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perceptual decisions

Check for updates

Liz Yuanxi Lee 1, Joseph J. Ziminski1,2, Polytimi Frangou 1,3,4, Vasilis M. Karlaftis 1, YezhouWang 5,
Boris Bernhardt 5, Varun Warrier 1,6, Richard A. I. Bethlehem 1 & Zoe Kourtzi 1,7

Genetics and experience are known tomold our cognitive development. Yet, the interactions between
genetics and brain mechanisms that support learning and flexible behavior in the adult human brain
remain largely unknown. Here, we test the link between brain-wide gene expression andmacroscopic
neuroimaging phenotypes of brain plasticity that support our ability to improve perceptual decisions
with training. We demonstrate that gene expression links to learning-dependent changes in spatial
variations of cortical microstructure and functional connectivity in visual and fronto-parietal networks
that are known to be involved in perceptual decisions. Further, we show that brain stimulation in visual
cortex during training boosts learning and alters functional connections, rather than microstructure
organization, within and between these networks. Our results reveal neurogenetic phenotypes of
plasticity in perceptual decision networks, providing insights into the interplay of genetic expression
andmacroscopicmechanisms of structural and functional plasticity for learning and flexible behavior.

Successfully interacting in our complex environments requires selecting
information that is key for identifying targets in cluttered scenes; for
example, spotting a prey camouflaged in natural scenes or identifying a
friend in the crowd. It is known that experience and training enhance these
skills by altering the brain’s structural organization (for review1) and
functional connections (for reviews2,3). Previous studies have shown that
training in a rangeof tasks (e.g. perceptual,motor tasks) results in changes in
functional connectivity1. Further, training has been shown to promote
myelination in the adult brain, the process of insulating neural axons to
enhance neurotransmission (for reviews4,5), that is known to play an active
role in learning and brain plasticity5,6.

Complementary to these brain plasticity mechanisms, there is evidence
for genetic factors contributing to learning. For example, brain-derived
neurotrophic factor (BDNF) and the extracellular signaling-related kinases
(ERKs) are found to promote both developmental and learning-related
plasticity7. Further, knockout of Fmr1 that produces fragile X[fra(X)] syn-
drome alters behavioral performance in a complex discrimination task for
mice8. Yet, the interactions between genetic and brain plasticity mechanisms
that contribute to our ability to improve perceptual decisions with training—
a skill known as perceptual learning (for review9)—remain largely unknown.

Here, we test the link between brain-wide gene expression (Fig. 1A)
and learning-dependent changes in microstructure and functional con-
nectivity (Fig. 1B) due to training on a visual discrimination task that
involves identifying patterns embedded in noise (Signal-in-noise, SN task;
Fig. 2A). Using the Allen Human Brain Atlas (AHBA)10, a comprehensive
brain-wide gene expression atlas, we test whether spatial variations at the
transcriptomic level are associated with macroscopic neuroimaging sig-
natures of brain plasticity. We employ a multimodal brain imaging
approach to investigate microstructural (i.e. myelination) and functional
(i.e. functional connectivity) plasticity mechanisms.We use: a) quantitative
MRI multi-parameter mapping (MPM11) to measure a myelin-sensitive
magnetic resonance imaging marker (i.e. magnetization transfer satura-
tion (MT) b) resting state fMRI (rs-fMRI) to measure functional con-
nectivity.We employ gradient analysis12 of MT and functional connectivity
signals to characterize principal gradients of cortical microstructure (i.e.
grey matter myelin) organization and functional connectivity that capture
overarching spatial trends extending beyond local processing (i.e. local
functional connectivity, regional grey and white matter volume). Previous
work has demonstrated that gradient analysis offers a spatial framework for
organizing multiple large-scale networks. Further, it characterizes a
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spectrum of functional activity, ranging from unimodal to heteromodal
regions, as demonstrated by functional meta-analyses12–14 and micro-
structural gradients analyses15,16. Finally, gradient analysis allows us to link
and compare microstructure and functional plasticity in the same infor-
mation space by extracting markers of structural and functional brain
plasticity based on the similarity spatial gradients within and across cortical
networks. Combining these gradient analyses of multimodal brain imaging
data with genetic analyses, we ask whether gene expression in the adult
humanbrain links to learning-dependent changes in corticalmicrostructure
and functional connectivity that relate to learning (i.e. improved perfor-
mance in the SN task).

Our results demonstrate an interplay of brain-wide genetic expression
with functional and microstructural plasticity mechanisms for learning in
the adult brain.We show that genetic expression in occipital and prefrontal
regions is associated with learning-dependent changes in microstructure
organization and functional connectivity. In particular, higher micro-
structural coherence between visual and fronto-parietal networks, micro-
structural segregation within the visual network and functional segregation

of regions within the fronto-parietal network relate to faster learning during
multi-session training. Further, we employ brain stimulation during brain
imaging to directly test the link between these neurogenetic phenotypes of
plasticity and improved perceptual decisions due to training. Our results
demonstrate that anodal tDCS in visual cortex during training within a
single session boosts learning and alters functional connectivity within and
between visual and fronto-parietal networks rather than microstructural
organization. Our results provide evidence for a direct link between gene
expression in perceptual decision networks, functional plasticity at early
stages of learning, and both functional andmicrostructural plasticity at later
stages of learning (i.e. following longer-term training) in the adult
human brain.

Results
Behavioral performance
We trained participants in a signal-in-noise (SN) task that involved iden-
tifying radial vs. concentric Glass patterns (Fig. 2A) embedded in noise17.
Participants completed three behavioral sessions during MRI scanning

Fig. 1 | Schematic overview linking genetic expression and gradient analyses.
A The median gene expression profiles for 16651 genes were calculated across 200
cortical nodes using Schäefer-200 parcellation.Due to the limited availability of data,
we focused on left hemisphere, where gene expression data are available for all six
donors.BMicrostructural (derived fromMTmaps) and functional (derived from rs-
fMRI) gradients were calculated across the same 200 nodes (for Schäefer 300, 400
parcellations, see Fig. S2) as the gene expression analysis. Color maps represent
gradient values. C PLS regression analysis was performed with gene expression
profiles as predictors and cortical changes as response variables for n = 10,000
permutations. D PLS assigns weights to each gene indicating its contribution to the
overall model for each component. Bootstrapped standard errors were derived and
the gene weights were Z-transformed and corrected for multiple comparison using

FDR inverse quantile transform correction to account for winners curse. E Genes
that were significant after FDR correction (z-score > 1.96) were enriched for tissue
types. Genes in PLS component 1 showed significant enrichment; these genes
(Table S1 for top ranked 200 genes) are preferentially expressed within occipital and
prefrontal brain regions, corresponding to visual and fronto-parietal networks
(Yeo7 network). F FC within-network dispersion in the fronto-parietal network
(FPN). Red dots, blue dots and the shaded areas represent the dispersion of principal
gradients for pre- and post-training sessions, respectively. The shaded area for the
post-training session (blue) is larger than that for the pre-training session (red),
indicating that the nodes representing functional connectivity similarity within the
FPN network are more spread-out after training (i.e. higher network segregation).
For 3D illustration see Fig. S1.
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without feedback (day 1: baseline, day 5: pre-training, day 9: post-training)
and three consecutive task training behavioral sessionswith feedback (day 6,
day 7, day 8). Training improved participant performance in the task
(Fig. 2B.; one-way repeated measures ANOVA across sessions,
Greenhouse-Geisser corrected, F(2, 38) = 35.49, p < 0.001); that is, perfor-
mance accuracy increased in the post- vs. pre-training sessions (post-hoc
comparisons, p < 0.001, Bonferroni corrected). This improvement was
specific to training; that is, there were no significant differences in perfor-
mance between baseline vs. pre-training sessions (p = 0.47).

Genetic signatures of learning-dependent plasticity in occipital
and prefrontal regions
We tested for genes that contribute to learning-dependent brain plasticity
following training on the SN task; that is, changes (post- vs. pre-training) in
microstructural and functional cortical organization, as measured by MT
and rs-fMRI, respectively. To capture microstructure and functional con-
nectivity (FC), we used gradient analyses to map macroscale brain features
to low dimensional spatial representations12. We followed recent work that
implemented gradient analysis to spatial topography of MT profiles18 and
hierarchical functional organization of the cortex19. In brief, we created
cortical surface models from T1-weighted MRI scans and aligned the cor-
responding MTmaps to these surfaces. We then generated equivolumetric
intracortical surfaces and sampled MT intensities along vertices perpendi-
cular to the corticalmantle to construct intracorticalMTprofiles (Methods -
Multi-session training study: Data analysis)18.We next computed changes
(i.e. post- vs pre- training) in microstructure profile covariance (MPC) and
FC principal gradients (Fig. 1B).

To test the link between genetic expression and learning-dependent
changes in microstructural and functional plasticity, we used partial least
squares regression (PLS) regression (Fig. 1C; Methods - Multi-session
training study: Gene expression analysis) to identify independent compo-
nents (i.e. linear combinations of gene expressions) that relate to learning-
dependent changes in MPC and FC principal gradients. In particular, we
used the AllenHuman Brain Atlas10 to test whether gene expression in each
node (Fig. 1A) relates to changes (i.e. post- vs pre-training) in the spatial
variation of microstructure (i.e. MPC principal gradients: G1-G3) and
functional connectivity (i.e. FC principal gradients: G1-G3) profiles
(Fig. 1B). We found that the first three PLS components explained

significant variance in learning-dependent microstructure and functional
changes (10,000 permutations test; PLS1: p = 0.036, PLS2: p = 0.0081, PLS3:
p = 0.038). Specifically, these components accounted for 5.32% (PLS1),
5.68% (PLS2), 3.87% (PLS3) of the variance. PLSweights for each genewere
z-transformed (based on bootstrapping, n = 1000) and FDR-adjusted
(Fig. 1D). We then conducted a gene enrichment test (tissue-type specific,
GNF U133A quartile 79 tissue types20) to test for tissue-specific gene
expression and regulation (Fig. 1E). Genes in PLS components 1 (n = 4225)
and 2 (n = 71) that passed FDR correction (p < 0.0521) were included in the
enrichment analysis (no genes in PLS component 3 passed FDR correction;
Table S1 for top 200 significant genes after FDR correction). This analysis
identified significant enrichment for genes in PLS component 1 that are
preferentially expressed within occipital (p < 0.001, Benjamin-Hochberg
corrected) and prefrontal (p = 0.032, Benjamin-Hochberg corrected) lobes
among brain tissues (see Table S2 for all significant enriched tissue types; no
significant enrichment results were found for PLS component 2). To
account for spatial auto-correlations in gene expression22,wegenerated1000
null brain models for gradients using the brainspace toolbox23 and con-
ducted the PLSr analysis with a) raw gene expression data (Table S3), b)
denoised gene expression data, i.e. with 1st PCA component regressed out
from the raw gene expression to account for overexpression in the occipital
lobe24 (Table S4). This analysis showed that gene expression from the same
regions (i.e. occipital, prefrontal) was significantly enriched. These results
suggest that gene expression preferentially in the occipital and prefrontal
cortex is associated with changes in structural organization and functional
connectivity due to training on a perceptual discrimination task.

Learning-dependent changes in occipito-frontal brain networks
We next asked whether learning-dependent changes in microstructure and
functional connectivity that were shown to link to gene expression in
occipital andprefrontal cortex relate to learning in the SN task.Weextracted
MPC and FC gradients for the visual network (VN) including occipital
regions and the frontoparietal network (FPN) including prefrontal regions
basedona seven functional brainnetworks atlas25 (Fig. 1E). Recentworkhas
employed gradient analysis to spatial topography of age-related changes in
MT profiles15 and hierarchical functional organization of the cortex19. We
then estimated within- and between-network dispersion for MPC and FC
principal gradients, a metric developed to quantify the variability in

Fig. 2 | Experimental design and stimuli. A Example Radial and concentric Glass
patterns are shown with inverted contrast for illustration purposes. Left: Prototype
stimuli: 100% signal, spiral angle 0˚ for radial and 90˚ for concentric are shown for
illustration purposes only. Right: Stimuli used in the study: 25% signal, spiral angle 0˚

for radial and 90˚ for concentric. B Behavioral accuracy (%) across participants for
each session (n = 22). Grey dots indicate individual participant data. Box plots
indicate median (black line), 25th and 75th percentiles (box bottom, top edges
respectively), data range (whiskers).
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structural complexity and connectivity patterns across different brain
regions. We defined the dispersion space by the values along the first three
gradients (Fig. 1F, Fig. S1). Within network dispersion was quantified as
sumsquaredEuclideandistance ofnetworknodes to thenetwork centroid at
individual participant level. Between network dispersion was calculated as
the Euclidean distance between network centroids. Dispersion indicates
microstructural and functional network segregation19 (Fig. 1F, Fig. S1;
Methods—multi-session training study: Data analysis). That is, higher
dispersion indicates higher segregation, while lower dispersion indicates
higher coherence within or between networks.

We tested whether changes (post- vs. pre-training) in MPC and FC
dispersion account for variance in behavioral performance (i.e. learning
rate) using multiple regression analyses. Our results showed that changes
in MPC dispersion accounted significantly for variance in learning rate
(F(3, 12) = 4.42, p = 0.026, R2 = 0.53, R2

Adjusted = 0.41; permutation test,
n = 1000, p = 0.028; Fig. 3A). In particular, changes in VN-FPN between-
network MPC dispersion (Beta =−0.73, t(15) =−3.21, p = 0.007) were
significant predictors of learning rate.However, changes inVN (Beta = 0.51,
t(15) = 2.02, p = 0.067) and FPN (Beta = 0.38, t(15) = 1.68, p = 0.118)
within-networkMPC dispersion were not significant predictors of learning
rate. Further, we found that changes in FC dispersion accounted sig-
nificantly for variance in learning rate (F(3, 14) = 7.10, p = 0.004, R2 = 0.60,
R2

Adjusted = 0.52; Fig. 3B). In particular, changes in FPN within-network FC
dispersion (Beta=1.04, t(17) = 4.16,p = 0.001)were significant predictors of
learning rate (permutation test, n = 1000, p = 0.001). However, changes in
VN within-network FC dispersion (Beta =−0.05, t(17) =−0.25, p = 0.806)
and VN-FPN between-network FC dispersion (Beta = 0.56, t(17) = 2.11,
p = 0.053) were not significant predictors of learning rate. Figure 3B shows
that increased dispersion in FPN functional connectivity relates to faster
learning rate, suggesting that higher functional segregationof regionswithin
this network after training relates to learning. In contrast, decreased
microstructure dispersion between VN and FPN (Fig. 3A) relates to faster
learning rate, suggesting that higher coherence in structural organization
between networks after training relates to learning.

To test whether these learning-dependent changes were specific to
training,we conductedpermutation analyses (1000 iterations) on regression
models using random pairings between baseline and pre-training data for
EV within-network, FPN within-network, and EV-FPN between-network
dispersion. Only 46/1000models for FC dispersion (p = 0.954) and 45/1000

models for MPC dispersion (p = 0.955) indicated a relationship between
pre- vs. post-training differences and behavior. These findings support the
specificity of learning-dependent changes, suggesting that baseline vs. pre-
training differences are unlikely to contribute significantly to the learning
effects we observed.

We next tested whether learning-dependent changes (before vs. after
training) in MPC and FC dispersion accounted for variance in behavioral
improvement (i.e. performance accuracy before vs. after training). Multiple
regression analysis showed that changes inMPCdispersion (F(3, 15) = 6.23,
p = 0.009, R2 = 0.609, R2

Adjusted = 0.511) rather than changes in FC disper-
sion (F(3, 14) = 3.24, p = 0.054) accounted significantly for variance in
behavioral improvement. In particular, changes in VN within-network
MPC dispersion (Beta = 0.648, t(15) = 2.84, p = 0.015) and VN-FPN
between network MPC dispersion (Beta =−0.831, t(15) =−4.06,
p = 0.002), rather than FPN (Beta = 0.26, t(15) = 1.26, p = 0.23) within-
network dispersion, were significant predictors of behavioral improvement.
Figure 3C shows that increased microstructure dispersion in VN relates to
higher behavioral improvement, suggesting that higher segregation in
structural organization across regions in the visual network after training
relates to learning. In contrast, decreased microstructure dispersion
between VN and FPN (Fig. 3D) relates to higher behavioral improvement,
suggesting that higher coherence in structural organization across networks
after training relates to learning. These results were specific to the training;
that is, changes in MPC before training (pre-training vs. baseline) did
not account significantly for variance in changes in performance accuracy
after training (F(3, 12) = 0.63, p = 0.61; Supplementary Information:
Changes in occipito-frontal brain networks before training (pre-training vs.
baseline)).

Taken together, our results suggest that learning relates to increased
microstructure coherence between visual and fronto-parietal networks, as
indicated by significant relationships of learning-dependent changes in
microstructurewith learning rate and behavioral improvement (Fig. 3A, C).
Interestingly, higher functional segregation of regions within the fronto-
parietal network relates to faster learning (Fig. 3B), while higher structural
segregation of regions within the visual network relates to higher
improvement (Fig. 3D) in performance after training. These results suggest
that training alters functional connectivity within the frontal cortex to
accelerate learning, while microstructure organization within visual cortex
to support improved performance following training. Further, higher

Fig. 3 | Learning-dependent changes in occipito-
frontal brain networks. A Correlation between
VN-FPN between-network MPC dispersion chan-
ges (post- vs. pre-training) and learning rate
(p = 0.017, R =−0.59, CI [−0.84, -0.13]).
B Correlation between FPN within-network dis-
persion changes (post- vs. pre-training) of principal
FC gradients and learning rate (r = 0.668, p = 0.0024,
CI [0.29, 0.87]). C, D. Multiple regression analyses
showing that changes in MPC dispersion explain
significantly variance in behavioral improvement
with changes in (C) VN within-network MPC dis-
persion and (D) VN-FPN between-network MPC
dispersion as significant predictors of behavioral
improvement.
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structural coherence between visual and frontal networks supports both
faster learning and improved performance after training.

Anodal tDCS during training and brain imaging
To directly test the link between microstructure and functional plasticity
with behavior, we used anodal tDCS stimulation in visual cortex. Anodal
tDCS has been previously shown to facilitate learning26 and improve per-
formance in visual discrimination tasks27. We have previously shown that
participants trained during Anodal tDCS improved in the SN task com-
pared to Sham and no-training control groups26. Here, we used tDCS in the
scanner to test whether Anodal stimulation in visual cortex during training
on the SN task alters microstructure and functional plasticity in visual and
fronto-parietal networks. We trained two groups: one group received
excitatory (Anodal) stimulation during training, while the other received
sham stimulation in visual cortex) during training. We collected MPM and
rs-fMRI data before and after stimulation within the same imaging session,
extractedMPC and FC gradients fromVN and FPN and comparedwithin-
network and between-network dispersion before and after stimulation with
training.

Anodal tDCS improves performance in signal-in-noise discrimina-
tion. Participants who received anodal stimulation showed improved
behavioral performance in the SN task compared to participants who
received sham stimulation. In particular, a two-way repeated measures
ANOVA on behavioral performance showed a significant Group (Ano-
dal, Sham) x Block (Pre-, Post-stimulation) interaction (F(1, 43) = 4.72,
p = 0.035; Fig. 4A), but no significantmain effect of Block (F(1, 43) = 1.32,
p = 0.26) nor significant main effect of Group (F(1, 43) = 2.98, p = 0.091).
Post-hoc comparison showed that participants in the Anodal group
(p = 0.019, Bonferroni corrected) improved significantly after training. In
contrast, there was no significant improvement for the Sham group
(p = 0.49). Further, we didn’t observe significant differences in perfor-
mance between groups before stimulation (p = 0.31, t(43) = 1.02), sug-
gesting that our findings are unlikely to be simply due to variability across
participants in task performance before training. Our results suggest that
anodal stimulation during training boosts learning, providing an inde-
pendent replication of our previous findings showing a facilitatory effect
of anodal tDCS on behavioral improvement in visual discrimination
tasks26.

Anodal tDCS alters microstructure and functional connectivity in
occipito-frontal networks. We next asked whether anodal tDCS during
training alters microstructure and functional connectivity in occipito-
frontal networks. To directly investigate the effect of this intervention
during training, we normalized microstructural and functional disper-
sion for the Anodal to the Sham group data, as we didn’t observe sig-
nificant differences between groups before stimulation in (a) behavioral
performance (t(37) = 1.02, p = 0.31), (b) MPC dispersion (VN within-
network: t(37) = 33.69, p = 0.49; FPN within-network: t(37) = 28.45,
p = 0.68; VN-FPN between-network MPC dispersion: t(37) = 36.78,
p = 0.63), (c) FC dispersion (VN within-network: t(34) = 29.13, p = 0.84;
FPN within-network: t(34) = 26.74, p = 0.81; VN-FPN between-network
FC dispersion: t(34) = 28.54, p = 0.58,).

Our results showed that anodal tDCS during training altered sig-
nificantly functional connectivity rather than microstructure. In particular,
a two-way repeated measures ANOVA (Network: VN, FPN, VN-FPN
between-network; Block: Pre-, Post-stimulation) for FC dispersion showed
a significant Network × Block interaction (F(2, 42) = 25.12, p < 0.001). We
did not observe a significant main effect for Network (F(2, 42) = 0.512,
p = 0.60) nor Block (F(1, 21) = 2.80, p = 0.12). Post-hoc comparisons
showed that VNwithin-network FC dispersion significantly decreased after
training (p = 0.006, Bonferroni corrected; Fig. 4B), while FPN within-
network FC dispersion significantly increased after training (p < 0.001,
Bonferroni corrected; Fig. 4B). Further, VN-FPN between-network FC
dispersion decreased after training (p = 0.023, Bonferroni corrected;

Fig. 4B). Finally, these results were specific to FC dispersion; that is, we did
not observe a significant Network x Block interaction for MPC dispersion
(F(2, 40) = 2.23, p = 0.12). These results suggest that anodal tDCS in visual
cortex during training boosts learning and functional connectivity in
occipito-frontal networks; that is, increasing functional segregation within
frontal cortex (Fig. 4B), while increasing coherence across occipital regions
(Fig. 4B) and between occipital and fronto-parietal networks (Fig. 4B). Note
that these changes were measured before vs. after the tDCS intervention
when there was no tDCS stimulation or performance feedback provided to
the participants. tDCS may enhance attention during the intervention.
However, following the intervention task performance was improved sug-
gesting that the taskwas easier and therefore less attentionally demanding in
comparison to the Sham group, where the task remained demanding and
may have required more attentional resources.

Discussion
We provide evidence for neurogenetic phenotypes of plasticity, linking
brain-wide gene expression, macroscopic connectome organization and
functional brain plasticity for improved perceptual decisions. We demon-
strate that genetic expression in occipito-frontal regions links to learning-
dependent changes in spatial variations of cortical microstructure and
functional connectivity profiles that relate to perceptual learning. In parti-
cular, higher structural coherence between visual and fronto-parietal net-
works supports both faster learning and improved performance after
training. Further, higher functional segregation of regionswithin the fronto-
parietal network relates to faster learning, while higher microstructural
segregation within the visual network relates to higher improvement after
training. Next, we demonstrate that anodal tDCS stimulation in the visual
cortex during training boosts learning and alters functional connectivity
rather than microstructure organization. Our findings advance our
understanding of the interplay of genetic expression with functional and
microstructural plasticity mechanisms for learning in the adult brain in the
following respects.

First, we identify sets of genes that are associated with learning-
dependent changes in cortical microstructure organization and functional
connectivity due to training in a visual discrimination task. Most previous
studies have focused on the associations between single genes or a small
numbers of genes and cognitive functions. Here, using AHBA and
enrichment tests,we linkwide-brain genetic expression (i.e. across gene sets)
with learning-dependent structural and functional plasticity in brain net-
works. Our analyses revealed genes that are known to be associated with: a)
cognitive flexibility and brain plasticity (e.g. APOE28, b) implicit learning
(e.g. OXTR29), (c) learning and memory (e.g. Arc30, FOXP231, ERK/CREB
pathway32), d) prefrontal function (e.g. COMT33), and striatal neuroplasti-
city (e.g. FOXP231). Although BDNF has been previously implicated in
learning and brain plasticity7, our results did not show a significant link of
BDNF to learning-dependent changes in cortical microstructure and
functional connectivity. This is in agreement with previous work impli-
cating BDNF in associative (e.g. spatial learning and memory, paired
associated learning)34, rather the perceptual learning. Interestingly, the
enrichment test revealed that genetic expression preferentially in occipital
and prefrontal regions relates to learning-dependent changes in micro-
structure and functional connectivity, consistent with the role of these
regions in perceptual decision-making, for reviews35,36).

Our results offer potential insights into the transcriptomic bases of a
macroscale brainphenotype that relates toperceptual learning; however, it is
important to consider potential limitations associated with extracting gene
expressionpatterns using theAHBAdataset. First, AHBAdata are extracted
from only six healthy donor brains, with most samples taken from the left
hemisphere10. Further, the brain tissue samples used for RNAsequencing in
the AHBA were not homogeneously distributed across the cortex37;
resulting in estimates of regional expression based on different numbers of
experimental measurements in each of the 200 regions. Importantly, gene
expression is influenced by factors such as sex, age, genetics, and
environment38. Future work is needed, considering a broader range of
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Fig. 4 | Intervention-dependent changes in behavior and occipito-frontal brain
networks. A Behavioral performance (percent) across participants per group
(Anodal, Sham) and Block (Pre-, Post-intervention). B Functional connectivity
dispersion before vs. after intervention (Anodal tDCS stimulation during training,

normalized to Sham stimulation) for a visual within-network, b fronto-parietal
within-network c VN-FPN between-network. Grey dots indicate individual parti-
cipant data. Box plots indicate median (black line), 25th and 75th percentiles (box
bottom, top edges respectively), data range (whiskers). Outliers are indicated by ‘+‘.
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individual variability and using methods for estimating gene expression at
the individual level (e.g. transcriptome-wide association study; TWAS39), to
identify relationships between gene expression and specific human traits.
TWAS studies leverage large population-specific datasets to enhance sta-
tistical power. Although there are no existing large-scale GWAS data on
perceptual learning and our study sample is not large enough for TWAS
analysis, exploring gene-trait associations remains an interesting direction
for future research.

Second, we employ a gradient analysis approach that allows us to link
microstructure and functional plasticity at the same information; that is,
capturing dispersion in spatial gradientswithin and across cortical networks
asmarkers of structural and functional brain plasticity12. Most studies using
gradient analyses have focused on developmental, aging18,19,40 and disease-
related41,42 changes in microstructure and functional gradients. Extending
beyond this previous work, we adopt gradient analyses to test whether
training alters structural and functional cortical organization to support our
ability for improved perceptual decisions, revealing macroscopic plasticity
markers of plasticity in the adult brain. Interestingly, higher functional
segregation of regions within the fronto-parietal network relates to faster
learning,while highermicrostructural segregationwithin the visual network
relates to higher improvement after training. These findings suggest that
learning alters functional compared to structural organization at different
temporal and spatial scales within visual and fronto-parietal networks. That
is, fronto-parietal plasticity supports learning during training, consistent
with the role of this network as a flexible hub for cognitive control43,44, while
visual plasticity may support learning-dependent changes in sensory pro-
cessing after training.

Most human imaging studies examining structural plasticity have
employed diffusion tensor imaging (DTI) to investigate structural changes
due to extensive training on visual and motor tasks (for a review1).
Extending beyond this work, we combine quantitative MRI and gradient
analysis to quantify spatial microstructural profiles that are sensitive to
myeloarchitecture across the cortical surface45. Recent work has shown that
multiparametric maps are highly reliable and—despite measuring myelin
indirectly correlate closely with histological measures of myelin content45.
Further, quantitative MRI (i.e. MPM) enables measurements of myelin in
grey matter that has been linked to micro-circuit functions related to
learning5, rather than only white matter. Using this quantitative imaging
approach, we have previously shown that training on the SN task alters
subcortical myelination and functional connectivity to visual cortex. Here,
we extend thiswork to cortical networks showing thathigher cortical surface
microstructural coherence between visual and fronto-parietal networks
supports both faster learning and improved performance after training.
Further, higher microstructural segregation within the visual network
relates to higher behavioral improvement, suggesting that learning-
dependent changes in visual network microstructure may support regio-
nal specialization for improved perceptual decisions after training on a
visual discrimination task.

Further, previous neuroimaging studies have implicated visual net-
works in sensory processing, while fronto-parietal networks in information
accumulation for perceptual decisions46. Our findings advance our under-
standing of learning-dependent functional plasticity mechanisms within and
across visual and fronto-parietal networks for perceptual decisions. In par-
ticular, higher functional segregation of regions within the fronto-parietal
network relates to faster learning, suggesting that learning-dependent
changes in functional connectivity may support regional specialization
within the fronto-parietal network for improved perceptual decisions.

Third, we demonstrate that anodal tDCS stimulation in the visual
cortex during training alters functional connectivity and improves task
performance rather thanmicrostructureorganization.Previous studieshave
shown that anodal tDCS alters functional connectivity during training in a
range of tasks: e.g. associative learning47, visual selective attention48, and
object identification49. Further, transcranial electric stimulation has been
shown to facilitate visual perceptual learning in the context of perceptual
tasks (for reviews50,51).

Comparing the results between longer-term (multi-session) training
on the SN task and short-term brain stimulation during (single session)
training provides insights into the brain plasticity mechanisms across
stages of learning. First, we show that functional segregation within the
fronto-parietal network: (a) relates to faster learning across training ses-
sions, (b) is enhanced by anodal tDCS at early learning stages (i.e. single
session training), suggesting that functional specialization within the
fronto-parietal network may accelerate learning, consistent with the role
of these regions in flexible control25,52 and evidence accumulation for
perceptual decisions. Second, we show that anodal tDCS at early learning
stages alters functional connectivity but not microstructure organization
within and between visual and fronto-parietal networks. In contrast,
learning-dependent changes in microstructure but not functional con-
nectivity within the visual network and between networks relates to
improved task performance after longer-term training. These results
suggest flexible functional plasticity at early stages of learning, while
slowermicrostructural plasticitymay support learning consolidation after
longer-term training. Future work adopting brain stimulation during
longer-term training is needed to further interrogate the interplay of
microstructural and functional brain plasticity mechanisms across stages
of learning.

In sum, our findings demonstrate that genetic expression in occipito-
frontal regions underlies learning-dependent changes in microstructure
organization and functional connectivity that relate to learning for
improved perceptual decisions. Our results propose a tight interplay
between genetic expression, microstructure organization and functional
connections, revealing neurogenetic phenotypes of plasticity that support
learning for perceptual decisions in the adult brain.

Methods
Overview
Weconducted two studies: (a)multi-session training study, (b) intervention
study. For both studies, participants were trained to discriminate radial vs.
concentric Glass patterns embedded in noise. The multi-session training
study investigated the link between gene expression, and learning-
dependent functional and microstructural plasticity in perceptual decision
networks. In this study, participants underwent multiple training sessions.
MRI and behavioral test data were collected at baseline, pre- and post-
training sessions. In the intervention study, we used anodal tDCS stimula-
tion in visual cortex during scanning to compare learning-dependent net-
work changes between the stimulation (Anodal tDCS during training) and
the no-stimulation (Sham tDCS during training) groups. This allowed us to
test directly the link between microstructure and functional plasticity with
behavioral improvement. For both studies, we collected resting-fMRI and
MPM data before and after training. We generated the microstructural
profile covariance (MPC) matrix for cortical myelination densities and
functional connectivity (FC) similarity matrix for resting-state data. We
then used MPC and FC to build microstructural and functional gradients
and calculate network dispersion that reflects the network segregation and
coherence.

Participants
Twenty-two healthy volunteers (23.5 ± 4.2 years) participated in the multi-
session training study17. Forty-five healthy volunteers (27 female; mean age
22.9 ± 3.3 years) participated in two intervention groups, twenty-four in the
stimulation group (Anodal) and twenty-one in the no stimulation group
(Sham). Sample size was determined by power calculations following our
previous work26 showing a polarity-specific stimulation effect of ƞp2 = 0.133
at 95% power for N = 14 per group. All participants were right-handed,
had normal or corrected-to-normal vision, did not receive any prescription
medication, were naïve to the aim of the study, gave written informed
consent and received payment for their participation. The study was
approved by the University of Cambridge Ethics Committee
[PRE.2017.057]. All ethical regulations relevant to human research parti-
cipants were followed.
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Multi-session training study: Experimental Design and
Procedures
As described in our previous study17, participants were trained to dis-
criminate radial vs. concentric Glass patterns embedded in noise (signal-in-
noise task, SN; Fig. 2A, see also Supplementary Information: Stimuli). Each
volunteer participated in six sessions: three brain-imaging sessions includ-
ing testing on the SN task without feedback (day 1: baseline, day 5: pre-
training, day 9: post-training) and three consecutive task training behavioral
sessions with feedback (day 6, day 7, day 8). For more detailed experiment
design see Supplementary Information: Multi-session training study:
Behavioral session design. We recorded participants’ behavioral perfor-
mance and computed learning rate by fitting individual participant training
data with a logarithmic function (see Supplementary Information: Multi-
session training study: Behavioral data analysis).

Multi-session training study: Imaging data acquisition and
analysis
As reported in our previous study17, all imaging data were collected at
Wolfson Brain Imaging Centre, Cambridge UK, on a Siemens 3-Tesla
Prisma (Siemens, Erlangen) with a 32-channel head coil. For detailed
acquisition parameters see Supplementary Information: Multi-session
training study: MRI acquisition. We used resting-state data and processed
MPMmaps from our previous study17. We generated the microstructural
profile covariance (MPC) matrix for cortical myelination densities and
functional connectivity (FC) similarity matrix for resting-state data. We
then used MPC and FC to build microstructural and functional gradients
(Fig. 1B) and network dispersion (Fig. 1F, Fig. S1). For detailed analysis
pipeline and parameters, see Supplementary Information: Multi-session
training study: MRI data analysis.

Multi-session training study: Gene expression analysis
We processed microarray gene expression data from Allen Human Brain
Atlas (AHBA)10 with abagen toolbox (https://github.com/rmarkello/
abagen)53. We followed a previous study54 and extracted gene expressions
for 16651 genes and parcellated them to the Schäefer-200 atlas (more details
see Supplementary Information: Microarray gene expression from Allen
Human Brain Atlas). Due to the limited availability of data for the right
hemisphere (2 out of 6 individuals), we focused on the left hemisphere,
where gene expression data are available for all six donors55,56.

PLS regression. To identify genes that contribute to brain structure and
function global changes, we followed the analysis pipeline from a pre-
vious study investigating gene expression and enriched pathways that
contribute to cortical thickness changes in autism57. Partial least squares
(PLS) has been previously used in neuroimaging studies with multi-
collinear predictors or high data dimensionality57.We adopted PLS as the
number of predictors (number of genes = 16651) exceeds the number of
cortical nodes (number of nodes = 20058). In particular, we conducted a
partial least squares regression (PLSr), a data reduction and regression
technique related to principal component analysis (PCA) and ordinary
least squares (OLS) regression (Fig. 1C),

X ¼ TPT þ E

Y ¼ UQT þ F

Where
• X is an n×m matrix of predictors, i.e. gene expression derived

from AHBA
• Y is an n× p matrix of responses, i.e. MPC principal gradients (MPC

G1 – MPC G3) and FC principal gradients (FC G1 – FC G3) as
response variables

• T andU aren× lmatrices that are, respectively, projections ofX (theX
score, component or factormatrix) and projections ofY (theY scores)

• P and Q are, respectively, m× l and p× l loading matrices
• and matrices E and F are the error terms, assumed to be independent

and identically distributed random normal variables.

We standardized (z-scored) predictors and response variables before
including them into the PLSmodel. To test the significance of themodel, we
permutated the response variables 10,000 times and performed a PLS
regression for each permutation to generate a null distribution from our
data59. Next, we assessed the stability of the predictor loadings to determine
the significant predictors of the response variables59 by generating 1,000
bootstrap samples from our data by sampling with replacement and per-
forming a PLS regression for each bootstrap sample to generate a dis-
tribution per weight. To generate these distributions, we corrected the
estimated components for axis rotation and reflection across bootstrap
samples using Procrustes rotation and normalized the weights of the
observed sample (that is, original data) to the standard deviation of the
bootstrapped weights, resulting in z-score-like weights. FDR-adjusted with
an FDR inverse quantile transformation correction was performed to
account for winners curse bias21 (R package FIQT). Genes that passed FDR
correction of p < 0.05 ( | z | > 1.96)were included in the enrichment analysis.

Genetic enrichment analyses. As for gene enrichment analysis, we used
the Database for Annotation, Visualization and Integrated Discovery
(DAVID)20,60 (https://david.ncifcrf.gov/). The DAVID Knowledgebase built
upon the DAVID Gene concept allows us to test for enriched brain
functional-related gene groups, taking a list of gene IDs and annotating genes
in a biological context, to test for significant PLSr-derived genes for each
component with 16651 genes derived fromAHBA as background genes.We
performed enrichment test within ‘homo sapiens’ species and against tissue-
type specific (GNF U133A quartile 79 tissue types) and reported significant
results after Benjamini-Hochberg FDR correction (p < 0.05).

tDCS and training intervention study: Experimental Design and
Procedures
Stimuli. Stimuli presented were the same as for themulti-session training
study (see Supplementary Information: Stimuli).

Experimental Design. All participants took part in a single brain imaging
session during which they were randomly assigned to the Anodal or Sham
group. Participants in the Anodal group received anodal tDCS on the right
OCT, whereas participants in the Sham group did not receive stimulation.
We collected whole-brain multi-parameter mapping (MPM) and rs-fMRI
data before and after training while participants fixated on a cross at the
center of the screen.

During training, participants were presented with Glass patterns and
were asked to judge and indicate by button press whether the presented
stimulus in each trial was radial or concentric. Two stimulus conditions
(radial vs. concentric Glass patterns; 100 trials per condition), were pre-
sented for each training block. For each trial, a stimulus was presented for
300ms andwas followed by fixation (i.e. blank screenwith a central fixation
dot) while waiting for the participant’s response (self-paced trials). Trial-by-
trial feedback was provided by means of a visual cue (green tick for correct,
red ‘x’ for incorrect) followed by afixation dot for 500ms before the onset of
the next trial. Participants completed 9 blocks of 200 trials each. tDCS
stimulation (Anodal or Sham) lasted 20min, beginning at the start of block
3 and ending before block 6, ensuring the same amount of stimulation was
applied during training across participants. Total duration of training did
not vary between groups (Anodal group mean/stdev = 61.5/4.1 min, Sham
group mean/stdev = 62.6/3.9min, T(39) = 0.81, p = 0.423).

tDCS and training intervention study: Imaging data acquisition
We collected MRI data on a 3T Siemens PRISMA scanner (Cognition and
Brain SciencesUnit, Cambridge) using a 64-channel head coil. T1-weighted
structural data (TR = 19.17ms; TE = 2.31ms; number of slices = 176; voxel
size= 1mmisotropic).Wecollectedwhole-brainmulti-parametermapping
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(MPM) and rs-fMRI data using similar protocols as for the multi-session
training study. For detailed acquisition parameters see Supplementary
Information: tDCS and training intervention study: MRI acquisition).

tDCS and training intervention study: Data analysis
Behavior. We measured behavioral performance per training block as
the mean accuracy per 200 trials. To quantify learning-dependent
changes in behavior, we computed the behavioral performance before
and after stimulation as the average performance of blocks 1–2 (Pre-) and
6–9 (Post-stimulation), respectively.

Image analysis. We followed the same pipeline as for the multi-session
training study. For detailed analysis pipeline see Supplementary Infor-
mation: tDCS and training intervention study: MRI data analysis.

Statistics and Reproducibility. Repeated measures ANOVAs, multiple
regressions, and T tests were performed in SPSS v19.We used Bonferroni
correction for post-hoc comparison. Correction for gene expression
analysis was performed with Benjamini–Hochberg FDR method61. For
the tDCS intervention study, we normalized measurements from the
Anodal to the Sham group by subtracting the mean value of the Sham
group from the Anodal group for each measurement separately26. To
ensure that our results were not simply due methodological choices, we
tested: (a) different correction methods (i.e. Benjamini, Fisher Exact,
FDR, and Bonferroni) for the gene expression enrichment analysis
(Table S5), (b) three different Schäefer atlases (Supplementary Infor-
mation: Sensitivity analyses; Fig. S2, Table S6). Further, we conducted
leave-one-out cross-validation on the regression analyses for a) FC dis-
persion (Table S7), b) MPC dispersion predicting learning rate
(Table S8).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data are available in the Cambridge University repository (https://doi.org/
10.17863/CAM.117105)62. AHBA microarray expression data can be
downloaded via abagen toolbox53,63.

Code availability
Code is available in theCambridgeUniversity repository (https://doi.org/10.
17863/CAM.117105)62.

Received: 29 September 2024; Accepted: 12 May 2025;

References
1. Sampaio-Baptista, C. & Johansen-Berg, H. White matter plasticity in

the adult brain. Neuron 96, 1239–1251 (2017).
2. Kelly, C. & Castellanos, F. X. Strengthening connections: functional

connectivity and brain plasticity. Neuropsychol. Rev. 24, 63–76
(2014).

3. Guerra-Carrillo, B., Mackey, A. P. & Bunge, S. A. Resting-state fMRI.
Neuroscientist 20, 522–533 (2014).

4. Xin,W.&Chan, J.R.Myelinplasticity: sculptingcircuits in learningand
memory. Nat. Rev. Neurosci. 21, 682–694 (2020).

5. Bonetto, G., Belin, D. & Káradóttir, R. T. Myelin: A gatekeeper of
activity-dependent circuit plasticity?. Science 374, eaba6905 (2021).

6. deFaria, O. et al. Periods of synchronizedmyelin changes shapebrain
function and plasticity. Nat. Neurosci. 24, 1508–1521 (2021).

7. Ehrlich, D. E. & Josselyn, S. A. Plasticity-related genes in brain
development and amygdala-dependent learning.Genes Brain Behav.
15, 125–143 (2016).

8. Baker, K. B. et al. Male and female Fmr1 knockoutmice on C57 albino
background exhibit spatial learning andmemory impairments.Genes
Brain Behav. 9, 562–574 (2010).

9. Lu, Z.-L. & Dosher, B. A. Current directions in visual perceptual
learning. Nat. Rev. Psychol. 1, 654–668 (2022).

10. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the
adult human brain transcriptome. Nature 489, 391–399 (2012).

11. Weiskopf, N. et al. Quantitative multi-parameter mapping of R1, PD*,
MT, and R2* at 3T: a multi-center validation. Front. Neurosci. 7, 95
(2013).

12. Margulies, D. S. et al. Situating the default-mode network along a
principal gradient of macroscale cortical organization. Proc. Natl
Acad. Sci. 113, 12574–12579 (2016).

13. Laird, A. R. et al. Investigating the functional heterogeneity of the
default mode network using coordinate-based meta-analytic
modeling. J. Neurosci. 29, 14496–14505 (2009).

14. Smallwood, J. et al. The default mode network in cognition: a
topographical perspective. Nat. Rev. Neurosci. 22, 503–513 (2021).

15. Paquola, C. et al. Microstructural and functional gradients are
increasingly dissociated in transmodal cortices. PLoS Biol. 17,
e3000284 (2019).

16. Royer, J. et al. Myeloarchitecture gradients in the human insula:
Histological underpinnings and association to intrinsic functional
connectivity. Neuroimage 216, 116859 (2020).

17. Ziminski, J. J., Frangou, P., Karlaftis, V. M., Emir, U. & Kourtzi, Z.
Microstructural and neurochemical plasticity mechanisms interact to
enhance human perceptual decision-making. PLoS Biol. 21,
e3002029 (2023).

18. Paquola, C. et al. Shifts in myeloarchitecture characterise adolescent
development of cortical gradients. https://doi.org/10.7554/eLife.
50482.001 (2019).

19. Bethlehem, R. A. I. et al. Dispersion of functional gradients across the
adult lifespan. Neuroimage 222, 117299 (2020).

20. Sherman, B. T. et al. DAVID: a web server for functional enrichment
analysis and functional annotation of gene lists (2021 update).Nucleic
Acids Res 50, W216–W221 (2022).

21. Bigdeli, T. B. et al. A simple yet accurate correction for winner’s curse
can predict signals discovered in much larger genome scans.
Bioinformatics 32, 2598–2603 (2016).

22. Fulcher, B. D., Arnatkeviciute, A. & Fornito, A. Overcoming false-
positive gene-category enrichment in the analysis of spatially
resolved transcriptomic brain atlas data. Nat. Commun. 12, 2669
(2021).

23. Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of
macroscale gradients in neuroimaging and connectomics datasets.
Commun. Biol. 3, 103 (2020).

24. Dear, R. et al. Cortical gene expression architecture links healthy
neurodevelopment to the imaging, transcriptomics and genetics of
autism and schizophrenia. Nat. Neurosci. 27, 1075–1086 (2024).

25. Yeo, B. T. T. et al. The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J. Neurophysiol. 106,
1125–1165 (2011).

26. Frangou, P., Correia, M. & Kourtzi, Z. GABA, not BOLD, reveals
dissociable learning-dependent plasticity mechanisms in the human
brain. Elife 7, e35854 (2018).

27. Pirulli, C., Fertonani, A. &Miniussi,C. The roleof timing in the induction
of neuromodulation in perceptual learning by transcranial electric
stimulation. Brain Stimul. 6, 683–689 (2013).

28. Pearson-Fuhrhop, K. M., Kleim, J. A. & Cramer, S. C. Brain plasticity
and genetic factors. Top. Stroke Rehabil. 16, 282–299 (2009).

29. Melchers, M. et al. The OXTR gene, implicit learning and social
processing: Does empathy evolve from perceptual skills for details?.
Behav. Brain Res. 329, 35–40 (2017).

30. Bonow, R. H., Aïd, S., Zhang, Y., Becker, K. G. & Bosetti, F. The brain
expressionof genes involved in inflammatory response, the ribosome,

https://doi.org/10.1038/s42003-025-08212-7 Article

Communications Biology |           (2025) 8:779 9

https://doi.org/10.17863/CAM.117105
https://doi.org/10.17863/CAM.117105
https://doi.org/10.17863/CAM.117105
https://doi.org/10.17863/CAM.117105
https://doi.org/10.7554/eLife.50482.001
https://doi.org/10.7554/eLife.50482.001
https://doi.org/10.7554/eLife.50482.001
www.nature.com/commsbio


and learning and memory is altered by centrally injected
lipopolysaccharide inmice.Pharmacogenomics J. 9, 116–126 (2009).

31. Schreiweis, C. et al. Humanized Foxp2 accelerates learning by
enhancing transitions from declarative to procedural performance.
Proc. Natl Acad. Sci. 111, 14253–14258 (2014).

32. Sweatt, D. J. & Weeber, E. J. Genetics of childhood disorders: LII.
learning and memory, part 5: human cognitive disorders and the ras/
ERK/CREB pathway. J. Am. Acad. Child Adolesc. Psychiatry 42,
873–876 (2003).

33. Egan, M. F. et al. Effect of COMT Val 108/158 Met genotype on frontal
lobe function and risk for schizophrenia. Proc. Natl Acad. Sci. 98,
6917–6922 (2001).

34. Blackmore, D. G. et al. Long-Term Improvement in Hippocampal-
Dependent Learning Ability in Healthy, Aged Individuals Following
High Intensity Interval Training. Aging Dis. https://doi.org/10.14336/
AD.2024.0642 (2024).

35. Vogels, R. Mechanisms of visual perceptual learning in Macaque
visual cortex. Top. Cogn. Sci. 2, 239–250 (2010).

36. Maniglia, M. & Seitz, A. R. Towards a whole brain model of perceptual
learning. Curr. Opin. Behav. Sci. 20, 47–55 (2018).

37. Romero-Garcia, R. et al. Transcriptomic and connectomic correlates
of differential spatial patterning among gliomas. Brain 146,
1200–1211 (2023).

38. Viñuela, A. et al. Age-dependent changes in mean and variance of
gene expression across tissues in a twin cohort.Hum.Mol. Genet. 27,
732–741 (2018).

39. Mai, J., Lu, M., Gao, Q., Zeng, J. & Xiao, J. Transcriptome-wide
association studies: recent advances in methods, applications and
available databases. Commun. Biol. 6, 899 (2023).

40. Park, B. et al. Adolescent development of multiscale structural wiring
and functional interactions in the human connectome. Proc. Natl
Acad. Sci. 119, e2116673119 (2022).

41. Hong, S.-J. et al. Atypical functional connectome hierarchy in autism.
Nat. Commun. 10, 1022 (2019).

42. Royer, J. et al. Cortical microstructural gradients capture memory
network reorganization in temporal lobe epilepsy. Brain 146,
3923–3937 (2023).

43. Friedman, N. P. & Robbins, T. W. The role of prefrontal cortex in
cognitive control and executive function.Neuropsychopharmacology
47, 72–89 (2022).

44. Menon, V. & D’Esposito, M. The role of PFC networks in cognitive
control and executive function. Neuropsychopharmacology 47,
90–103 (2022).

45. Weiskopf, N., Edwards, L. J., Helms, G., Mohammadi, S. & Kirilina, E.
Quantitative magnetic resonance imaging of brain anatomy and
in vivo histology. Nat. Rev. Phys. 3, 570–588 (2021).

46. Pisauro, M. A., Fouragnan, E., Retzler, C. & Philiastides, M. G.
Neural correlates of evidence accumulation during value-based
decisions revealed via simultaneous EEG-fMRI. Nat. Commun. 8,
15808 (2017).

47. Krause, M. R. et al. Transcranial direct current stimulation facilitates
associative learning and alters functional connectivity in the primate
brain. Curr. Biol. 27, 3086–3096.e3 (2017).

48. McDermott, T. J. et al. tDCS modulates behavioral performance and
the neural oscillatory dynamics serving visual selective attention.
Hum. Brain Mapp. 40, 729–740 (2019).

49. Clark, V. P. et al. TDCS guided using fMRI significantly accelerates
learning to identify concealed objects. Neuroimage 59, 117–128
(2012).

50. Costa, T. L., Lapenta,O.M.,Boggio, P.S. &Ventura,D. F. Transcranial
direct current stimulation as a tool in the study of sensory-perceptual
processing. Atten., Percept., Psychophys. 77, 1813–1840 (2015).

51. Lavezzi, G. D., SanzGalan, S., Andersen, H., Tomer, D. &Cacciamani,
L. The effects of tDCS on object perception: A systematic review and
meta-analysis. Behav. Brain Res. 430, 113927 (2022).

52. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L.
Evidence for a frontoparietal control system revealed by intrinsic
functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).

53. Markello, R. D. et al. Standardizing workflows in imaging
transcriptomics with the abagen toolbox. Elife 10, e72129 (2021).

54. Wang, Y. et al. Long-range functional connections mirror and link
microarchitectural and cognitive hierarchies in the human brain.
Cereb. Cortex 33, 1782–1798 (2023).

55. Arnatkevic̆iūtė, A., Fulcher, B. D. & Fornito, A. A practical guide to
linking brain-wide gene expression and neuroimaging data.
Neuroimage 189, 353–367 (2019).

56. Hansen, J. Y. et al. Mapping gene transcription and neurocognition
across human neocortex. Nat. Hum. Behav. 5, 1240–1250 (2021).

57. Romero-Garcia, R., Warrier, V., Bullmore, E. T., Baron-Cohen, S. &
Bethlehem, R. A. I. Synaptic and transcriptionally downregulated
genes are associated with cortical thickness differences in autism.
Mol. Psychiatry 24, 1053–1064 (2019).

58. Schaefer, A. et al. Local-global parcellation of the human cerebral
cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28,
3095–3114 (2018).

59. Krishnan, A., Williams, L. J., McIntosh, A. R. & Abdi, H. Partial Least
Squares (PLS) methods for neuroimaging: a tutorial and review.
Neuroimage 56, 455–475 (2011).

60. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and
integrative analysis of large gene lists using DAVID bioinformatics
resources. Nat. Protoc. 4, 44–57 (2009).

61. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc.
Ser. B Stat. Methodol. 57, 289–300 (1995).

62. Li, Y. et al. Research data supporting “Neurogenetic phenotypes of
learning-dependent plasticity for improved perceptual decisions”
[Data set]. Apollo https://doi.org/10.17863/CAM.117105 (2024).

63. Allen Institute for Brain Science (2004). Allen Human Brain Atlas
[dataset]. Available from human.brain-map.org. Allen Institute for
Brain Science (2011).

Acknowledgements
This work was supported by grants to ZK from the Biotechnology and
Biological Sciences Research Council (H012508, BB/P021255/1), the
Wellcome Trust (205067/Z/16/Z; 223131/Z/21/Z), to Z.K. and B.B. from the
Douglas Avrith University of Cambridge/Montreal Neurological Institute-
Hospital Neuroscience Collaboration. For the purpose of open access, the
author has applied for a CC BY public copyright license to any Author
Accepted Manuscript version arising from this submission. We would like
to thank the MR physics and radiographer teams at the Wolfson Brian
Imaging Centre and the Cognition and Brain Sciences Unit for their support
with data collection, Matthew Davis and Benedikt Zoefel for their guidance
on setting up tDCS in the scanner, Martina Callaghan, Nikolaus Weiskopf
and the Wellcome Centre for Human Neuroimaging for providing for sup-
port with the MPM sequences and analyses, and Lilia Kukovska and Vicki
Hodgson for help with data collection. We would like to thank Dr. Austin
Benn and Richard Dear for their valuable insights on genetic analysis and
gradient analysis.

Author contributions
Conceptualization: L.Y.L., J.J.Z., P.F., V.M.K., B.B., V.W., R.A.I.B., Z.K; Data
curation: L.Y.L., J.J.Z., P.F., V.M.K., Y.W., V.W., R.A.I.B., Z.K.; Formal
Analysis: L.Y.L., J.J.Z., P.F., V.M.K., Y.W., V.W., R.A.I.B., Z.K.; Funding
acquisition: B.B., Z.K.; Investigation: L.Y.L., J.J.Z., P.F., V.M.K.;
Methodology: L.Y.L., J.J.Z., Y.W., V.W., R.A.I.B.; Project administration:
L.Y.L., Z.K.; Resources: L.Y.L., Z.K., B.B., V.W., R.A.I.B.; Software: L.Y.L.,
J.J.Z., Y.W., V.W., R.A.I.B.; Supervision: Z.K., B.B., V.W., R.A.I.B.;
Visualization: L.Y.L., Y.W., R.A.I.B.; Writing—original draft: L.Y.L., J.J.Z.,
P.F., V.M.K., B.B., V.W., R.A.I.B., Z.K.; Writing—review & editing: L.Y.L.,
J.J.Z., P.F., V.M.K., B.B., V.W., R.A.I.B., Z.K.

https://doi.org/10.1038/s42003-025-08212-7 Article

Communications Biology |           (2025) 8:779 10

https://doi.org/10.14336/AD.2024.0642
https://doi.org/10.14336/AD.2024.0642
https://doi.org/10.14336/AD.2024.0642
https://doi.org/10.17863/CAM.117105
https://doi.org/10.17863/CAM.117105
www.nature.com/commsbio


Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-025-08212-7.

Correspondence and requests for materials should be addressed to
Zoe Kourtzi.

Peer review information Communications Biology thanks Andriani Rina
and the other, anonymous, reviewer(s) for their contribution to the peer
reviewof thiswork. Primary Handling Editor: Jasmine Pan. A peer review file
is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s42003-025-08212-7 Article

Communications Biology |           (2025) 8:779 11

https://doi.org/10.1038/s42003-025-08212-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Neurogenetic phenotypes of learning-dependent plasticity for improved perceptual decisions
	Results
	Behavioral performance
	Genetic signatures of learning-dependent plasticity in occipital and prefrontal regions
	Learning-dependent changes in occipito-frontal brain networks
	Anodal tDCS during training and brain imaging
	Anodal tDCS improves performance in signal-in-noise discrimination
	Anodal tDCS alters microstructure and functional connectivity in occipito-frontal networks


	Discussion
	Methods
	Overview
	Participants
	Multi-session training study: Experimental Design and Procedures
	Multi-session training study: Imaging data acquisition and analysis
	Multi-session training study: Gene expression analysis
	PLS regression
	Genetic enrichment analyses

	tDCS and training intervention study: Experimental Design and Procedures
	Stimuli
	Experimental Design


	tDCS and training intervention study: Imaging data acquisition
	tDCS and training intervention study: Data analysis
	Behavior
	Image analysis
	Statistics and Reproducibility

	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




