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Anterior-posterior systematic deficits of
cortical thickness in early-onset
schizophrenia
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Schizophrenia is a neurodevelopmental condition with alterations in both sensory and association
cortical areas. These alterations have been reported to follow structural connectivity patterning, and to
occur in a system-level fashion. Here we investigated whether pathological alterations of
schizophrenia originate from an early disruption of cortical organization. We found a structural
covariance gradient axis of cortical thickness discriminated anterior from posterior region and was
compressed in early-onset schizophrenia (EOS) patients. Patients showed increased structural
covariance between two ends of the anterior-posterior axis, with increased geodesic distance of
covarying regions between two ends. Positive symptoms increased with the strengthening of
structural covariancebetween twoends.Our findings revealedacontractedorganizational axis in EOS
patients, which was attributed to excessive distally coordinated changes between anterior and
posterior cortical regions. Our study from a systematic perspective suggests disturbed maturational
processes of cortical thickness in EOS, supporting the neurodevelopmental hypothesis of
schizophrenia.

Schizophrenia is a psychiatric disorder associatedwith pathological changes
in gray and white matter throughout the cerebral cortex1. Although the
behavioral manifestations of the disease usually appear in early adulthood,
numerous neuroimaging studies suggest that the pathological process of the
disease begins early in brain development2. Early-onset schizophrenia
(EOS), which is thought to be neurobiologically continuous with its adult
counterpart3, provides an opportunity to study disease-specific aberrations
in neurodevelopmental processes. Converging evidence suggests wide-
spread alterations in cortical thickness in EOS patients, particularly in the
frontal, temporal, and parietal regions4,5. These gray matter changes have
been suggested to follow the white matter organization of the cortex, con-
sistent with models of disease propagation6–8. However, it remains unclear
how the maturational processes of cortical thickness are coordinately dis-
turbed by the disease.

An intuitive method for capturing coordinated changes in cortical
thickness across the cortex is the “structural covariance” approach9. By
calculating the covariance of cross-sectional cortical thickness data, this

approachmeasures the similarity of anatomical variations in the brain. The
covariance pattern reflects the coordinated effects of specific micro- and
mesoscopic factors, such as gene expression10, synaptogenesis11, and laminar
thickness12. Moreover, the structural covarying pattern of childhood-
adolescence reflects synchronized developmental changes in the cortex9,13

and serves as a signature of coordinated developmental processes13. For
example, this structural covariance pattern has been shown to resemble
intra-individual maturational coupling inferred from longitudinal data14.
More optimal topological organization of structural covariance network is
associated with higher cognitive performance, implying its involvement in
the development of intelligence15. Altered covariancenetworks are related to
a variety of mental health conditions in young patients with disorders such
as depression16 and anxiety symptoms17. Patients with schizophrenia have
anaberrantpatternof fronto-temporal, fronto-parietal, and fronto-thalamic
covariations18, and show a disruption of covariance network architecture19.
Atypical maturations of structural covariance have been shown in pediatric
individuals at high risk for psychosis20. Yet, few EOS studies investigated
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maturational processes of cortical thickness at a high resolution of structural
covariance network21.

Recently, brain maturation processes have been reported to occur in a
system-like manner22. Systematic patterns of brain organization have been
described within a framework of “gradients”23, that capture an orderly
spatial progression of cortical features24. For example, neuronal density
changes systematically along spatially organized gradients25. To characterize
the systematic gradient pattern of cortical organization, a nonlinear
dimensionality reduction technique, also called “diffusion embedding” has
been proposed26,27. By embedding cortical regions into a continuous gra-
dient map according to the similarity of their structural covariance profiles,
previous work has revealed a non-random spatial organization of structural
coordination across the cortex28,29. In particular, the dominant structural
gradient axis tends to distinguish posterior cortices from anterior cortices,
reflecting the temporal sequence of neurogenesis28. Generally, the posterior
portion of the cortex has a greater number of neurons with a shorter cell
cycle, while the anterior end has a smaller number with a longer cell cycle30.
Common disease effects across various psychiatric disorders have been
found to follow a similar cortical thickness covariance gradient axis dis-
sociating anterior and posterior regions31. Accordingly, the anterior-
posterior gradient axis of structural covariance shaped by neurodevelop-
mental mechanisms appears to be also affected by psychiatric conditions.
Despite the potential interplay of development and illness effects on the
gradient axis, it remains unknown whether the gradient patterns change in
patients with EOS, and how the system-level disruptions relate to cortical
thickness abnormalities.

The systematic pattern of brain organization is supported by many
factors. Among them, physical distance along the cortical surface is an
important determinant of how regions are connected and thus how the
brain is organized32. Indeed, a previous quantitative retrograde tracer ana-
lysis of macaque cortical networks suggests that physically close areas are
more likely to be interconnected33. In addition to physical distance, anato-
mical similarity between regions is also an important determinant12,34. For
example, cortical regions with similar laminar thickness patterns have been
reported to have higher structural and functional connectivity12. In fact,
physically close regions tend to have similar microstructural profiles and
high interregional connectivity35,36. A structural covariance network
reflecting the similarity of anatomical variations in the brain has shown a
bias toward short-distance connections13. Physical distance along the cor-
tical surface has been suggested to be associated with system-level transi-
tions of both microscale cortical cytoarchitectural covariance12 and
macroscale cortical thickness covariance28. Together, physical distance,
anatomical similarity, and brain connectivity seem to be intrinsically linked

and are essential to the formation of the systematic pattern of brain orga-
nization. Here we would test the relationship between geodesic distances,
anatomical similarities, and gradient patterns, and whether EOS affected it
by examining the geodesic distance between covarying regions in patients.

To investigate whether macrostructural covariance is systematically
altered in EOS patients, we first computed structural covariance of cross-
sectional cortical thickness data from 95 patients with antipsychotic-naive
first-episode EOS and 99 typically developing (TD) controls (recruited
sample of 99 EOS and 100 TD, 7–17 years-old)13. We then decomposed the
similaritymatrix of covariance into a low-dimensional embedding using the
diffusion embedding approach26. To further unravel the potential biological
mechanisms behind system-level changes of cortical thickness in patients,
we examined diagnosis and symptom effects on structural covariance pat-
terns ordered by the covariance gradient axis in TD controls. Finally, we
estimated covariance distances by calculating geodesic distance between
covarying regions37. Taken together, we found a structural gradient con-
sistently describe an anterior-posterior transition mirroring the temporal
sequence of neurogenesis28, and was distorted by EOS. Contracted covar-
iance gradient axis in EOS could be contributed to excessive distally coor-
dinated changes between anterior and posterior regions of the cortex, and
was associated with positive symptoms in patients.

Results
Patients with EOS (mean ± SD = 2.58 ± 0.45mm) showed reduced global
cortical thickness relative to TD controls (mean ± SD= 2.62 ± 0.46mm;
t = 2.41,p = 0.02), consistentwithpreviousfindings38. To reveal system-level
structural abnormalities of EOSpatients,we calculated structural covariance
gradients of cortical thickness for the TD and EOS groups (Fig. 1). Speci-
fically, we decomposed the 90% thresholded covariance matrix into 10
gradient components and aligned gradient maps of EOS with normative
gradient maps of TD controls. Along the gradient axis, the position of a
regionwas determined by the similarity of its structural covariance profile to
others, thus indicating opposite poles of the axis with maximally divergent
covariance patterns. The first gradient component (G1) explained 20% of
the variance in the TD group and 26% of the variance in the EOS group to
distinguish motor regions from other cortical areas. The second gradient
(G2) axis (explained eigenvariance: EOS group = 18%; TD group = 15%)
was significantly related to the main structural covariance gradient axis
derived from the Human Connectome Project (HCP) adult data (r = 0.69,
pspin < 0.0001) that distinguishing posterior cortices fromanterior cortices28,
whereas the G1 map showed no correlation with either the HCP G1 map
(r = 0.22, pspin = 0.18) or the HCP G2 map (r = 0.20, pspin = 0.28) (Supple-
mentary Fig. S1). Hence, here wemainly focused on the G2 axis and further
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Fig. 1 | Method flowchart of the structural covariance gradient. Vertex-wise
cortical thickness was first extracted and down-sampled to 400 parcels from the
Schaefer atlas56. Structural covarying patterns were then estimated by using struc-
tural covariance of cortical thickness in typically developing (TD) controls, or early-
onset schizophrenia (EOS) patients. After column-wise thresholding at 90%, the

covariance matrix was then decomposed into 10 low-dimensional components by
using the diffusion embedding method. Only the second component in TD, i.e., the
second normative gradient, was related with the gradient axis derived from the
human connectome project (HCP) data28, and thus selected-out and used in further
analyses.
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examined group differences between EOS and TD along this axis. See
Supplementary Materials for further details about G1 maps.

Systematic covariance gradient maps
Similar to the well-established HCP gradient map28, the G2 axis described a
spatial arrangement fromanterior to posterior regions in the cerebral cortex
(Fig. 2A). Patients with EOS showed a compressed gradient axis compared
to TD controls (Kolmogorov-Smirnov test; D400 = 0.13, p = 0.002). No
parcels survived the false discovery rate (FDR) correction for z-score dif-
ferences of gradient scores (Supplementary Fig. S2). After pooling 400
cortical parcels into seven functional networks, we observed that the pos-
terior end was located in the visual network (VIS) and sensorimotor net-
work (SMN), while the anterior endwas anchored in transmodal networks,
including the default mode network (DMN) and frontoparietal network
(FPN) (Fig. 2B). No significant group difference in network-level gradient
scores was found between the EOS and TD groups using paired t-tests. We
then divided cortical parcels into 10 equal-sized bins according to their
ranked gradient scores in TD controls and tested group differences for each
bin by using paired t-tests (Fig. 2C). Patients showed increased gradient
scores in the 3rd bin and decreased gradient scores in the 9th and 10th bins
(qFDR < 0.05), indicating a disrupted segregation for both the posterior and
anterior parts.

Group differences on structural covariance
To further investigate the compressed anterior-posterior axis in EOS
patients, we reorganized and averaged the structural covariance matrices
according to the 10-binned normative gradient mask (Fig. 3). Along the
normative gradient axis, close ranks of two bins reflected similar structural
covarying profiles. As expected, the further apart two bins were along the
gradient axis, the lower the covariance value. We then tested for diagnosis
effects on the reshaped structural covariance patterns. We found that
patients had increased covariance values between the 1st and 9th bins
(t = 3.66, qFDR= 0.002), i.e., less negative covariance values in EOS com-
pared to TD (Fig. 3A). Here, the increased covariation between the anterior
and posterior ends partly explained the abovementioned disruptions of
gradient segregation. Additionally, we found more severe positive symp-
toms were related with reduced covariance between the 1st and 10th bins
(t =−3.01, qFDR= 0.009) (Fig. 3B). More severe negative symptoms were
related with increased covariance between the 10th and 6th bins (t = 2.71,
qFDR = 0.02).

Group differences on covariance distances
To examine the relationship between physical distances and structural
covariancemaps, we first computed node-wise geodesic distance degrees by

averaging geodesic distances from one parcel to all other parcels (Fig. 4A),
and found that it was relatively large in the frontal, inferior temporal, and
occipital regions compared to other regions. The anterior-posterior gradient
map was significantly related to the nodal degree map of geodesic distance
(r = 0.37, pspin = 0.04). As expected, structural covariance was negatively
correlated with geodesic distance (r =−0.20, pperm < 0.0001), supporting
previous findings of a short-distance connection bias in structural covar-
iance networks13.

To further investigate the relationship between physical distances and
covariance perturbations in EOS, we computed covariance distances by
averaging the geodesic distance from a seed region to its covarying regions
(Fig. 4B)37. A high covariance distance score of a region indicates a pattern
dominated by remote connectivity, and a low score indicates local con-
nectivity. After resampling the covariance distancemaps along the gradient
axis (Fig. 4C), we found that patients showed increased covariance distances
in both ends of the gradient axis, but decreased covariance distances in the
middle of the axis. Specifically, patients with EOS showed statistically
increased covariance distances in the 1st bin (t = 3.69, qFDR= 0.007) and the
10th bin (t = 3.40, qFDR = 0.008) compared to TD controls.

Discussion
In the current study, we investigated the system-level organization of
coordinated structural changes in EOS patients by applying a dimensional
reduction approach to the structural covariance of cross-sectional cortical
thickness data. Similar to the principal gradient reflecting the temporal
sequence of neurogenesis from the young adult HCP sample28, G2 of the
structural covariance pattern described an anterior-posterior organizational
axis, capturing a unimodal-transmodal transition. Patients with EOS
showed a contracted anterior-posterior gradient pattern compared to TD
controls. In addition, patients showed increased structural covariance
between the anterior and posterior ends of the gradient and increased
covariance distances of both poles compared to TD controls. Taken toge-
ther, these findings revealed a disrupted systematic organization of struc-
tural covariance patterns in EOSpatients, whichwas supported by excessive
distant connection profiles between the two ends of the axis.

Consistent with previous findings28, our study revealed an anterior-
posterior gradient axis of structural covariance in this young age group.
However, it was the second, and not the first, covariance gradient of this age
group that was aligned with the main covariance gradient in adults28. The
shift in macroscale cortical organization between pediatric and adult
populations has been reported in functional connectivity gradients39. This
previous work concluded that these gradient order changes represent a
maturation of cortical organization thatmay be critical for the refinement of
cognitive and behavioral abilities during development. As previously
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suggested28, the anterior-posterior axis appears to map the temporal
sequence of neurogenesis. Specifically, the posterior and anterior portions of
the cortex are distinguished by their neuronal counts, i.e., a greater number
of neurons with a shorter cell cycle at the posterior end, and a smaller
number with a longer cell cycle at the anterior end30. Furthermore, this
gradient axis has been suggested to be related to the functional continuum
from basic perception to abstract cognition28. Our findings of functional
network distributions showed a similar unimodal-transmodal transition,
supporting previous gradient findings in adults. Future longitudinal studies
are needed to elaborate on dynamic changes in the anterior-posterior
macrostructural axis from childhood to adulthood.

A previous study found compression of the sensorimotor-to-
transmodal functional connectivity gradient in patients with chronic
adult-onset schizophrenia40, and suggested that this was a system-level
substrate underlying sensory and cognitive deficits of patients41. Con-
sistently,we foundcompressed system-level covariancegradient axis inEOS
patients, indicating that both structural and functional cortical organization
were less dispersed in schizophrenia. The previous study suggested that
reduced functional separation between primary sensory and fronto-parietal
cognitive systems may contribute to the phenomenon of functional hier-
archical compression. In the current study, we found similar reduced
structural separation in EOS patients, i.e., increased structural covariance
betweenposterior and anterior regions.Duringbrain development, primary
sensory cortices are relatively uncoupled from the rest of the cortex9,
whereas frontotemporal cortices have stronger andmore extensive coupling
patterns, responsible for the involvement of integrative cognitive
processes42. Therefore, patients’ excessive structural coupling between
posterior and anterior regions may provide a mechanistic explanation for
compressed structural organization in EOS. We found that the clinical
severity of positive symptomsdecreasedwith the strengthening of structural
coupling between posterior and anterior regions, suggesting a compensa-
tory neural mechanism in EOS. Particularly, patient’s increased structural
coupling was a downstream alteration of the brain during the pathological
process of schizophrenia, to achieve similar activity patterns in biological

networks as the generation population43. However, group differences of
gradient scores couldnot be observed at theparcel level.We inferred that the
parcel-wise overlap of cortical thickness between patients and controls
(Supplementary Fig. S3A) might be responsible for this negative finding.
Despite the parcel-wise overlap, patients with EOS exhibited systematic
disruptions of cortical thickness, underscoring the critical need for future
investigation from a system-level perspective.

Geodesic distance was correlated with the anterior-posterior covar-
iance gradient, supporting the hypothesis that physical distance is an
important determinant of cortical organization. Indeed, we found that
regions with greater geodesic distance had lower structural covariance.
However, we again found some distance-related differences between indi-
viduals with EOS and TD. By calculating the covariance distance, we tested
the relationship between physical distance and systematic structural orga-
nizational changes in EOS. In general, sensory areas had more clustered
local connections, whereas transmodal systems had distributed remote
connections44–46. The increased connectivity distance in association areas
relative to sensory areas could be driven by multiple factors, reflecting a
systematic balance between short- and long-distance connections. The
“tethering hypothesis” relates this distribution of connectivity distance to
evolutionary expansion47. Specifically, this hypothesis views sensory regions
as anchors and transmodal associationcortex as the evolutionally expanding
cortical areas tethering these anchors, potentially explaining the increase in
long-range connectivity in association regions.We found that patients with
EOS showed increased covariance distances of both sensory and transmodal
systems, which is consistent with previous findings of distance-dependent
miswiring patterns48. According to a concept of network attributes49, local
connections are associated with functional system segregation, and long-
range connections with integration. Therefore, increased covariance dis-
tances of sensory and transmodal systems in EOS patients might reflect
disturbed network topology, potentially interpreting their contracted
macroscale structural organization.

This study has several limitations about the elements of methodology
and study design. First, given the young age of participants (7−17 years old),
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two senior psychiatrists with more than 10 years of experience made the
consensus diagnosis by interviewing both the child and parent(s). However,
it is still a major limitation that we did not use the Schedule for Affective
Disorders and Schizophrenia Present and LifetimeVersion forChildren (K-
SADS-PL) to assess symptoms and DSM-IV diagnoses of participants by
semi-structured diagnostic interviewing the child and parent(s) separately.
Thus, our findings of the anterior-posterior gradient axis in this young age
group should be more carefully verified in the future. Second, the current
study design was based on a cross-sectional dataset, which does not reflect
co-maturation processes between different cortical regions in young indi-
viduals. Although population-based structural covariance of cortical
thickness could be explained by subject-based maturational coupling pat-
terns derived from longitudinal data14, further longitudinal studies are
needed to validate the system-levelperturbations of structurally coordinated
changes in EOS patients. Third, in addition to the cerebral cortex, sub-
cortical nuclei are also important pathological components in
schizophrenia50. We additionally computed a covariance gradient by
combining cortical areas and subcortical regions, including the accumbens,
amygdala, caudate, hippocampus, pallidum, putamen, and thalamus
(Supplementary Fig. S4). We found that the cortical gradient maps were
similar to the original gradient maps, showing a compressed anterior-
posterior gradient axis in patients. EOS patients showed decreased covar-
iance between the right putamen (one of the basal ganglia nuclei and part of
the striatum) and the 5th bin of the anterior-posterior axis, and increased

covariance between the left pallidum and the 3rd bin. However, it is the
thalamocortical connectivity that has been shown to strongly contribute to
the formation of key characteristics of themature brain during youth51. Our
previous work also found increased segregation of macroscale thalamo-
cortical functional organization in EOS52. The current coarse resolution of
subcortical nucleimay account for the inconsistentfindings of the thalamus,
and future work examining the cerebellum and finer subcortical regions is
highly recommended.

In sum, the current study described a contracted anterior-posterior
organization of structural covariance patterns in EOS patients, which may
be related to increased distant coordinated changes between posterior
regions (including sensorimotor networks) and anterior regions (including
transmodal networks such as the DMNand FPN).More broadly, this study
suggested a systematic disturbance of maturational processes of cortical
thickness in schizophrenia.

Methods
Participants
Ninety-nine drug-naive first-episode EOS patients and 100 TD controls
were recruited from the First Hospital of Shanxi Medical University,
Taiyuan, China. The diagnosis of schizophrenia was made according to the
Structured Clinical Interview for Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition, and confirmed by two senior psychia-
trists after at least 6-month follow-up. All patients were at their first episode
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periodwith exhibiting at least one type of positive or negative symptoms for
1–12 months. The psychiatric symptomatology of 71 patients was assessed
using the Positive and Negative Syndrome Scale (PANSS). Clinical and
imaging data of patients were collected right after baseline diagnosis of
schizophrenia to ensure that all data were drug-naive. Next, individualized
aggressive medication treatment was implemented under their agreement,
in majority of cases with Clozapine, effectively managing symptoms at the
lowest possible dose. BothTDcontrols and theirfirst-degree relativeshadno
prior history of schizophrenia and were confirmed by the Structured
Clinical Interview for DSM-IV Non-Patient Edition. Exclusion criteria for
all subjects included (i) age over 18 years; (ii) history of neurological MRI
abnormalities; (iii) substance abuse; and (iv) any electronic or metal
implants; (v) co-morbid Axis-I or Axis-II disease.

Informed assent was obtained from all pediatric subjects to ensure
their knowledge of current condition and treatment, and involving them
in appropriate decision-making tasks53. In addition, informed consent
was also obtained from their parents or legal guardians54. This study was
listed on the Chinese Clinical Trial Registry website (registration number:
ChiCTR1900025838, https://www.chictr.org.cn/showproj.html?proj=
42160) and was approved by the Ethics Committee of the First Hospi-
tal of Shanxi Medical University. All ethical regulations relevant to
human research participants were followed.

Image data acquisition
T1-weighted anatomical data were collected using a 3 Tesla Siemens
MAGNETOM Verio scanner at the First Hospital of Shanxi Medical
University. Image data were acquired via a three-dimensional fast
spoiled gradient-echo sequence. Scanning parameters included the fol-
lowing: repetition time = 2300ms, echo time = 2.95 ms, flip angle = 9°,
matrix = 256 × 240, slice thickness = 1.2 mm (no gap), and voxel
size = 0.9375 × 0.9375 × 1.2 mm3, with 160 axial slices.

Cortical thickness extraction
Anatomical images were first preprocessed using the FreeSurfer package
(version 7.1.0, http://surfer.nmr.mgh.harvard.edu/)55, including cortical
segmentation and surface reconstruction. Each anatomical image was
visually checked for motion artifacts. Four patients were excluded due to
incomplete scanning and one control due to poor quality of cortical par-
cellation, resulting in a final sample including 95 EOS patients and 99
demographically-matched TD controls (Table 1). Vertex-wise cortical
thickness values were then estimated using the distance between the white
and pial surfaces. Subsequently, surface vertices were down-sampled to 400
cortical parcels via “Schaefer” local-global atlas56. Parcel-wise cortical
thickness was estimated by averaging vertex-wise thickness values within
each parcel. For each subject, global cortical thickness was calculated by
averaging all vertices within the hemispheric mask and was then compared
between controls and patients (Supplementary Fig. S3).

Structural covariance gradient calculation
To investigate system-level structural covariance patterns, we computed the
structural covariance matrix separately for the EOS and TD groups. Speci-
fically, we computed partial Pearson’s correlations between each pair of
cross-sectional cortical thickness data with sex, age, and global cortical
thickness as covariates. We performed Fisher’s z-transformation on the
correlation matrix, and then estimated systematic covariance gradients using
the BrainSpace toolbox (https://github.com/MICA-MNI/BrainSpace)57.
Briefly, the z-transformed covariancematrix was column-wise thresholded at
90% and transformed into an affinity matrix by using a normalized angle
similarity kernel. Its dimensionality was then nonlinearly reduced by using a
diffusion embedding method (α= 0.5, a parameter which controls the
impact of sampling density)26,58. To make the gradients comparable across
individuals, we used a unique gradient mask to align two groups via Pro-
crustes rotations. This mask was generated by the normative TD group for
avoiding the influence of disease on gradient directions. The gradient mask
based on pediatric subjects was further compared with the well-established

group-level cortical gradient map derived from the HCP adult data, which
tends to distinguish posterior cortices from anterior cortices, reflecting the
temporal sequence of neurogenesis28. Along the continuous gradient axis,
close gradient scores of the two regions reflected similar structural covarying
profiles. Additionally, we estimated covariance gradient maps without
regressing global cortical thickness (Supplementary Fig. S5), and found
similar gradient patterns as the original gradient maps (the first gradient:
r(TD) = 0.95, r(EOS)= 0.97; the second gradient: r(TD)= 0.81, r(EOS)= 0.83).

Disease effects on structural covariance gradients
To obtain the gradient scores with statistical parameters, we transformed
gradient scores to z-scores. We then calculated group-level differences in z-
scores59 and corrected them using the FDR method (qFDR < 0.05) to assess
statistical significance. The nonparametric Kolmogorov–Smirnov test was
used to compare the distributions of gradient scores between the TD and
EOS groups60. In addition, to characterize the functional involvement of
covariance gradients, we further grouped 400 cortical parcels into seven
functional networks, includingVIS, SMN, dorsal attention network, ventral
attention network (VAN), limbic network (LMB), FPN, and DMN61.
Network-level group differences between patients and controls were
examined by performing paired t-tests on gradient scores of all parcels
belonging to a given network (FDR corrected, qFDR < 0.05). To better
visualize group differences along the gradient axis, we divided cortical
parcels into 10 equal-sized bins according to their ranked gradient scores in
TD controls, and performed paired t-tests on gradient scores of all parcels
belonging to each bin (FDR corrected, qFDR < 0.05).

Disease effects on structural covariances
To further determine systematic covariance changes in EOS patients, we
examineddisease effects on structural covariance patterns along the system-
level gradient axis. To reduce dimension and aligned to the gradient axis, we
first divided cortical parcels into 10 equal-sized bins according to their
ranked gradient scores in TD controls. We then averaged the structural
covariance matrices within these bins, resulting in 10 × 10 covariance
matrices. Next, we examined diagnosis effects by using a classical linear
interaction model with diagnosis and cortical thickness as two factors, as
implemented in BrainStat (https://github.com/MICA-MNI/BrainStat)62.
Finally, we examined symptom effects in the EOS group by using PANSS
positive (or negative) scores and cortical thickness as the two factors. In
these linear models, sex, age, and global cortical thickness were regressed
out, and FDR corrections (qFDR < 0.05) were used to control for the effect of
false positives.

Relationships with geodesic distances
To evaluate the relationship between systematic structural covariance and
physical distance, we first computed the geodesic distance matrix across the
cortex. The geodesic distance between two parcels refers to the length of their
shortest path on themesh-based representation of the cortex. Specifically, we
computed the geodesic distance between each vertex in fsaverage5 space, and
then took the average distance between both parcels to obtain parcel-wise
distances by using the Micapipe toolbox (https://micapipe.readthedocs.io/)63.
Intra-hemispheric geodesic distances were separately calculated within the
left hemisphere and the right hemisphere. Given inter-hemispheric geodesic
distance could not be directly measured, they were represented by averaged
intra-hemispheric geodesic distances across two hemispheres. We found this
averaging step had little influence on following results (Supplementary
Fig. S6). We then calculated Pearson’s correlations between the gradient
maps in TD and the node-wise degree map of geodesic distance. Statistical
significance (pspin < 0.05) was estimated by using the spin test implemented
in the ENIGMA toolbox (https://enigma-toolbox.readthedocs.io/en/latest/
)64,65. The spin test simulates 10,000 surrogate surface maps with spatial
autocorrelation and generates a null distribution of correlation values. We
also computed Pearson’s correlation between the structural covariance
matrix in TD and the edge-wise geodesic distance matrix, and assessed the
significance by using a permutation test (pperm < 0.05, 10,000 times).
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Disease effects on covariance distances
To further elucidate system-level covariance changes in EOS, we estimated
disease effects on covariance distances. Covariance distance refers to the
averaged geodesic distance from a seed region to its structurally covarying
regions37. Specifically, a column-wise 90%-threshold structural covariance
matrix was used as a mask to average the geodesic distance profiles of each
parcel to generate the covariance distance map. A high covariance distance
score of a seed region reflected a distant projection pattern, while a low score
indicated a local projection. Group-level differences between covariance
distances of TD and EOSweremeasured by comparing z-score maps of the
covariance distance between two groups. In addition, we tested for disease
effects by performing paired t-tests on covariance distance scores of all
parcels belonging to a given gradient bin (qFDR < 0.05).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Structural covariancepatterns and systematic gradientmaps inTDandEOS
and other data supporting the findings of this study are available at https://
github.com/Yun-Shuang/Structural-covariance-gradient-SZ.

Code availability
Custom code was made publicly available under https://github.com/Yun-
Shuang/Structural-covariance-gradient-SZ. Gradients calculation is based
on BrainSpace (https://brainspace.readthedocs.io/en/latest/). Statistically
analyses were performed using BrainStat (https://github.com/MICA-MNI/
BrainStat) and ENIGMA. Visualizations were based on the workbench
(https://www.humanconnectome.org/software/connectome-workbench)
combined with ColorBrewer (https://github.com/scottclowe/cbrewer2).
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