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Brain functioning relies on specialized systems whose integration enables cognition and behavior.
Network science provides tools to model the brain as a set of interconnected brain regions wherein
those segregated systems (modules) can be identified by optimizing the weights of pairwise
connections within them. However, knowledge alone of these pairwise connectionsmight not suffice:
brain dynamics are also engendered by higher-order interactions that simultaneously involve multiple
brain areas. Here, we propose a community detection algorithm that accounts for multivariate
interactions and finds modules of brain regions whose activity is maximally redundant. We compared
redundancy-dominated modules to those identified with conventional methods, uncovering a new
organization of the transmodal cortex. Moreover, by identifying a spatial resolution where within-
module redundancy and between-module synergy are maximally balanced, we captured a higher-
order manifestation of the interplay between segregation and integration of information. Finally, we
distinguish brain regions with high and low topological specialization based on their contribution to
within- or between-module redundancy, and we observed how redundant modules reconfigure
across the lifespan. Altogether, the results show amodular organization of the brain that accounts for
higher-order interactions and pave the way for future investigations that might link it to cognition,
behavior, or disease.

Emergent properties of complex systems arise from a balance between
segregation and integration of the system’s fundamental units1. A promi-
nent example of such a system is the brain, which displays ongoing tran-
sitions between segregated and integrated activity2–8. On the one hand,
functional specialization pushes the brain to segregate functionally related
groups of neurons, neural populations, or brain areas. On the other hand,
the integration of these systems promotes global communication required
for coherent perception and behavior. Thus, identifying the principles able
to model and recapitulate this interplay is a key goal of computational
cognitive neuroscience.

The balance between local segregation and global integration can be
viewed through the lens of network science. Under the network con-
ceptualization, the brain can bemodeled as an ensemble of distributed brain
regions (nodes) linkedby anatomical connections (anatomical networks) or
dynamic interactions (functional networks)9,10. Segregation in functional
brain networks has been studied primarily by observing how nodes are
organized into modules11,12. Network modules, also referred to as

communities or clusters, are groups of nodes that form strong (or dense)
connections to one another andweak (or sparse) connections to other nodes
in the network. Strongly connected brain modules map out functional
systems that are often invoked as building blocks of cognition and
behavior13.Complementingbrainmodules arenetworkhubs—nodeshighly
interconnected with the whole network—which enable information trans-
mission between modules and thus functional integration14,15.

The identification ofmodules, commonly called community detection,
is usually conducted using the so-called functional connectivity matrix–the
matrix formed by measuring covariance between pairs of neural elements.
While valid, this approach is also limited in scope. By design, most com-
munity detection techniques search for groupings of elements according to
pairwise similarities, without taking into account thatmore than two neural
units can (and do) engage with each other, enabling higher-order
interactions16–18. An increasing body of literature centers on these higher-
order interactions as key features of complex systems, including the
brain19–23. This surge in interest demands new tools able to reveal brain
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organizational principles by leveraging this augmented space of possible
interactions.

In the current paper, we tackle this issue by introducing a new fra-
mework to model and investigate how segregation emerges from higher-
order interactions of brain regions. We build our work exploiting recent
advances in information theory, which provides the mathematics to
describe polyadic dependencies in multivariate systems24. Given a set of
brain regions and their activity portrayed through time series, information
theory can help us discern two types of interactions: redundant and
synergistic25.While redundant information captureshowmuch information
is copied across the elements (i.e., brain regions), synergistic information is
the information that is accessible only by considering the state of all the
elements as a whole26. We postulate that the way the brain organizes itself
into segregated subsystems can be captured by higher-order interactions
within subsets of brain regions whose activity is maximally redundant,
jointly sharing the same information. How information is integrated over
the whole brain system can then be estimated by quantifying the level of
synergy between elements of different subsets.

For this purpose, we developed a community detection algorithm that
finds maximally redundant modules at multiple spatial scales. We assessed
how they relate to canonical functional systems and to the modules iden-
tified with conventional methods that only consider pairwise interactions.
We also quantified the extent to which the information carried by the
subsets is integrated over the entire system through synergistic interactions.
Moreover, after describing where these subsets are located in the cortex, we
also defined a new local index of segregation and integration, based on
subset interactions. Finally, we applied our algorithm to a human lifespan
fMRI dataset to observe how this higher-order redundancy-dominated
modular structure evolves from youth to senescence. Collectively, our work
represents a methodological advancement towards a more comprehensive
characterization of organizational principles inmultivariate systems, and its
application provides new insights into how the brain organizes itself into
functionally segregated subsystems.

Results
Numerous studies investigated the modular structure of functional brain
networks. One challenge is to move beyond the pairwise representation to
reveal a more realistic organization of the brain’s dynamics that includes
multivariate interactions amongmultiple brain areas. Here, we address this
issueby introducing an algorithmthat groups together brain areas that share
a significant amount of identical information in their neural activity, that is,
we group together maximally redundant brain areas.

Throughout the analyses we used functional connectivity (FC) data
derived from resting-state fMRI recordings of three different datasets: the
Human Connectome Project (HCP)27, the Microstructure-Informed Con-
nectomics (MICA-MICs) data28, and the Nathan Kline Institute (NKI)
lifespan data29. In each dataset, the cerebral cortex was parcellated into 200
nodes30 and covariancematrices encoding FCwere derived from the BOLD
time series. Because the data can be described as a multivariate Gaussian31,
we relied on Gaussian assumptions to estimate multivariate information
theoretic measures from the covariance matrices. See further details on the
datasets and signal retrieval methods on the “Methods” section.

Community detection via total correlation maximization
Themost popular methods for community detection group together nodes
based on the density and strength of their pairwise interactions. Among
these, modularity maximization32, implemented with the Louvain
algorithm33, is themost widely used in neuroscience applications. It is based
on aquality function called ‘modularity’ (Q) thatmeasures the goodness of a
partition by counting how many connections fit within a given set of
modules compared to chance, i.e., what we would observe in a null network
model partitioned in the same way. The Q heuristic can be optimized
outright to discover modular community structure, and the optimization
can be tuned to findmodules at different spatial scales, from coarser to finer
(see also “Methods” “Multiscale modularity maximization”). While

modularity maximization has been proven useful in linking brain network
topology to function and behavior, the communities that it finds do not
account for higher-order interactions among subsets of nodes and therefore
might miss important multivariate aspects of brain organization. Here, we
overcame this issue by introducing a community detection algorithm that
leverages higher-order interactions.

Information theory proposes the total correlation (TC) as a proxy for
redundancy1,34–36. Given a multivariate system, TC is low when every ele-
ment is independent and high when the joint state of the elements has low
entropy, given the individual entropies, i.e., the system is dominated by
redundant interactions. For a full mathematical description of TC see Eqs.
(7) and (13) in “Methods”. We hypothesized that modules are made of
maximally redundant brain areas, that is, sets of nodes that share a large
amount of information (see Fig. 1A for a schematic). Thus, we introduced
the total correlation score (TCscore), a new quality function that, given a
partition of the brain into subsets, estimates the redundancy of themodules
compared to chance:

TCscore ¼
1
N

XM

m¼1

ðTCm � E½TCm�Þ: ð1Þ

withN being the number of nodes,M the number ofmodules,TCm the total
correlation within modulem, and E[TCm] the mean level of integration for
randomly selected subsets of the same size of module m. Thus, TCscore is
higher themore theTCwithinmodules exceeds the averageTCof equal size
subsets. High TCscore values entail a good partition, whereas for particularly
poor partitions, or very weakly integrated systems, this quality function can
even be negative.

Analogously to Q, TCscore can be used to assess the goodness of a
partition, or it can be maximized to infer an optimal modular structure.
Here, we implemented an optimization algorithm based on simulated
annealing, for which we report the pseudocode in Table 1. The first step of
the algorithm consists of computing the TSE complexity curve1. This pro-
vides themaximumandmean levels of integration for any subset size for the
network that we want to partition (all possible E[TCm] in Eq. (1), and see
Fig. 1B, C). Starting from a random (seed) partition then, we can compute
theTCof the subsets identifiedby this partition andcomputeTCscore. At this
point, the algorithm randomly switches node assignments (without chan-
ging the number of modules) and uses simulated annealing to search in the
space of solutions for a partition that maximizes TCscore.

In Fig. 1D we report an example of what we obtained by running the
algorithm on the HCP data. We projected on the cortex an initial random
partition and thepartition that optimizesTCscore.Analogously,wedisplay in
Fig. 1C the TC of the initial randommodules and the TC of the optimized
modules, which is much higher compared to the average TC of subsets of
equivalent size. Finally, we ran the algorithm 100 times, varying the number
of modules from 2 to 12. We computed the similarity between the 100
optimized partitions at each resolution in terms of variation of information
(VI)37. Low VI values suggest that the algorithm delivered partitions that
were highly similar and consistent across multiple attempts (Fig. 1E).

Relation between TCscore and Q
Howdo the twoheuristicsTCscore andQ, relate to eachother?Toanswer this
question, we appliedmultiresolution consensus clustering (MRCC)38 to the
HCP FC covariance matrix and we computed the TCscore on the resulting
partitions. MRCC uses the Louvain algorithm to optimize Q at different
spatial scales, thus providing partitions made of finer and coarser modules.
By running MRCC, we obtained 990 partitions made of a number of
modules within the range [2, 50] (see also Methods “Multiscale modularity
maximization”). Each one of these partitions is associated with a Q-value
that resulted from the optimization, which we compared to the TCscore
values computed on the same partitions. TCscore andQ are significantly and
strongly correlated (r = 0.91; pval < 10–15; Fig. 2A). However, if we divide
the ensemble of data points into groups where partitions have the same
number of modules, TCscore and Q result anti-correlated (Fig. 2B). This
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means that TCscore andQ are linked by a Simpson’s paradox: overall the two
variables are positively correlated, but this correlation is reversed when the
ensemble is divided into groups. Specifically, both TCscore and Q values
increase for coarser partitions (i.e., partitionsmade of fewermodules), but if
we consider partitions with equal levels of granularity the partition with
higher TCscore is the one with lower Q and vice versa.

We explored what might cause the anticorrelation within partition
groups. For each set of partitions with an equal number of modules we
considered the twopartitionswith thehighest and lowestTCscore (Fig. 2C) and
computed the variance of themodules size and the symmetry of themodules
between the hemispheres. The variance of modules size was computed as the
standard deviation of the size of themodules (i.e., howmany nodes belong to
one module) so that higher values mean that the sizes of modules are het-
erogeneous within the partition. To assess the hemispheric symmetry of a
partition, we calculated, for each module, the difference between the number
of nodes in the left and right hemispheres, normalized by the total number of
nodes in themodule.The complementof the averageof thismeasure across all
modules serves as a proxy for hemispheric symmetry (HS, Eq. (2)).HigherHS
values indicates greater symmetry in the partition.

HS ¼ 1� 1
M

XM

m¼1

jNLH � NRH j
NLH þ NRH

: ð2Þ

where NLH and NRH are the number of nodes in module m in the left and
righthemispheres, respectively. The results, reported inFig. 2D,E, show that

the partitions with the lowest TCscore (higher Q) consistently present
modules with greater variance and a lower hemispheric symmetry, com-
pared to the partitions with the highest TCscore (lowest Q).

Altogether, these findings suggest that our newly introduced TCscore
fairly recapitulates Q in some aspects. However, TCscore rewards modular
structures that are more symmetric between cortical hemispheres and
composed of modules of similar size.

Lastly, although widely used, modularity maximization is not the only
community detection algorithm. Thus, we carried out a supplementary
analysis to compare TCscore to partitions obtained via a hierarchical version
of the Stochastic Blockmodel (SBM)39, which yields more general classes of
partitions, including assortative, disassortative, and core-periphery (Fig. S2).

Relation with the canonical systems
In the previous section, we used TCscore as a quality function to assess the
goodness of partitions foundwithmodularitymaximization to see howwell
our metric recapitulates conventionally detected modular structures. Here,
we use our algorithm to maximize TCscore on FC networks. One question
when inferring a newmodular structure in the human brain is how it relates
to resting state functional systems (RSFS). Throughout the neuroimaging
literature, different labels have been applied to RSFC communities, none-
theless, the patterns of organization have been largely consistent40–42.
However, all these studies have always overlookedhigher-order interactions
among brain regions, at least in terms of redundancy and synergy. In this
section, we report how the modules derived from TCscore maximization,

Fig. 1 | Schematic of the algorithm. A Whereas with modularity maximization
nodes are grouped together based on the strength of their pairwise connections
(stronger connections fall within a module), with our algorithm we group together
nodes if the TC of their time series is higher, on average, than the TC of an equally
sized subsets of nodes. In the figure the yellow nodes constitute a module that
satisfies both criteria for community detection. B TSE curves for the HCP covar-
iance matrix. For any subset size, they provide an estimate of the average (blue) and
maximum (purple) levels of integration of the nodes in the subsets in terms of total
correlation. By partitioning the system into modules, we can compute the TC of the
modules as theTCof the nodes constituting eachmodule. Then, we canmap them in

the same graph to see where these values are located with respect to the average level
of integration for subsets of the same size. The white dots are the TC of the modules
of a random partition, whereas the red dots are the TC of the modules of the
optimized partition. C A zoomed in version of panel B, which clarifies that in the
optimized partition the modules have a much higher level of integration. D An
example of a random seed partition and the partition obtained after the optimiza-
tion, projected on the cortex. E How similar the partitions obtained from different
runs of the optimization are, measured at each spatial scale by using variation of
information (VI) as the similarity metric.
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relate to previously reported RSFS, and specifically to well-established
canonical systems41.

We ran our algorithm initializing it with partition seeds characterized
by a different number of communities (M = [2, 12]), so that also the number
of communities of the optimized partitions varied across spatial scales. For

each spatial resolution we ran the algorithm 100 times and, for each one of
these iterations, we computed the similarity between the detected partition
and the partition corresponding to the canonical systems. As an index of
similarity, we used the Adjusted Mutual Information (AMI)43, a measure
that theoretically accounts for differences in the number of modules

Fig. 2 | Relation between TCscore and Q. A Trend of TCscore relative to Q. Each
point corresponds to a partition obtained optimizingQon theHCPFCnetwork, and
onwhichwe computed TCscore downstream. Colors code the spatial resolution of the
partitions indicating the number of clusters. B For each group of partitions with an
equal number of modules, we computed the correlation between TCscore and Q and
reported here the correlation coefficients. Points colored in orange identify statis-
tically significant correlations. C, D. Values of variance of the modules size and

symmetry between hemispheres at each spatial resolution for the two partitions with
highest and lowest TCscore.EExample of how the positive correlation observed in (A)
is reversed if we consider groups of partitionswith equal resolution (or equal number
of modules). In this case, we report the reversed correlation for groups of partitions
with 6, 7, and 8 modules. We also report a projection on the cortex surface of the
modular structure of the 7-module partitions with the highest and lowest TCscore.

Table 1 | Pseudocode of our algorithm for community detection via total correlation optimization

• compute TSE curve

• for it = 1 through it = ITER

• plant a random seed partition C0

• compute TCscore on C0 → score0

• for h=0 through h=H

• define temperature T ¼ T0 × ð1� hfrac=HÞh

• switch module assignment for a random node i → Ci

• compute new TCscore on Ci → scorei

• if scorei>score0&& exp scorei�score0
T

� �
> randð0; 1Þ

• update partition → C0 = C1

• update TCscore → score0 = scorei

We set the parameters as follows: H = 100,000 (number of iterations in the annealing process); ITER = 100 (number of times we perform the optimization through annealing); hfrac = 10; T0 = 1.
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between two partitions. TheAMI is bounded in the range [0, 1], with higher
values indicating higer similarity (AMI = 1 means identical partitions). As
reported in Fig. 3A, at each resolution the optimized partitions present some
level of overlap with the canonical systems (the AMI is never 0), but at the
same time, they are never identical (the AMI is never 1). As expected, the
maximum similarity is obtained when M= 7, that is the number of the
canonical systems.

Next,we investigated the relation of our partitions to canonical systems
in more detail. We focused on TC-optimized partitions with 7 modules. A
first visual comparison can be drawn from Fig. 3B, where we represented a
projection on the cortex of the two partitions. We noticed that modules
largely overlap,with somedifferences.We furthermapped how they overlap
by module/system in Fig. 3C, demonstrating that the greatest correspon-
dence betweenmodule assignment is found for the visual system, the dorsal
attentionnetwork (DAN), and the limbic system,which arewell capturedby
modules 1, 3, and 5 of our optimized partition. The somatomotor system
(SM) splits into modules 2 and 4, and part of it is co-assigned to the ventral
attention system(VAN). Interestingly, recent studies highlighted high levels
of co-activations between the two44–46. The default mode network (DMN)
and frontoparietal networks (FP) instead are mixed into modules 6 and 7,
suggesting that association areas are redistributedwhen considering higher-
order interactions in the community detection process. These results are
consistent among the 100 iterations of the algorithm (Fig. 3D), and are
mostly replicated in the MICA dataset (Fig. S1, A–D).

Altogether these results suggest that partitions inferred by considering
higher-order interactions via TCscore maximization partially preserve the
organization recapitulated by the familiar canonical systems.However, they
also suggest a different organization for regions comprising higher order
association systems.

Redundancy dominated modules across spatial scales
In this section, we provide a more thorough description of the modular
structure inferred by maximizing TCscore, analyzing how it balances segre-
gation and integration of information at different spatial resolutions. For
this purpose, we used the same set of optimized partitions of the previous
analysis. This set comprises 100 instances for each spatial scale (identified by
the number of clusters, M = [2, 12]), derived from the HCP FC covariance
matrices.

First, we investigated howTCscore varies across spatial scales. It showed
a decreasing trend with respect to M (Fig. 4A), with a peak in correspon-
dence of partitions made of 3 modules. This means that, as the partitions
become finer and modules smaller, modules are comprised of nodes car-
rying less redundant information. Thus, because the modules are less well-
defined in terms of their redundant information content, we can say that the
entire brain system becomes less segregated. The peak observed for three
modules is a direct consequence of the TSE diagram in Fig. 1B where the
maximum difference between average and maximum integration levels
occurs for subsets of approximately 70 nodes—the expected size of three

Fig. 3 | Relation with the canonical RSFS. A Similarity between the partitions
inferred by maximizing TCscore, and the canonical systems in terms of Adjusted
Mutual Information. The boxplots summarize the statistics of the 100 iterations of
the algorithm at each spatial scale.BProjection on the cortex surface of the canonical
systems (left) and the partition obtained optimizing TCscore (right). For the repre-
sentation of the latter, we report the centroid partition (the partition most similar to
all the others within the 100 iterations of the optimization algorithm) with 7 mod-
ules. C In this panel, each dot is a node and we show to which module/system it is
assigned in the two partitions shown in (B). The colors follow the RSFS classification.
D We further assessed the overlap across all 100 partitions obtained from the 100

optimization iterations. To do so, each partition was first aligned with the canonical
systems by assigning numbers (1–7) to the systems and relabeling partitions to
maximize node overlap between modules and their corresponding systems. We
report on the cortex and through a bar plot the number of times nodes are coassigned
between the canonical systems and their corresponding module across the 100
partitions. On the right, we present a visualization similar to (C), where we com-
puted the overlap between each module and each canonical system, averaged across
all iterations. Darker squares indicate a greater overlap between modules across
iterations.
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clusters in a 200-node network. We further analyzed the relationship
between the covariance matrix, the leaf shape of the TSE curve, and TCscore
in Fig. S3.

Then, we focused on how the information carried by single modules is
integrated throughout the system at different spatial scales. We hypothe-
sized that an informationally optimal community structure is one where
modules carry distinct information that becomes accessible when observed
together. This phenomenon iswell capturedby the notion of synergy, which
we computationally quantify through the organizational information, or
O-information24. In amultivariate system, theO-information represents the
overall balance between redundancy and synergy. Synergy-dominated
structures present negative values of O-information, with lower values
indicating a higher degree of synergistic information (for details see
“Methods” “Synergistic and redundant information in multivariate sys-
tems”). Tohave an estimate of how synergistic informationmanifests across
modules, we randomly sampled nodes fromdifferentmodules, for a total of
1000 times for each spatial scale, and computed the O-information on the
obtained subsets. For instance, in partitionsmade of 7modules, we sampled
7 nodes, each belonging to a different module, and computed the
O-information in such subset. We carried out the same analysis on a null
model, where we sampled the same number of nodes but at random,
without considering the modular structure. Whereas TCscore is defined
relative to anullmodel (the average level of integration in theTSEcurve), the
O-information lacks a similar comparison in its formulation, thus neces-
sitating this extra null model comparison. We observed lower
O-information in coarser partitions, however, in finer partitions, the
O-information deviates more from the null model (Fig. 4B). We quantified
this deviation by computing the effect size (ES) as the difference between the

means of the observed and the null O-information (Fig. 4D). This metric
captures that in finer partitions the amount of synergistic information
retrievable in a subset of nodes is more closely linked to the community
structure - nodes fromdifferentmodules actually carry distinct information
- whereas at a coarser scale we might obtain lower O-information just
because it is computed on a smaller number of elements.

Next, we investigated the relationship between TCscore and
O-information for specific spatial scales. For any given resolution, we
computed the correlationbetween the twovariables across the 100 iterations
(Fig. 4E, G). For most of the scales, TCscore and O-information was sig-
nificantly anti-correlated: the partitions that have maximally redundant
modules are also those where the synergy between modules is the greatest.
This balance of redundancy within and synergy between modules can be
view as an expression of the co-existence of segregation and integration in a
higher-order space.

Once we observed the trends of redundancy and synergy across scales,
we asked: Is there an optimal scale where redundancy within and synergy
between modules are maximally balanced? To answer this question, we
examined the interaction between TCscore and O-information. While these
indices can be combined inmultiple ways, here we defined the segregation-
integration balance index (B) as follows:

B ¼ TCscore½ð1� O informationÞES� ð3Þ

Ideally, we want the B to be as high as possible: when the three factors
are high, we have maximum redundancy within and maximum synergy
betweenmodules. In otherwords, eachmodule ismadeof nodes that share a
large amount of information (high TCscore) and carry different information

Fig. 4 | Redundancy and synergy across spatial resolutions. A Trend of TCscore

versus the number of clusters. The statistics to display the boxplots were carried out
considering 100 iterations of the optimization algorithm for each spatial scale.
B Trend of O-information versus number of clusters in the optimized partitions
(purple) and in randomized nodes (gray). C Trend of B, the index that recapitulates
the balance between redundancy within modules and synergy between modules
(segregation-integration balance in a higher order space), across spatial resolutions.

D Median difference effect size of the observations from the two distributions of
empirical and null model-derived O-information. E Correlation coefficients
obtained by computing the Pearson correlation between TCscore and O-information
among the 100 iterations at each spatial scale. Statistically significant correlations
have been highlighted in yellow. F Example of such correlation for M = 5.
G Projection on the cortex of the 5-module partition with highest TCscore and lowest
O-information.
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to the network (high (1 - Oinformation) × ES). Tracking this index along
spatial resolutions (Fig. 4C) resulted in a bell shapewith a peak inM= 9 and
highest values in the range M= [7, 9]. This is a direct consequence of what
observed in Fig. 4A, B. The redundancy withinmodules is higher in coarser
partitions. The synergy betweenmodules is also higher in coarser partitions,
however, it deviates more from what we would observe in a null model
(measured by ES) as the partitions become finer. Thus, it is intuitive that a
combination of redundancy and synergy, that captures the higher-order
balance between segregation and integration, can be observed at inter-
mediate scales, when partitions are neither too coarse nor too fine.

Altogether, these results suggest that redundancy and synergy of brain
activitywithin and betweenmodules, and their interplay, vary across spatial
resolution. An optimal balance has been found in partitions composed of 7
to 9 modules. All the findings are replicated in the MICA dataset
(Fig. S1, E–H).

Localpropertiesof the redundancydominatedmodular structure
Having defined globally in which way the new modular structure balances
redundant and synergistic information,wenowwant to characterize its local
properties. Specifically, we want to investigate how much single brain
regions participate in the redundant integration of themodule towhich they
belong, relative to how much they participate in the redundant integration
of the whole network. This concept is analogous to what is commonly
known in network science as participation coefficient47, but here we include
the consideration of higher-order interactions. While computing nodal
measures in bivariate networks is straightforward, it becomesmore difficult
when considering multivariate measures such as TC, which by definition,
cannot be computed on single nodes.

To address this issue, we defined the Relative Integration Coefficient
(RIC), which can be computed for each node i, and that is formulated as
follows:

RICi ¼
TCM � TCM�i

TCN � TCN�i
ð4Þ

Where TCM is the TC computed on the module M to which node i
belongs, TCM−i is the TC of the samemodule when node i is removed, TCN

is the TC computed on the whole network, and TCN−i is the TC computed
on the whole network after removing node i. The idea is that, even if we
cannot compute TC on single nodes, we can look at how much the TC
increases (or decreases) when we remove node i from the modules and the
network, in order to quantify howmuch it participates in the redundancy of
its module compared to the redundancy of the whole system. High RIC
values indicate that the node contributes to the redundancy of the module
more than to the redundancy of the network (if we remove it, the TC of the
module becomes low, hence the numerator is high). The role of these nodes
is to share information predominantly with nodes of the same module,
meaning they exhibit high topological specialization. This is particularly
true when RIC > 1. Conversely, low RIC values indicate that a node either
scarcely contributes to its module’s redundancy or significantly to the net-
work’s overall redundancy (i.e., its removal increases the network’s TC,
lowering the denominator). These nodes share information across the entire
network, indicating low topological specialization.

In Fig. 5Awe displayed the RIC distribution computed on the centroid
partition of the 100 instantiations with 7 modules. It shows a left and right
tails of nodes with low and high topological specialization, respectively. In
panels B–D, we mapped those nodes onto the cortex relative to their
canonical systems. Nodes with high topological specialization are primarily
found in the visual and somatomotor systems, i.e., in the sensory areas.
Conversely, nodes with low topological specialization are mostly located in
theVANandDMN, i.e., in the transmodal and association cortex (although
the DMN also includes a few nodes with high topological specialization).
This distribution aligns with their role of integrating information from
different areas to support cognitive functions. While most nodes in the
limbic systems exhibit very low RIC values, this is mainly due to their

minimal contribution to redundancy, either in themodule and in the whole
network (seepanelC),which is expected given the inherentlynoisynatureof
the signals from that region of the brain. This local mapping is consistent
across the 100 iterations of the algorithm and spatial scales (Fig. 5E, F).
Moreover, a replication on the MICA dataset shows coherent results
(Fig. S1, I–K).

Ultimately, with this local analysis, we could assign a role to single
nodes, derived from their participation in higher-order interactions relative
to themodular structure.Wewere able to identify brain areasmore devoted
to sharing informationwith similar nodes (i.e., nodes belonging to the same
community) as well as brain areas whose primary purpose is integrating
information across the whole network.

Redundancy dominated modular structure across the human
lifespan
Lastly, we wanted to test the ability of TC-based community detection to
capture variations in functional connectivity organization that could
naturally arise when considering clinical cohorts, or large-scale multi-sub-
ject datasets. To this purpose, we applied our newmethodology to a lifespan
dataset, as the progressive modifications exhibited during development,
adulthood, and senescence, are one of the most striking and well-
documented examples of functional connectivity re-organization48–50.

We leveraged the NKI dataset29, comprised of 917 subjects with ages
heterogeneously distributed between 6 to 85 years (Fig. S4, A). For each one
of the subjects, we performed 100 iterations of the TCscore optimization at
different spatial resolutions, obtaining partitions with a number of modules
between 2 and 10. For consistency with previous analyses, we report the
results forM = 7 (for each subject we considered the centroid partition after
iterating the algorithm 100 times). However, results are consistent across
spatial scale (Fig. S5) and specifically replicate for M=9, which corresponds
to the resolution with optimal balance between segregation and integra-
tion (Fig. S6).

Here, we show how theoretical information measures computed on
such partitions change with age. Note that, due to the shorter time series in
the NKI dataset, the range of these measures differs from that observed in
previous analyses on the HCP and MICA datasets. For a thorough exam-
ination of how information theory measures depends on the length of time
series see Supplementary Material (Fig. S7), and the Technical Considera-
tion section in the Discussion. Here, we invite the reader to focus on the
trends over the lifespan rather than absolute values.

First, we inspected how redundancy within modules and synergy
among them vary with age (Fig. 6A, B). We found that TCscore significantly
decreases with age (rðTCscore;ageÞ ¼ �0:70, pvalðTCscore;ageÞ < 10

�15), whereas
O-information between modules significantly increases
(r(Oinformation, age) = 0.41, pval(Oinformation,age) < 10

−15). This result suggests
that aging is associated with a decrease of segregation of the network, a
phenomenon largely observed in previous studies12. Moreover, aging is
associated with less stability of the algorithm (Fig. S8), whichmight indicate
that it is more difficult to retrieve maximally redundant modules in older
adults.

Next, we computed the RIC-values of each node, thus mapping age-
related variations of the extent to which a node participates to the redun-
dancy of itsmodule.We found that the averageRICvalues decreasewith age
(Fig. 6C),meaning that later in life nodes participatemore to the integration
of the network, rather than individual modules. Unpacking the RIC’s trend
for each canonical system (Fig. 6D), we observed that nodes in the soma-
tomotor and visual systems, previously classified as nodes with high topo-
logical specialization, have the steepest decline of RIC, which means that
they drive the progressive integration of the network. On the other hand,
nodes from the DMN and FP networks (low topological specialization)
show a modest decline of RIC. Nodes from other canonical systems, not
reported in the figure, presented an intermediate pattern.

A final question is how much and in what way the modular structure
changes across the lifespan. To answer this question, we divided the dataset
into 8 age groups, each spanning 10 years. Analogously to what has been
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done in ref. 51, we used a bootstrap strategy where for 500 iterations we
sampled subjects in each group, to then identify which nodes change alle-
giance to modules across consecutive groups. This can be quantified via
flexibility52, a measure that captures how often a node changes module
assignment across partitions. Here, we aligned the partition labels across
age-groups, computed the nodalflexibility between consecutive groups, and
averaged the results over the 500 iterations. We observed that the nodes
belonging to the visual and somatomotor systems are themost stable across
the lifespan (Fig. 6E, F).We also averaged thismeasure within the canonical
systems (Fig. 6G, H), finding that in the late lifespan, the reconfiguration of
the modular structure is greater than at the beginning (i.e., the entropy
increases). Most of the systems reconfigure more with age, except for the
DMN and the FP networks, which keep the most stable levels of nodal
flexibility.

Overall, these results suggest that our newly introduced algorithm is
able to track changes in functional organization. The sensory areas overlap
with the most stable modules. However, the changes that they present are
aimed at integrating the whole system. The DMN, FP and attention net-
works are those that reconfigure the most, but they keep stable levels of
integration with the whole network from the beginning of the lifespan to
the end.

Discussion
In this paper, we proposed an algorithm that uncoversmodular structure in
functional brain networks by accounting for higher-order interactions. Our
approach leverages the mathematical framework of information theory to
find highly redundant subsets of nodes. We provided a new view of brain
organization and showedhow it contrastswith canonical functional systems

and with the modular structure uncovered with traditional methods based
on pairwise interactions. The discovery of a Simpson’s paradox relating
TCscore and modularity suggests that, when higher-order interactions are
accounted for, the notion of ’structure’ in complex systems becomes much
richer than is typically observed in purely bivariate systems. This may be a
fruitful new perspective, as the Simpson’s paradox typically reflects non-
trivial interactions between elements of a system, when viewed relative to
certain bounds. We also presented two new indices: a global index that
estimates how the redundant modules balance segregation and integration
of informationacross thewholenetwork, anda local index that characterizes
node diversity in terms of contribution to network integration. Finally, we
delineated the evolution of redundant modular structure across the human
lifespan.

Redundancy dominated systems of the human brain
Decades of neuroimaging research have beendevoted to defining functional
systems of the human brain. Task-based experiments identified such sys-
tems as collections of co-activated brain areas53,54. More recently, the idea
that brain function is intrinsic55, constantly processing information for
interpreting and responding to environmental demands, led to adescription
of functional systems of highly correlated spontaneous activity40–42. Proof
that such systems are grounded in neurophysiology is widespread. Not only
are they largely consistent across studies and methodologies, but some of
them also match patterns of brain damage observed in clinical cohorts56.
However, there exist co-fluctuating areas that have not been firmly aligned
with independently validated brain systems12. Whether they correspond to
undefined brain systems or are artifacts induced by network construction is
yet to be determined. We argue that accounting for higher-order

Fig. 5 | Relative integration coefficient. A Histogram of relative integration coef-
ficient computed for each node. The areawhere RIC is greater than 1, denoting nodes
with high topological specialization, has been highlighted in green, whereas the area
containing 10% of the lowest RIC values, denoting nodes with low topological
specialization, has been colored in pink. B Count of nodes with high and low
topological specialization within the canonical systems. C Trend of TCN − TCN−i

versus TCM − TCM−i. These two measures are highly correlated, as a node con-
tributing to its module’s redundancy also inherently contributes to the network’s

redundancy. Nodes with high and low topological specialization are color-coded
according to their canonical system, with their contour indicating their functional
role. D Projection on the cortex of the nodes with high (green) and low (pink)
topological specialization in the centroid partition with 7 modules. E, F Projection
on the cortex of the frequency with which nodes have resulted with high or low
topological specialization among the 100 partitions with 7 modules (C) and the
centroids partitions across spatial scales (D). The intensity of the color is propor-
tional to that frequency.
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interactions is an avenue to unravel more complex relationships among
brain areas. This can lead to a different perspective on brain organization
and elucidate the role of nodes that aremore difficult to place in the classical
framework.

We compared redundancy dominated modules to canonical resting-
state systems. While some level of similarity was expected (canonical sys-
tems are dominated by redundant interactions57), we highlight how they
differ. Our method led to a clear identification of the visual and somato-
motor systems, and the dorsal attention network, which are also the systems
more consistently detected across reports. However, the somatomotor
system is split into two modules. This is consistent with a dorsal and a
ventral representation of such system, reported in ref. 40. In our partition,
some brain areas normally associated with the ventral attention system are
co-assigned to nodes of the ventral part of the somatomotor area.

Interestingly, previous reports showed co-fluctuations among those
regions44–46. This is an example of how beyond pairwise interactions offer a
different angle on how co-activated brain regions could form coherent
systems, still grounded in neurophysiology. As for the brain areas belonging
to the frontoparietal system and DMN, these converge into two redundant
modules where they are mixed. Future investigations will clarify the role of
these new systems during tasks, cognitive functions, or disease progression.

A higher-order lens on segregation and integration of brain
systems
Themodular organization of the human brain supports segregation and
integration of information among functional brain systems3, enabling
cognition and behavior. Recent studies58 found proof that local within-
systems connectivity is critical for motor execution, and between-

Fig. 6 | Application to the NKI dataset. A Values of the TCscore for the partitions
inferred at the single-subject level, versus age. B Values of O-information between
modules computed on single-subject partitions versus age. C RIC values averaged
across nodes for each subject versus age.DRIC values averaged within the canonical
systems, for each subject, versus age. Throughout panels A-D, because the popu-
lation is not uniformly distributed across age, we represented values in age bins with
higher population density with darker colors. EWith the nodal flexibility we depict
howmuch single nodes changemodule assignment across the lifespan. Yellow colors
indicate high entropy, i.e., nodes that are more likely to change module, and vice

versa colors toward blue indicate nodes whose module assignment is stable.
F Projection on the cortex surface of the nodal flexibility, averaged across age-
groups. G Distribution and average of nodal flexibility reported for each age group.
There is a statistically significant difference between consecutive distribution; pvalues
of the six paired t-test: [0.0014, 0.0003, 0.0466, 0.0391, 0.0002, 0.0107].H Values of
nodal flexibility reported for each canonical systems and each age group. All systems
show an increase of nodal flexibility (i.e., reconfiguration of module assignment)
across the seven age groups, except for the Limbic system, the FP, and DMN.
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systems connectivity is crucial for cognitive tasks. Furthermore, brain
organization benefits from the coexistence of segregation and integra-
tion. While lack of segregation hampers functional specialization and
fails to protect the system from the spreading of disease59, a complete
disconnection between brain systems is associated with brain disorders
(e.g., Alzheimer’s60 and Parkinson’s61 disease, or schizophrenia62) and
leads to cognitive deficit63.

In our work, we explored how the balance between segregation and
integration is expressed when considering higher-order interactions.
Notably, the TSE complexity1, that inspired our TCscore, was designed to
capture how brain dynamics optimizes segregation and integration of
information. However, it did not account for any modular structure,
which now we know is central to brain organization. Instead, we hypo-
thesize that the dichotomy of segregation-integration is supported by a
mesoscale organization made of subsystems where brain activity is
redundant (copied over the system’s elements) andwhose interactionwith
each other leads to a new type of information, which is synergistic, that
goes beyond functional and local specialization. Interestingly, we found
these twomeasures to be anti-correlated in theHCP dataset. This suggests
that the brain may be organized in a way where increased redundancy
within subsystems corresponds to greater synergistic information
between them. Spontaneously and even under a higher-order perspective,
brain activitymanifests in amannerwhere segregation and integration are
maximized. We further characterized the balance between segregation
and integration via an index that tracks how information encoded in brain
activity is redundantwithin subsystems and synergistic between them.We
exploredhow this index is conveyed across spatial resolutions,finding that
a division of the neocortex into 9 subsystems optimizes the above-
mentioned balance, immediately followed by partitions into 8 and
7 subsystems.

Nodal diversity in redundancy-dominated modular structure
Given a division of the brain into subsystems, individual nodes can behave
differently in howmuch they interact with nodes of the same system versus
how much they interact with other nodes assigned to different systems. In
this sense, wemight say that they serve distinct functional roles, especially if
they are highly interconnected hubs: they either foster local specialization
(provincial hubs) or facilitate inter-module communication (connector
hubs).Theparticipation coefficient47,64was introduced toquantify the extent
to which they cover one role or the other. Many reports located connector
hubs in the association cortex14,65,66 highlighting how they are involved in a
wide repertoire of tasks and functions67,68.

All these findings build on a dyadic view of the interactions among
brain regions. Recent works69,70 studied how being a hub affects compu-
tation capacity estimated in terms ofmultivariate information processing,
and information theory has also been used to extend the formulation of
participation coefficient to the case where multiple sets of partitions can
describe the mesoscale organization of a complex system71. However, a
measure able to capture the role of the nodes in themodular organization,
which also accounts for higher-order interactions, is missing. Thus, we
introduced the Relative Integration Coefficient. By shifting the concept of
participation coefficient to a higher-order space, we identified nodes with
high and low topological specialization based on the amount of infor-
mation sharedwith co-assigned and non-coassigned nodes. Sensory areas
mainly present high topological specialization, whereas regions from the
DMN, ventral attention and frontoparietal networks have the lowest
topological specialization.Notably, brain regionswhose predominant role
is to enhance modular redundancy were also found to be the most
synergistic areas in the system, regardless of the modular structure20,23. A
similar distinction between sensory and association areas has also been
observed in ref. 72,where the study of co-fluctuations between sets of three
and four regions saw the sensory areas asmaximally coherent, as opposed
to association areas. Future works will elucidate how these maximally
synergistic, provincial, coherent areas engage during tasks or in different
clinical cohorts.

Brain redundant subsystems have unique trajectories during the
lifespan
The application of our algorithm to a lifespan dataset mainly served the
purpose of validating its ability to detect changes in modular organization.
Nonetheless, understanding how higher-order interactions change across
the years, and with them the emerging modular structure, is of crucial
importance and here we provided a first glance at it.

Alterations in the organization of brain connectivity have been
observed, even in the absence of disease, in anatomical and functional
networks, and in their relationship48–51,73. Thus, it is safe to assume that
multivariate interactions among brain regions are also subject to change
over the lifespan. By uncovering redundancy-dominated modules in sub-
jects between 6 and 85 years old, we tested if, and to what extent, our
algorithm is able to capture such changes. First, we observed a decrease
within-module redundancy, and thus segregationof information, associated
with aging. Evidence of this phenomenon is overwhelming in analyses of
pairwise connectivity74–78, but also in those accounting for higher-order
interactions79–81. The fact that we could replicate this ensures that our
algorithm is able to track changes in modular organization. We then
extended our analysis by portraying how the heterogeneity of node pro-
cessing with respect to the modular organization unravels over the lifespan.
Nodes with high topological specialization become increasingly less spe-
cializedwith age, whereas nodeswith low topological specialization become
only mildly more integrated in the system. This suggests that the decreased
segregation is majorly driven by sensory areas that share more and more
information with other systems. This might align with a reduction in the
distinction between connector and non-connector nodes in less segregated
systems74. We also described the reconfiguration of redundant brain sys-
tems, finding that regions in the dorsal attention and ventral attention
networks are more prone to change module assignment. Taken together,
these results indicate that sensory areas formbrain systems that are themost
stable throughout the lifespan, but at the same time, they drive the drop of
segregation of information by sharing increasingly more information with
regions outside of sensory cortex.

Technical considerations and future directions
Afirst technical consideration is that all themeasures here reported are built
upon the covariance matrices of couples of variables, so they come with an
assumption of linearity of the data. Talking about redundant and synergistic
interactions in this context might sound counterintuitive. However, prior
works show that it is possible to search for higher-order interactions in a
linear system, only capitalizing on its pairwise relationships. In82 it has been
shown that purelyGaussian systems can present higher-order synergies and
that total correlation is tied to mutual information. Thus, polyadic depen-
dencies can be observed even in linear systems. Even from83 we know that
themultivariateGaussian is themaximumentropy distribution constrained
by pairwise covariance. In other words, pairwise linear interactions set the
structure upon which beyond-pairwise interactions coexist.

It is also important to note that the covariance matrices used in this
paper are derived from BOLD time series of different lengths in the three
datasets. In the HCP and MICA datasets we concatenated data from every
subject at the node level, obtaining time series with a large number of
samples; in theNKIwederived FCmatrices at the subject level, from shorter
time series. Information theory measures are sensitive to the length of the
data onwhich they are computed, and fromthe current results, it is clear that
they lie in different ranges when computed on the NKI single-subject data.
Thus, we pursued a simulation study to test how having fewer data points
skews such measures (Fig. S7). We found that TC is overestimated when
computedon shorter time series, and this effectworsens the larger the subset
size. However, this bias is consistent across iterations such that it does not
invalidate our analyses. The effect shows constant magnitude for a given
length of time series, which presumably is protracted across subjects in the
same way, allowing between-subject comparisons.

Another source of ambiguity is the global signal regression (GSR)
performed on the BOLD time series. Previous studies suggest that global
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signal influences functional connectivity in a way that is spatially non-
uniform, and there is a synergistic interaction between the two signals84.
Moreover,GSR removes a large amount of redundancypresent in thedata20.
Because we leveraged Gaussian assumptions to compute multivariate
information theoretical measures on covariance matrices, possible con-
founds have to be taken into account.Nonetheless, the proposed framework
is independent of the specific neural signal and could be replicated on
datasets exploiting different neuroimaging modalities.

A possible limitation of our framework is that the number of com-
munities provided as output is determined a priori by the number of
communities that we impose in the seed partition. The algorithm, imple-
mented as it is, cannot tune the spatial resolution.We tried to overcome this
issue not only by examining redundant modular organization in a broad
range of spatial scales, but also by identifying the most relevant scales,
characterized by a balance between segregation and integration of infor-
mation. Besides, an advantage of our framework is that it can be applied
broadly to any set of multivariate time series. Its formulation is irrespective
of the fact that ourfield of application is neuroscience, and it can be tested on
other complex systems, such as biological85, ecological86, and
epidemiological87.

This paper opens the door to a multitude of future investigations. One
question is how the balance between higher-order segregation and inte-
gration ismanifested in clinical cohorts. Several brain diseases are known to
lack this balance88, and multivariate information theory has already been
proven relevant in clinical and behavioral contexts89–91. Intuitively, given
that neurotypical cognitive functioning requires the coordination of mul-
tiple brain regions2,92, beyond pairwise frameworks are needed to discover
biomarkers of neurodegeneration onsets. Another line of research revolves
around the relationship between structural and functional connectivity.
Ebbs and flows of modular organization93can be reanalyzed exploiting our
measures, introducing sensitivity to higher-order interactions. Finally, one
can pursue investigations where our framework is modified to accom-
modate, for instance, a different quality function that optimizes not only the
redundancy within module, but also the synergy between modules. This
would require preliminary stepswhere a graph similar to the TSE is built for
theO-information, so that it can also be compared to a chance level. Further
modifications can accommodate multilayer investigations. In the case of
modularity maximization, having a multilayer formulation94 has been
proven convenient to track modular structure across time52, subjects95, or
types of connectivity96 because nodes labeling is consistent across layers.We
do believe that a similar advantage is in fact achievable with our algorithm if
we optimize individual layers planting the same seed. Future investigation
will elucidate the feasibility of this direction.

Methods
Datasets and data processing
The analyses presented in this paper were conducted on three independent
resting state fMRI datasets, derived from the Human Connectome Project
(HCP)27, the MICA57 (an open-source repository)28, and the Nathan Kline
Institute Rockland Sample (NKI)29. Several previous studies have used those
datasets and described in detail their image acquisition and preprocessing
pipelines (see for instance97 for the HCP,21 forMICA, and98 for the NKI). In
the following paragraphs, we recapitulate them.

HCP. The HCP data were derived from 100 unrelated subjects, who
provided informed consent. The study protocols and procedures were
approved by the Washington University Institutional Review Board.
Resting-state fMRI (rs-fMRI) data were collected with a Siemens 3T
Connectom Skyra (32-channel head coil) during four scans in two
separate days. A gradient-echo echo-planar imaging (EPI) sequence
(scan duration: 14:33 min; eyes open) was used with the following
acquisition parameters: TR = 720ms; TE = 33.1 ms; 52° flip angle; iso-
tropic voxel resolution = 2 mm; multiband factor = 8.

Functional data were mapped into 200 regions covering the entire
cerebral cortex, identified via the parcellation scheme proposed in ref. 30

and aligned to the Yeo canonical resting state networks41. A rigorous quality
control of the images was performed and led to the exclusion of 5 of the 100
unrelated subjects. Exclusion criteria included mean and mean absolute
deviationof the relative rootmean square (RMS)motionacross resting-state
fMRI and diffusion MRI scans. Four subjects exceeding 1.5 times the
interquartile range of the measure distributions were excluded. One subject
was then excluded because of a software error during diffusion MRI pre-
processing. Downstream quality control, the data included 95 subjects, 56%
female, with a mean age of 29.29 ± 3.66.

Following a minimal preprocessing pipeline described in ref. 99,
functional images were corrected for gradient distortion, susceptibility
distortion, and motion, and then aligned to the T1-weighted data. The
volume was corrected for intensity bias, normalized to a mean of 10,000,
then projected onto the 32k_fs_LR mesh, and aligned to a common space
with amultimodal surface registration91.Moreover, global signal regression
(GSR), detrending and band pass filtering (0.008–0.08HZ) were
performed100. Finally, the first and last 50 frames of the time series were
discarded, resulting in a scan length of 13.2min and 1100 frames.

MICA. The MICA dataset was approved by the Ethics Committee of the
Montreal Neurological Institute and Hospital, and includes 50 unrelated
subjects whoprovidedwritten informed consent. Resting-state fMRI data
were collected using a 3T Siemens Magnetom Prisma-Fit (64-channel
head coil). Data collections included a single scan session of 7 min during
which participants were asked to look at a fixation cross. An EPI sequence
was executed with the following acquisition parameters: TR = 600ms;
TE = 48 ms; 52° flip angle; isotropic voxel resolution = 3 mm; multiband
factor = 6.

Data were mapped in 200 regions of the cerebral cortex following the
same parcellation scheme used for the HCP data and described in ref. 30.
Functional images were preprocessed as outlined in ref. 28. Briefly, data
went through motion and distortion correction, as well as FSL’s ICA FIX
tool trainedwith an in-house classifier.Nodesweredefined in theFreeSurfer
surface and used to project each subject’s time series. More details about
preprocessing can be found in ref. 101, where the Micapipe93 processing
pipeline is thoroughly described. Downstream, GSR was performed, as also
done for the HCP data.

NKI. The NKI dataset consists of imaging data from a community sample
of subjects encompassing a large portion of the lifespan. All participants
gave written informed consent. The study received approval by the
Institutional Review Boards of Nathan Kline Institute andMonclair State
University. fMRI data were collected with a SiemensMagneton Trio (12-
channel head coil), during a scan that lasted 9:40 seconds, where 971
participants were instructed to fixate a cross. Images were acquired using
a gradient-echo planar imaging sequence with acquisition parameters set
as follows: TR = 645ms; TE = 30ms; 60° flip angle; isotropic voxel
resolution = 3 mm; multiband factor = 4.

Quality control of the data included excluding subjects if the scans
exceeded 1.5 interquartile range in three or more of the following metrics:
DVARS standard deviation, DVARS voxel-wise standard deviation, fra-
mewise displacement mean, AFNI’s outlier ratio, and AFNI’s quality index.

Also for this dataset, the imagesweremappedonto200 cerebral regions
using the parcellation scheme in ref. 30. The fMRI data were preprocessed
using the fMRIPrep version 1.1.8102, which comprises the briefly listed fol-
lowing steps, also described in its documentation. The workflow utilizes
ANTs (2.1.0), FSL (5.0.9), AFNI (16.2.07), FreeSurfer (6.0.1), nipype103, and
nilearn104. FreeSurfer’s cortical reconstruction workflow (version 6.0) was
used to skull strip the T1w, which was then aligned to the MNI space.
Functional datawere slice time corrected andmotion corrected, usingAFNI
3dTshift and FSL mcflirt, respectively. “Fieldmap-less” distortion was per-
formed by co-registering the functional image to the same-subject T1wwith
intensity inverted105 constrained with an average fieldmap template106,
implemented with antsRegistration. Then, boundary-based registration107

was performed using bbregister to co-register the corresponding T1w.
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Motion correcting transformation, field distortion correcting warp, and
BOLD-to-T1w transformation warp were concatenated and applied alto-
gether using antsApplyTransforms with Lanczos interpolation. For each
functional run, frame-wise displacement108 was computed using Nipype.
The first four frames of the BOLD data in the T1w space were discarded.
After following the fMRIPrep pipeline, images were linearly detrended,
band-pass filtered (0.008–0.08 Hz), confound regressed, and standardized.
Furthermore, spike regressors for frames with motion greater than 0.5mm
framewise displacement were applied. Finally, GSR was performed.

Covariance matrices definition
As in ref. 20, theHCP-based empirical analyses presented in this paperwere
conducted after combining all scans and subjects to obtain a single covar-
iance (or FC) matrix representing a grand-average of the sample. For this
purpose, BOLD time series were concatenated at the node level andPearson
correlation was computed for each node pair. The same grand-average FC
matrix was computed with the MICA data. With the above-chosen par-
cellation of the cortex, which rendered 200 nodes representing different
brain regions, the average FCmatrices of the HCP andMICA datasets were
highly correlated (r = 0.851, pval < 10−15).

For the NKI-based analyses instead, we built FC matrices at the single
subject level, as wewanted to be able to track individual differences linked to
age. Thus, the Pearson correlationwas computed for each pair of nodal time
series, for each subject. After building the distribution of themean FCvalues
across subjects, we discarded those subjectswhosemean FC exceeded the 95
percentile of the distribution. This left us with 917 covariance matrices
relative to 917 subjects of age between 6 and 85 years old.

Redundant and synergistic information in multivariate systems
In this paper, we quantified higher-order interactions by means of infor-
mation theory. Specifically, given a multivariate set of signals (e.g., BOLD
time series), we used the mathematics provided by information theory to
measure howmuch the information carried by the system is shared among
the variable, i.e., redundant information, and how much it banks on each
variable’s contribution, i.e., synergistic information25.

As withmostmeasures introduced in information theory, redundancy
and synergy capitalize on the basic notion of entropy109, whichquantifies the
uncertainty associated with the state of a variable when only its distribution
is known.Mathematically, ifX is a discrete random variable, and P(X= x) is
the probability distribution of its states, the entropy is formulated as follows:

HX ¼ �
X

x2X
PðXÞ log2PðXÞ ð5Þ

In the case of a bivariate system, where we have access to two random
variables X1 and X2, entropy is used to compute the Mutual Information
(I)109, which captures howmuchknowing the state of the variableX1 reduces
the uncertainty associated with the state of X2. Mathematically, I is for-
mulated as follows:

IðX1;X2Þ ¼ HðX1Þ þ HðX2Þ � HðX1;X2Þ
¼ HðX1;X2Þ � ½HðX1jX2Þ þ HðX2jX1Þ�

ð6Þ

Moving towards multivariate systems then, i.e., systems comprised by
more than two variables, we can quantify higher-order dependencies by
extending theMI formulation110. There exist multiple generalization of MI.
Here, we focus on three of themthatwill be necessary to quantify redundant
and synergistic information in neural data. These are: Total Correlation
(TC)1,34, Dual Total Correlation (DTC)111, and Organizational Information
(Ω)24. The TC is derived as in Eq. (7):

TCðXÞ ¼
XN

i¼1

HðXiÞ �HðXÞ ð7Þ

whereX= {X1,X2,…,XN} is amacro-variable comprising a set ofN random
variables andH(X) is the joint entropy ofX.TC is lowwhen every variable is
independent and high when the joint-state of the whole system has low
entropy. In other words, TC increases monotonically as the system X
transitions from randomness to synchrony. TC can be used as ameasure of
redundancy: a multivariate system is dominated by redundant interactions
when the variables share a large amount of information, hence, the state of a
single variable considerably reduces the uncertainty associatedwith the state
of every other variables, i.e., TC is high.

MI can be also generalized via the DTC as follows in Eq. (8):

DTCðXÞ ¼ HðXÞ �
XN

i¼1

HðXijX�iÞ ð8Þ

where H(Xi∣X−i) is the residual entropy, that is the uncertainty associated
with the state of the variableXi that is not disclosed by the state of any other
variable, or subsets of variables, comprised inX. With this difference, DTC
captures all the entropy that is shared at least between two elements of X.
Contrarily to TC,DTC is high in systemswhere some information is shared,
but is low in both cases whereX comprises totally random or synchronized
variables.

The organizational information is the difference betweenTC andDTC
(Eq. (9)), so that when it is positive (TC(X) > DTC(X)) redundant infor-
mation among the variables is predominant, whereas when it is negative
(TC(X) < DTC(X)) the system is characterized by information that is both
shared but not redundant.

ΩðXÞ ¼ TCðXÞ � DTCðXÞ ð9Þ

Ω is negative in systems dominated by synergistic interactions and positive
in systems dominated by redundant interactions, and we used it as a proxy
for synergy in our empirical analyses. For a thorough discussion on how the
O-information can be interpreted see also refs. 112,113.

Information theory in Gaussian systems
All the information theoretic measures reported above require the estima-
tion of the entropy H(X), and specifically of P(x), which can be challenging
on empirical continuous data, like fMRI BOLD signals. However, for nor-
mally distributed (Gaussian) multivariate systems, closed-form estimators
exist114 that make the computation of the joint entropy easier. Under the
assumption that BOLD data follows a multivariate Gaussian distribution -
an assumption supported by numerous studies115–117 - we can exploit those
close-form estimators and derive information theoretical measures directly
from the covariance matrix.

For a single Gaussian random variable X ~N(μ, σ), the entropy can be
computed as:

HN ðXÞ ¼ lnð2πeσ2Þ
2

ð10Þ

For a multivariate Gaussian random variable X = {X1, X2,…, XN}, the
joint entropy can be computed as:

HN ðXÞ ¼ ln ð2πeσÞN jΣj� �

2
ð11Þ

where ∣Σ∣ denotes the determinant of the covariance matrix of X.
Similarly to what has been shown in the previous section, we can

generalize these formulations of entropy and derive the MI of a bivariate
system comprising the variables X1 and X2. Then, given the Pearson cor-
relation coefficient between X1 and X2, here referred to as ρ, the MI can be
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written as:

IN ðX1;X2Þ ¼
� lnð1� ρ2Þ

2
ð12Þ

Finally, the estimator for the total correlation of a multivariate Gaus-
sian system has the following formulation:

TCN ðXÞ ¼ � lnðjΣjÞ
2

ð13Þ

Then, from these equations, it is straightforward to rewrite in close-
formboth the dual total correlation and the organizational information. For
a more thorough description of how information theoretical measures can
be drawn in close-form see also refs. 20,114.

Multiscale modularity maximization on brain networks
Modular structure was inferred on the HCP dataset via modularity
maximization32, which, given an adjacency matrix, returns partitions of the
networks intomodules that aremaximally internally dense with respect to a
chance level (or nullmodel).Modularity is commonly indicatedwithQ and
is formulated as follows:

QðγÞ ¼
X

ij

½Wij � γPij�δðσ i; σ jÞ: ð14Þ

where Wij and Pij are the weights of the connections between node i and
node j in the adjacency matrixW and in the null model P, γ is a resolution
parameter, and δ(σi, σj) is a factor whose value is 1 when i and node j belong
to the same community and 0 otherwise.

The choice of the nullmodel P is non-trivial. Theweight that we expect
to find between two nodes strongly depends on the characteristics of the
adjacencymatrixW118. For covariancematrices, i.e., fullweightedmatrices, a
reasonable choice is the Potts null model, where Pij holds the same value for
every pair of nodes and is modulated by γ. The choice of γ then defines the
spatial resolution of the partition in terms of size and number ofmodules, so
that low γ-values yield to a coarse modular structure, whilst high γ-values
produce a finer modular structure.

In this paper, we applied a 2-step multiresolution approach, called
multiresolution consensus clustering (MRCC)38. In the first step, we linearly
sampled 1000 values of γ in the range [0, 1] and we ran modularity max-
imizationwith eachoneof theseγ-valuesobtaining1000differently resolved
partitions. At this point, two γ-values have been identified, γL and γH, which
generated partitions with a number of modules between 2 and N/4 (with
N = 200 being the number of nodes). Then, in the second step, we linearly
sampled 1000 values of γ, but this time in the range [γL, γH], running
modularity maximization with each of these values. Again, retaining par-
titions with at least 2 and maximum N/4 modules, we obtained 990 parti-
tions (10 γ-values/partitions did not survive the limits imposed on clusters
number) at different spatial resolutions that we used for our empirical
analyses.

Multiscale modularity maximization was also applied to a modified
adjacencymatrix transformedbasedonEq. (12), where the entries represent
Mutual Information between pairs of time series instead of Pearson cor-
relation. This complementary analysis was performed to assess the effect of
this transformation on conventional community detection algorithms, and
the results are reported in Fig. S9.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All the data used in this study are available from the Human Connectome
Project (http://www.humanconnectomeproject.org/), the Microstructure-

Informed Connectomics Project (https://osf.io/j532r/) and the Nathan
Kline Institute (fcon_1000.projects.nitrc.org/indi/enhanced/). Preprocessed
network data used in the manuscript are available at https://github.com/
mariagraziaP/comm_detection_via_redundancy_optimization/tree/main/
src/mat. Numerical source data to reproduce the figures of the manuscript
are available in the Supplementary Data.

Code availability
MATLAB code to reproduce the analysis is available at https://github.com/
mariagraziaP/comm_detection_via_redundancy_optimization/tree/main.
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