randomly, and participants were
informed of the choice-motor and feedback mappings at the beginning of
each block.

Setup and recording
Neural activity was recorded using a 275-channel whole-headMEG system
(Omega 2000, CTF Systems, Port Coquitlam, Canada) at a sampling rate of
2343.75 Hz. Participants sat upright in a dark, magnetically shielded
chamber. Stimuli were projected onto a screen using either an LCD pro-
jector (Sanyo PLC-XP41, Moriguchi, Japan) or a DLP LED PROPixx pro-
jector (VPixx, Saint-Bruno, Canada) at 60 Hz refresh rate. Eye movements
were tracked with an eyetracking system (Eyelink 1000, SR Research) at a
sampling rate of 1000 Hz.

Preprocessing
MEG Data was low-pass filtered at 10Hz (two-pass forward-reverse But-
terworth filter, order 4) and down-sampled to 20Hz. We used robust
detrending29 to remove polynomial trends from theMEGdata in a piece-wise
fashion (600 s pieces, removal of linear trend followed by 10th order poly-
nomial), and baseline-corrected each trial (−0.83 s to −0.33 s). Individual
noisy channels and trials were defined as those exceeding 10 times the
standard deviation of the variability across channels or trials, respectively, and
excluded from the analysis. For all temporally resolved analyses, results were
smoothed using a 100ms Hanning window (full width at half maximum).

Data exclusion
Trials with blinks or eye movements outside of the fixation window were
aborted and thus automatically excluded from analysis. Eye movements
could not be measured for three participants, but their exclusion did not
significantly change the results.

For some participants, we were unable to analyse all 12 blocks due to
technical issues. In one case, this led to the exclusion of an entire coherence
condition (high/full) due to a lack of counterbalancing across choice-
response mappings.

Two participants were excluded due to insufficient behavioural per-
formance caused by a misunderstanding of the task. Two participants were
excluded due to technical problems with stimulus presentation or data
recording. For reaction-time aligned choice analysis (Fig. 3B), two partici-
pants were excluded due to technical issues.

Source reconstruction
As MRIs for individual participants were not available, we sourced and
reconstructed the data using a standardMNI template brain.We generated a
single-shell head model30 and for each participant estimated three-
dimensional (x, y, and z-direction) MEG source activity at 457 equally
spaced locations 7mm beneath the skull, using linear spatial filtering
(beamforming)31.We retained, for each source, activity in all 3 directions. For
the searchlight analysis, we used each of the 457 sources’ immediate
neighbours, including all 3 dipole directions. We averaged data within 5
intervals with respect to stimulus onset (−0.85–0 s; 0–1 s; 1–2 s; 2–3 s; 3–4 s).

Cross-validated MANOVA
We applied a cross-validatedMANOVA (cvMANOVA) on the MEG data
from single participants to estimate neural information about each of
the variables of interest21,32. cvMANOVA constitutes an extension of the
commonly used cross-validated Mahalanobis distance and allows for the
simultaneous estimation of neural data variability due to several variables of
interest. This estimation is performed in relation to unexplained noise
variability. We therefore first estimate a baseline noise covariance matrix,
using all trials from all possible unique combinations of variables or ‘con-
ditions’. For each unique condition, beta weights are estimated and con-
trasted between conditions in cross-validation fold ‘training’ and ‘test’ sets
separately. An estimate of true pattern distinctness is computed as the dot
product of these contrasts, normalised by the noise covariance:

D ¼ trace
1
n
B0

trainCtrainC
�1
trainX

0
testXtestCtrainC

�1
testBtestΣ

�1

� �

where Xtest is the designmatrix indicating the unique condition of each trial
in the test set, Ctrain is the contrast vector themodel is trained on,Ctest the test
contrast vector and Σ-1 the inverted noise covariance matrix. Btrain and Btest
contain the regression parameters of a multivariate general linear model:

Btrain ¼ X�1
trainYtrain

Btest ¼ X�1
testYtest

where Ytrain and Ytest are the training and test datasets. The inverted noise
covariance matrix was estimated from the mean activity during the time
period starting from −0.85 seconds pre-stimulus to 2 seconds post-
stimulus:

Btrainavg
¼ X�1

trainYtrainavg

Ξ ¼ Ytrainavg
XtrainBtrainavg

Σ�1 ¼ fE � p� 1
� � � ðΞ0ΞÞ�1
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With fE being the degrees of freedom and p the number of sources used. Ξ
was regularised towards the unity matrix using a regularisation para-
meter of 0.05.

Given that the design matrix and contrast vector include all unique
conditions i.e., all possible combinations of variable levels, cvMANOVA
independently quantifies information about each variable of interest,
while not being confounded by information about the other, potentially
correlated variables. In other words, cvMANOVA quantifies the pattern
distinctness explained by each variable after discounting the patterns
explained by all other variables included in the model. Importantly,
cvMANOVA effectively controls imbalances in the distribution of trials
over conditions without explicit stratification and the resulting loss
of data.

Prior to cvMANOVAwe reduced the dimensionality of the data using
PCA. We computed a de-mixing matrix on the condition means of the
training data only, and subsequently applied it to the test data. We selected
the first 100 components for further analysis.

For all analyses we performed two-fold cross validation and 10 repe-
titions of cvMANOVA with different random seeds. We averaged results
across repetitions and folds.

Task variables and stimulus correction
To accurately estimate neural information about variables independently of
each other, we had to ensure that all combinations of the variables of interest
were present, including those under experimental control (coherence,
choice-response mapping) and those dependent on the participants beha-
viour (choice, response). In all cvMANOVAswe included choice, response,
and coherence as variables.

As each stimulus pulse was randomly selected from 10 possiblemovies
for each direction, there were many unique 2 s stimuli, such that the full
stimulus could not be included as a variable. Given that stimulus and choice
are correlated for non-chance performance, we used a stimulus correction
procedure for those analyses assessing neural choice information inde-
pendent of the stimulus (Figs. 3 and 4). For this, we computed the average
neural activity for eachpulse position,motion direction, and coherence, and
subtracted the 24 pulse-related averages from the neural data of individual
trials based on the pulses presented on these trials. We then added back the
pulse-related activity averaged across motion directions, independently for
pulse position and coherence. This conservative correction likely removes
choice-related neural activity that is strongly correlated with the stimulus.
As this results in different over-corrections depending on performance, we
did not interpret differences in choice information between coherence
conditions.

To estimate the neural information associated with each individual
pulse, we computed cvMANOVAs with the additional variable pulse
direction, for each pulse position independently.

Cross-variable information
To assess whether choice and response shared a common representa-
tional space, we measured cross-variable information. We implemented
this by using a training contrast Ctrain differentiating between choice
levels, and a test contrast Ctest differentiating between response levels,
and vice versa.

Notably, a possible relationship between choice and response repre-
sentations could vary in directionality across participants, such as for
example arbitrary choice-response associations that is unrelated to the
actual choice-responsemapping (e.g. an association between the left button
and upwardsmotion). Thus, we did not average the resulting cross-variable
information metric but compared absolute cross-variable information
across participants (Fig. 4B, C).

Given that the maximal amount of shared information between two
variables depends on the information available for each variable indepen-
dently, it was important to take the strength of the individual representa-
tions into account. We therefore compared the measured cross-variable
information to an estimate of the cross-variable information that could be

expected for identical representations of variable strength32

EChRs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ChRsj j

p
� sign Chð Þ � signðRsÞ

where Ch and Rs denote the pattern distinctness for choice and response,
respectively, and EChRs is the expected cross-variable information. If
representations were identical, the measured cross-variable information is
expected to approach EChRs, whereas cross-variable information smaller
than EChRs indicates non-overlapping representations

32.

Statistics and reproducibility
We recorded 20 participants in-keeping with the range commonly used in
MEG studies. Due to data exclusions, statistical analyses were performed
over 16 participants, except for the response-aligned choice informa-
tion (n = 14).

We assessed the statistical significance of information using cluster-
based permutation tests. After determining temporally contiguous clusters
during which pattern distinctness was higher than 0 (one-tailed t-test over
participants,p < 0.05),we randomlymultiplied the information time-course
of each participant 1000 times with either 1 or −1. In each random per-
mutation, we recomputed information clusters and determined the max-
imum cluster mass. Each original cluster was assigned a p-value by
comparing its mass to the distribution of the random permutation’s max-
imum cluster masses. Importantly, the comparison against the maximum
cluster mass distribution corrects for multiple comparisons across time33.

To assess the cortical distribution of neural information, we performed
analogous cluster permutation tests, but across space and time.

To test for differences between information as a function of coherence
condition, we used one-way ANOVAs. We did this for average pulse
information in the time 200–400ms post-pulse onset, and for response
information 0–1 s post-stimulus offset.We additionally used a one-tailed t-
test to test for significant choice information specifically during the stimulus
period (0–2 s post stimulus onset). For ANOVAs and the t-test we com-
puted effect sizes using eta2 and Cohen’s D, respectively.

To determinewhether themultivariate patterns underlying choice and
response were significantly different, we used Wilcoxon signed-rank tests,
after determining that the absolute cross-variable information was not
normally distributed (according to the Kolmogorov-Smirnov test). We
tested whether the absolute cross-variable information was smaller than the
expected cross-variable information, and whether the absolute cross-
variable information was higher than would be expected by chance. For the
latter,we ran cvMANOVAondatawith shuffled choice labels and tested the
absolute cross-variable information against this value. Testswere performed
on the time period with robust choice and response information across
participants (1.5–3 s). For Wilcoxon-signed rank tests we computed effect
sizes using Cliff’s δ.

To test if choice information differed between blocks with repeated or
switched choice-responsemapping cvMANOVAwas separately performed
for these blocks within a limited subset of the data (7 subjects with 1
coherence condition each). This subset resulted from the requirement of at
least two ‘repeat’ and two ‘switch’ blocks (one of each choice-response
mapping) within a coherence condition per participant, whichwas only the
case for 7 out of 16 participants. Furthermore, within these 7 participants,
the balancing of blocks resulted in only being able to use data from single
coherence conditions.

Software
Experimental code was written in MATLAB (Mathworks) using custom
code and Psychophysics Toolbox extensions34. All analyses were performed
in MATLAB using custom code as well as the Fieldtrip toolboxes35.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Data availability
Preprocessed MEG data is available from the authors upon reasonable
request.

Code availability
Analysis code to reproduce all reported results is available from the authors
upon reasonable request.
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