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Brainbuilder: a software pipeline for 3D
reconstruction of cortical maps from
multi-modal 2D data sets

Check for updates

Thomas Funck1,2, Konrad Wagstyl3, Claude Lepage4, Mona Omidyeganeh4, Paule-Joanne Toussaint 4,
Ting Xu 1, Katrin Amunts 2,5, Alexander Thiel6,7, Nicola Palomero-Gallagher 2,5 & Alan C. Evans 4

Mesoscale maps of brain architecture are important tools for characterizing the chemo- and
cytoarchitectonic organization of thebrain. Thesemapsare essential for advancingour understanding
of normal and pathologic brain function because they provide a bridge between neuron-level micro-
scale imagining andmacro-level population brain imaging. Here we introduce amethod and software
package called BrainBuilder for reconstructing 3-dimensional cortical maps from data sets of
2-dimensional post-mortem serial brain sections processed for the visualization of multiple different
biological features. This pipeline can be applied to the brains from different species, without the strict
need for a corresponding reference volume from the brain donor. As a proof of principle, we
reconstruct data showing the distribution of multiple neurotransmitter receptor binding sites, and cell
andmyelin stained sections in the human andmacaque brain.We show that BrainBuilder can serve as
the basis for the development of future mesoscale 3D atlases.

Post-mortem brain imaging of 2-dimensional (2D) brain sections, using
modalities such as autoradiography and histology, enables the resolution of
features at the scale of “mesoscale” brain structures such as architectonic
cortical layers, cortical columns, and sub-nuclei. This approach allows the
measurement of biological features that may remain inaccessible through
in vivo imaging approaches, such as RNA transcriptomics. Mesoscale
atlases1–5 play a pivotal role in elucidating the intricate architecture of the
brain, shedding light on the fine-grained details of its structure that are
essential for advancing our understanding of brain function and pathology.

Imaging the complex anatomy of the brain using 2D sections has
inherent limitations that can only be overcome by restoring the original
embedding of these sections through 3D reconstruction. Notably, the
laminar structure of the cortex is poorly represented when the section’s
cutting angle is not perpendicular to the curvature of the cortical surface. It is
also difficult to use 2D sections with other brain imaging data sets, e.g.,
stereotaxic 3D atlases, because it is challenging to map the 2D sections to
other data. Accurate 3D reconstruction is therefore essential to creating 3D
mesoscale brain atlases.

Existing mesoscale atlases have focused on mapping cell density or
myelination. Thoughmacroscopic atlases capable of resolving cortical areas

on the scale ≥2.4 mm have been created for neurotransmitter receptor
distributions using in vivo positron emission tomography6,7, mesoscale
atlases of neurotransmitter receptor distributions are lacking. These mac-
roscopic receptor atlases suffer from partial-volume effects that limit their
quantitative accuracy and cannot resolve laminar receptor distribution
patterns. Given that cortical layers differ in their connectivity patterns and
neurotransmitter receptors underpin all information processing in the
brain, both their regional and laminar distribution patterns are key to
understanding how mesoscale brain structure links to brain function.

The creation of mesoscale neurotransmitter receptor atlases is parti-
cularly challenging because of the obstacles involved in reconstructing
autoradiographs, i.e., images of sections processed by in vitro receptor
autoradiography, the gold standard method for imaging neurotransmitter
receptors. We have created a reconstruction pipeline, BrainBuilder, that,
while initially designed to reconstruct mesoscale neurotransmitter receptor
atlases, in fact generalizes to virtually any post-mortem 2D sections where
the cortical gray matter (GM) can be visualized. This flexibility is thanks in
part to a deep learning network that is trained exclusively on synthetic data
to segment the cortical GM. The numerous individual challenges involved
in the reconstruction of 2D autoradiography are, respectively, frequently
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encountered in other post-mortem 2D imaging data sets. These include
sparse sampling of sections, severe non-linear deformations of the brain
prior to sectioning, andmulti-modal serial data acquisition.Thus, by solving
these problems for the particular application of 2D autoradiography, we
have created a flexible, robust reconstruction pipeline that we hopewill help
generate mesoscale atlases from numerous other modalities.

Several challenges must be overcome before 2D brain sections can be
reconstructed into 3D brain atlases that can be used for automated quan-
titative analyses across the acquired sections and in conjunction with
existing 3Dbrain templates and annotations. These include sparse sampling
of the sections, variable pixel intensities from different acquisitions, and
non-linear 2D and 3D deformations in the brain sections. In the following,
we describe some of the most frequent challenges that our pipeline aims to
overcome.

Before proceeding, we will briefly clarify some terminology. A binding
site refers to the molecular target to which a ligand binds. Different ligands
can bind to the same receptor, e.g., GABAA, but on different binding sites,
e.g., benzodiazepine versus GABA binding sites, and hence map different
spatial distributions. Acquisition is defined as awithin-modalitymethod for
measuring a given biological feature, e.g., autoradiographs acquired with
different ligands measure different receptor binding sites and hence are
referred to as different acquisitions. “Section” refers generically to the 2D
image produced by slicing the brain across a given plane and using an
imaging modality to visualize some biological feature in the sliced tissue,
such as cell density or receptor binding site.

Amajor obstacle to 3D reconstruction is 3Ddeformations of the donor
brain prior to sectioning. These include shrinkage from chemicalfixation or
deformations occurring during immersion fixation. Deformations are
especially severe when the acquisition method, e.g., in vitro auto-
radiography, requires the use of fresh tissue and where chemical fixation
cannot be used (Fig. 1A). The result is that though the coronal sectionsmay
appear as 2D coronal images, they in fact come from a more complex 3D
spatial embedding in the brain which must be recovered during
reconstruction.

Sections may also be acquired from slabs of brain tissue that have not
been cut along a single parallel axis (Fig. 1B). This results in 2D sectionswith
varying cutting angles and which are therefore not in the same plane. The
sections acquired across these tissue slabs cannot be naively concatenated
into a single stack that could then be reconstructed into 3D. Instead, the
simplest approach is to first reconstruct the sections to the slabs of tissue
from which they were cut and only then can sections from each slab be
combined into a single 3D reconstruction.

Another important obstacle to reconstruction is the use of multiple
different types of image acquisitions, e.g., different radioligands or histolo-
gical stainingmethods, fromdifferent sectionswithin the same brain.While
the use of several methods of acquisition is highly desirable to measure
multiple biological features fromwithin the same subject, it results in images
with heterogeneous pixel intensity distributions (Fig. 1C). These sections
may be difficult to alignwith one another andwill produce3Dvolumeswith
extremely varied pixel intensity distributions when concatenated together.

The use of serial acquisition of multiple types of biological features
within the same brain (e.g., receptor density, cell body and white matter
(WM) staining) implies that there will be gaps between acquired sections of
a given modality. This problem is compounded by the occasional loss of
sections due to mechanical processing or by poor image acquisition. The
sparse sampling of sections necessitates a method for estimating the dis-
tribution of pixel intensities in missing sections for a particular type of
section.

To illustrate the sparsity of the data used here, only∼37% of the donor
brain was sampled with complete sections, with an average distance of
1.03mm and amaximumdistance of 1.42mmbetween sectionsmeasuring
the same biological feature. Sections were either lost due to mechanical
processing errors or excludedbecause thequalityof the acquisitionwaspoor
(e.g., binding artefacts or blurred histological staining) or because the sec-
tions contained only a fragment of brain tissue, frequently as a result of

slicing the sections close to the border of the tissue slabs. In themacaque, the
sections covered ∼24% of the brain with a sampling of 1.32mm between
acquired sections for the same biological feature. The macaque brain was
deliberately sampled sparsely in repeats of sections along the coronal axis to
allow sampling through the brainwhile limiting the cost of data acquisition.

The challenge posed by missing sections is further aggravated because
the cutting angle of the section is virtually impossible to be completely
perpendicular to the curvature of the pial surface across the entire cortical
ribbon. As a consequence, the laminar distributions of certain biological
features, such as cell body or receptor density,may bemisrepresented across
the cortical depth.Hence, an interpolationmethod is required for estimating
missing sections that will not propagate artefacts resulting from the cutting
angle of the sections.

Methods have been developed to attempt to account for each of the
above mentioned challenges individually, including the use of fiducial
markers in the brain prior to sectioning, block-face imaging, and the use of
structural reference volumes from the donor, e.g., typically a T1 weighted
(T1w) MRI. Furthermore, many reconstruction algorithms that leverage
these techniques to perform 3D reconstruction have been developed (see
Dubois8 and Pichat et al.9 for reviews). Although these specialized pipelines
are able to solve many of the challenges presented above, none of them can
address and solve the combination of all these challenges. E.g., semi-
automated 2D reconstruction methods have been proposed using fiducial
markers implanted in the brain prior to sectioning10–12 and using block-face
imaging13–15. Another semi-automated approach to 2D image reconstruc-
tion was tomanually identify anatomic landmarks on adjacent sections16,17.
Automated reconstruction can be performed with only the 2D sections
themselves using principal-axes transforms18, intensity or frequency-based
cross-correlation19,20, sum of squared error21, discrepancy matching optical
flow21–23, or edge-based point matching21–23. Methods have also been
developed to perform more robust alignment between sections and to
maximize the smoothness of the 3D reconstruction24–27. A recent and par-
ticularly innovative approach to reconstruction involved using Bayesian
estimation to simultaneously align the histological sections and corre-
sponding MRI sections while also transforming the pixel intensities of the
former to resemble the latter28,29.

Finally, an iterative strategy for reconstructing 2D unimodal sections
using an accompanying structural brain image was proposed byMalandain
et al.30 and later adapted by Yang31 and Amunts et al.1. This scheme uses
densely sampled sections for a single kind of histological acquisition, e.g.,
cell-density, and iterates between two steps at progressively higher spatial
resolutions. First, the reference structural brain image is aligned in 3D to a
stack of 2D sections, and then the 2D sections are linearly aligned in 2D to
the structural brain image. By beginning at a coarse spatial resolution and
progressively refining the resolution, these pipelines converge to an accurate
alignment between the 2D sections and the 3D structural reference volume.

Summarizing, despite the existence of many reconstruction pipelines,
none of them is designed to account for all of the challenges described above,
andwhich are associatedwith the 3D reconstruction of 2D autoradiographs
coding for the distributionpatterns of 20 different neurotransmitter binding
sites. Hence, the need for the development of a pipeline that is capable of
working with this highly challenging multimodal data set.

Our goal is to create an automated 3D reconstruction pipeline that
makes minimal assumptions about the 2D post-mortem sections, such that
it can be used to create mesoscale brain atlases from a wide variety of 2D
acquisitions. In particular, our pipeline works: 1) with multimodal data sets
imaged with multiple serial acquisitions such as multi-receptor auto-
radiographs, 2) with sparsely sampled sections, 3) when sections are
acquired from slabs of tissue within the whole brain, 4) without the strict
requirement of a corresponding structural reference volume from the brain
donor and 5) acrossmultiple species, specifically humans andmacaques. To
facilitate the reconstruction of 2D imageswith heterogeneous pixel intensity
distributions, we implemented a 2D U-Net model to segment the cortex. A
recent tool for modality-agnostic 3D MRI segmentation was created
through training a U-Net deep learning architecture using synthetic data
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Fig. 1 | Challenges of reconstructing multi-modal data from unfixed brains. A
Anterior and posterior view of donor brains. The brains were not chemically fixed
and hence exhibited severe deformations when compared to Freesurfer8 cortical
surface representations derived from the donorMRI.BTissue slabs (~1.7–2.9 cm in
thickness) from the human brains were not cut perfectly parallel to one another (see
the lines for an example of cuts) and, as illustrated in the depicted slab, each slab of

fresh tissue was subject to its own deformation prior to shock freezing. Sections
sliced from ends of slabs frequently contained small amounts of brain tissue when
sliced by the flat interface of themicrotome andwere lost or discarded, creating gaps
between the slabs. C Exemplary autoradiographs from the human data set showing
each of the 20 neurotransmitter binding sites, and illustrating the substantial het-
erogeneity in pixel intensities between the autoradiographs.
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with randomly generated tissue contrasts32. Here, expand on this approach
anddevelop aneural network trained for 2D images basedon synthetic data.

Wehere apply it to twoautoradiographydata sets collectedby theZilles
labs at Heinrich-Heine-University Düsseldorf and the Research Center
Jülich over a period of more than two decades: one covering the entire
human brain, the other that of the macaque monkey (for overviews see,
Zilles et al.33; Palomero-Gallagher and Zilles33,34; Palomero-Gallagher
et al.35). This is a unique resource because it samples the distribution pat-
terns of different receptors for the classical neurotransmitters glutamate,
GABA, acetylcholine, noradrenaline, serotonin and dopamine and for the
neuromodulator adenosine (20 binding sites in the human and 14 in the
macaque brain), as well as cell bodies and of myelinated fibers. The data are
acquired for both species and at high spatial resolution: ~50 μm in-plane,
~20 μm through-plane full-width at half maximum (FWHM) resolution.
The challenges present in these two data sets have prevented them from
being reconstructed until now.

Specifically, as proof-of-principle we have demonstrated the applica-
tion of BrainBuilder on the human brain for the entire receptor auto-
radiographic dataset of 20 neurotransmitter receptors fromone hemisphere
and on the macaque brain for a selection of 14 receptors for the classical
neurotransmitter systems from one hemisphere. Sections stained for cell
body and myelin density were also reconstructed from the macaque data.
Furthermore, a reference structural MRI dataset was available for the
human but not for the macaque donor brain. We show that BrainBuilder
can be used on a wide variety of 2D images and can therefore be used as the
basis for the creation of 3D mesoscale atlases of the brain across multiple
species and acquisition modalities.

Results
Pipeline overview
We created a pipeline enabling the 3D reconstruction of 2D sections coding
for the distribution of 20 different neurotransmitter binding sites in the
human brain, and for which a volumetric reference was available. We also
used the pipeline for the 3D reconstruction of histologically processed
sections, and implemented the option to use a stereotaxic template brain,
and not a structural volume of the donor brain, as the reference structural
template. As a proof of concept, we reconstructed a dataset from the
macaquemonkeybrain encompassing sections visualizing 14 receptor types

as well as cell bodies and myelinated fibers, and for which no structural
template was available. The pipeline consists of three major processing
stages: 1) an inter-section 2D alignment, 2) an iterativemulti-resolution 3D
volumetric registration followed by 2D section-wise alignment of section to
the reference structural brain image, 3) and a surface-based interpolation of
receptor binding densities.

Briefly, BrainBuilder (Fig. 2) is composed of three major processing
stages:
1) An initial volume is created by rigid 2D inter-section alignment of

acquired sections (Fig. 2.1).
2) An iterative multi-resolution alignment scheme that alternates

between 3D volumetric followed by 2D section-wise alignment of
the sections to the reference structural brain image (e.g., donor’s T1w
MRI; Fig. 2.2). The alignment between the reconstructed volume and
the structural reference volume is performed using segmented GM
volumesderived fromeachof these data sets, respectively. Theproblem
of aligning a volume composed of heterogeneous pixel intensities to a
reference volume with an entirely different pixel intensity distribution
is thus simplified to mono-modal alignment between GM segmenta-
tion volumes.

3) Morphologically informed surface-based interpolation is used to
estimate missing pixel intensities for locations where a type of section
was not acquired (Fig. 2.3).

Brainbuilder usage
BrainBuilder is designed to be flexible and simple to use. It can be run
through a Python script or on the command line (Supplementary Fig. 1A).
The essential information required for the reconstruction is stored in.csv
files, which can easily be generated by users without experience in pro-
gramming (Supplementary Fig. 1B). The code is openly available on
GitHub: https://github.com/tfunck/brainbuilder. Additionally, Brain-
Builder can be run through a Docker container: https://github.com/tfunck/
brainbuilder.

Visualization of 3D reconstruction
The multi-resolution algorithm for aligning sections to the structural
reference volume produced increasingly accurate alignments, as shown
exemplarily in Fig. 3 for the reconstruction of the most rostral tissue slab

Fig. 2 | Overview of BrainBuilder. The pipeline contains 3 major processing stages: 1) inter-section 2D alignment, 2) iterative multi-resolution 3D volumetric registration
followed by 2D section-wise alignment of section to the reference structural brain image, 3) surface-based interpolation of receptor binding densities.
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from a human hemisphere, where mismatches are clearly visible when the
alignment was performed at 1mm resolution, versus that at 0.5 mm Fig. 3.

To enable a greater flexibility of the pipeline, we implemented the
option to reconstruct 2D images for which no structural reference volume
was available. The alignment of sections acquired from a human donor and
a macaque brain is shown in Fig. 4. Whereas the reconstruction of the
human sections was performed with a T1w MRI as structural reference
volume, the macaque sections were reconstructed with the MEBRAINS36

stereotaxic template. In Fig. 4 the non-linearly aligned 2D sections are
shown in a sagittal and axial view with WM and GM cortical surfaces
overlaid on top. Visual inspection shows that the reconstruction performed
similarly between the human reconstruction with a donor MRI and the
macaque reconstruction using a reference template brain.

BrainBuilder was not only able to reconstruct volumes for multiple
neurotransmitter receptor binding sites from the human (Fig. 5A) and
macaque brains, but also for cell body andmyelin stained sections from the
latter species (Fig. 5B). BrainBuilder was able to accurately align human
sections coding for receptor distribution patterns to their corresponding
MRI volume, as well as macaque sections coding for receptor, cell body and
myelin distribution patterns to a reference template brain MRI.

U-Net GM segmentation
AU-Net37 was trained to segment the GM in 2D sections using exclusively
synthetic 2D images generated from a segmentation of the BigBrain.The
segmentation accuracy of the U-Net was evaluated by calculating the Dice
score38 between GM segmentation predicted by the U-Net from real auto-
radiographs versus manually drawn GM labels for these sections. For
comparison, theDice scoreswere also calculated for segmentationproduced
with Otsu38,39 thresholding. The results showed an average Dice score of
0.93 ± 0.04 for 40 human sections and 0.91 ± 0.03 for 20 macaque sections,

indicating that the network generalized reliably from human to macaque
brain sections. The Dice score obtained with Otsu thresholding was only
0.85 ± 0.08 in the human sections and 0.8 ± 0.14 in macaque sections,
showing a significantly more accurate and precise GM segmentation with
the U-Net trained on synthetic data.

Alignment of 2D Section to Reference Volume
The alignment accuracy of the reconstruction was quantified by using two
Dice scores (Fig. 6). The first dice score is calculated between aligned 2D
sections and their corresponding reference sections from the structural
reference volume. The global average accuracy of the alignment was
0.95 ± 0.03 (Table 1) in the human brain and 0.93 ± 0.08 in the macaque.

A second Dice score was used to quantify the smoothness of the
reconstruction between adjacent sections. Here the Dice score was also
calculated between a given section and the adjacent sections in the anterior
and posterior direction. Here, the average intersection Dice score was
0.93 ± 0.05 in the human and 0.90 ± 0.1 in the macaque.

Slabs closer to the rostral and caudal poles of the brain had higher
averageDice scores than those closer to the center of the brain. This is likely
because the anterior and posterior poles provide clear boundaries versus
which to position the tissue slabs. Additionally, slabs 2–4 contain the
temporal lobe which, because the brains were unfixed, is pressed against the
dorsal lobes of thebrain in the 2D images and requires significant non-linear
deformation to correct.

The alignment of the sections was also validated against an external
source. Average regional receptor densities were obtained for each of the
20 receptor binding sites from 29 paired regions (see section 5.4 for
details) in a) manually defined cytoarchitectonic areas in the raw
autoradiographs33 and b) from the 3D reconstructed receptor volumes
using the 3D Julich Brain Atlas4 of cytoarchitectonic regions. The

Fig. 3 | Illustration of hierarchical multi-resolu-
tion alignment to reference volume.A hierarchical
multi-resolution scheme was used to align the slab
volumes to the reference structural volume. Sagittal
images of the first tissue slab for each step of the
alignment scheme show progressively finer align-
ment between the 2D coronal sections and structural
reference volume. The edges of reference volume are
shown in orange. For each iteration, all 2D GM
segmentations are downsampled to the current
resolution in the hierarchy and hence only contain
morphological information at that resolution. 1 3D
segmentation volumes are created by applying 2D
transformations to the segmented 2D images. In the
first iteration, 4mm, only rigid transformations are
used to create an initial 3D GM segmentation
volume, but on subsequent iterations the non-linear
transformations calculated from the previous itera-
tion are used to create the 3D segmentation volumes.
2 The reference volume (the outline of which is
shown in the second and third row in orange) is then
3D non-linearly aligned to the 3D segmentation
volume. 3 The alignment is then refined using 2D
non-linear transformations between the original 2D
segmentations and their corresponding coronal
section in the aligned structural reference volume.
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manually defined regions consisted of one-dimensional profiles though
the cortical depth but did not span the entire cytoarchitectonic area.
Direct areal comparison of the 1D profiles to the 3D Julich Brain Atlas
was therefore not feasible and regional densities between the corre-
sponding regions were compared instead. The regional densities mea-
sured from the manually defined 2D regions were regressed onto the
densities obtained in the 3D reconstruction. This produced an r2 of 0.95
(Fig. 7), indicating a close correspondence between cytoarchitectonic
areas defined in the raw sections and those defined in an independent
3D atlas.

Surface-based estimation of missing pixel intensities
A surface-based interpolation algorithm was used to estimate missing pixel
intensities between acquired autoradiographs. The surface-based inter-
polation was validated by applying it within randomly selected patches of
vertices within acquired autoradiograph sections (n = 10,000). For each
ligand, the overall correlation between true and interpolated pixel intensities
was r2 = 0.97 (p < 0.001) (Fig. 8). The distances between the vertices with
known pixel intensities and the vertices to be estimated spanned
0.05–1.2mm.

Interpolation accuracy
The reconstruction pipeline was validated to quantify the amount of error
induced in the pixel or voxel intensities due to resampling and interpolation.
The accuracy of the measured pixel intensities was calculated after 2D non-
linear alignment and after full 3D reconstruction. The accuracy after 2D
non-linear alignment was ~97% and ~92% after 3D reconstruction (Fig. 9).

The standard deviation of the accuracy was 4% after 2D alignment and 6%
after 3D reconstruction.

Reconstructed values versus in vivo PET
The reconstructed GABAA-benzodiazepine receptor volume exhibited a
high degree of similarity to 10 PET-derived GABAA-benzodiazepine dis-
tributions from healthy controls. Spearman’s ρ correlations between the
reconstructed volume and PET scans (ρ=0.71 ± 0.06) were comparable to
those observed among PET scans themselves (ρ=0.72 ± .05). Permutation
testing (n = 10,000) revealed that themean difference in correlationwas not
statistically significant (p = 0.54), indicating that the reconstructed receptor
volume was as similar to the PET-derived receptor distributions as the PET
scans were to one another. These results suggest that the reconstructed
autoradiography-based receptor distribution closely aligns with in vivo
PET-derived receptor mapping.

Receptor densities observed in the reconstructed GABAA -benzodia-
zepine volumes were also not statistically different from the distribution of
benzodiazepine receptor densities measured from in vivo PET scans in
healthy participants, indicating accurate reconstruction of the
autoradiographs.

Discussion
We have created and validated BrainBuilder, a versatile pipeline that can
successfully reconstruct 3D volumes from 2D multimodal datasets from
different species, andwithout the constraint of requiring a structural volume
of the donor brain. As a proof of principle, we have demonstrated this
flexibility by reconstructing a set of receptor autoradiographs coding for the
distribution of 20 neurotransmitter receptor binding sites in a human brain
for which a T1w volume was available, and a dataset from a macaque
monkey brain encompassing the distribution of 14 receptors as well as
classical histological cell body and myelin stains, and using the
MEBRAINS36 stereotaxic template as a reference volume. In brief, all sec-
tions were aligned to one another using rigid transformations to create an
initial 3D volume. An iterative multiresolution scheme was then used to
non-linearly align the volumeof 2Dsections to the reference structural brain
image. Finally, for each kind of section, a surface-based interpolation
algorithmwasused to create volumetricmaps that represent thedistribution
of the biological featuremeasuredby each respective 2D acquisitionmethod
throughout the cortical ribbon.

Visual and quantitative validation demonstrated that BrainBuilder
effectively reconstructs the3Danatomyof the reference volume, as shown in
Fig. 4. The average Dice scores ranged from 0.93 to 0.95 across two align-
ment metrics in both human and macaque brains. Lower Dice scores were
observed in slabs located farther from the rostral or caudal poles (Table 1),
suggesting that the slab’s position and anatomy influence the reconstruc-
tion’s accuracy, likely because the rostral and caudal regions provide more
easily identifiable landmarks. Additionally, receptor densities measured
from manually defined cytoarchitectonic regions in the autoradiographs
showed a close correlation (r² = 0.95) with those measured in the 3D
reconstructed volumes using an external 3D cytoarchitectonic atlas4. The
surface-based interpolation also displayed high accuracy, with a correlation
of r² = 0.97 between true and estimated pixel intensities, confirming reliable
estimation of missing pixel intensities across the cortical surface. Receptor
densities observed in the reconstructed GABAA -benzodiazepine volumes
were also not statistically different from the distribution of benzodiazepine
receptor densitiesmeasured from in vivo PET scans in healthy participants,
indicating accurate reconstruction of the autoradiographs.

The reconstruction of the macaque brain was performed without an
individual MRI, using the MEBRAINS36 stereotaxic atlas instead. Our
method provides, therefore, the flexibility to reconstruct data sets of 2D
sectionswhereno corresponding3Dstructural imagehas beenacquired.An
important caveat is that, while still presenting a conspicuous gyrification
pattern, macaque brain morphology is much simpler than that of humans.
Therefore, while it may not be necessary to have a corresponding 3D
structural image when reconstructing sections from animals with a lower

Fig. 4 | Final alignment of sections to reference volume. 2D coronal sections were
aligned to 3D reference volumes and are shown along exemplary sagittal and axial
cuts for the human and macaque reconstructions, respectively. Coronal sections are
almost all correctly aligned to the cortical surfaces. Some less well aligned regions are
visible in the dorsal portion of slab 4 and in slab 2 in the human, indicating that
additional refinements may further improve the alignment.
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Fig. 5 | Complete reconstructed cortical volumes for each acquisition modality.
Reconstructed sagittal sections show the binding sites for a 1 human brain and 2 a
macaque brain. The macaque brain also includes sections indicating cell body and
myelin density. Because each acquired section can only be visualized for a single
biological feature, e.g., a given binding site, there are necessarily gaps between any

two sections for a given acquisition and thus createsmissing pixel intensities for that
acquisition. The problem of missing pixel intensities is further aggravated by the
occasional tissue section that has been lost due to mechanical processing errors.
Missing pixel intensities are estimated using surface-based linear interpolation.
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degree of gyrification, it may be required to accurately reconstruct sections
acquired from human brains.

We chose not to apply existing semi-automated reconstruction
methods based onmanual identification of anatomic landmarks16,17 because
they are dependent on rater subjectivity and not easily reproducible. For the
human data, the bounds of the tissue slabs on the reference structural image
were manually identified, but these points serve only to constrain the 3D
alignment and do not drive the reconstruction process. It should also be
noted that nomanually selected points are used in the reconstruction of the
macaque data because the data were acquired within a single tissue slab.
Hence, BrainBuilder can be used in a fully automated fashion when the
sections have been acquiredwithin a single slab of tissue spanning the entire
brain. We were not able to apply 2D reconstruction methods using fiducial
markers10–12 or relying on block-face imaging13–15, because neither fiducial
markers nor block-face images were used in the acquisition of our data.

A similar approach to ours was used by both Malandain et al.30 and
Amunts et al.1 to reconstruct histological volumes in 3D that iterates

between two steps: first the donorMRI is aligned in 3D to a stack of sections
and then, in the second step, the sections are linearly aligned in 2D to the
transformed MRI. Amunts et al.1 improved on the 3D-2D reconstruction
approachbyusing amulti-resolutionnon-linearwarping schema.However,
this 3D-2D approach cannot be used for multimodal datasets due to their
heterogeneous pixel intensity distributions. To address these problems, we
transformed all acquired sections to binary GM masks and recalculated a
continuous 3D GM volume between acquired sections at each resolution.
The progressively smoother 3D representation of the GM improves align-
ment to the structural reference volume and allows for the reconstruction of
even very sparsely sampled sections.

Our approach differs fundamentally from existing methods through
the use of morphologically informed estimation of missing pixel intensities
using cortical surface-based interpolation. The advantage of this approach is
that cortical surfaces and geodesic distances better represent the actual
morphology of the cortex than Euclidean distances because the cortex is
organized into layers over a folded manifold.

Table 1 | The accuracy of the alignment was measured using two different Dice scores

Human Macaque
Slab 1 (Anterior Pole) 2 3 4 5 6 (Posterior Pole) Whole Brain

Inter-section Dice Score 0.94 ± 0.04 0.93 ± 0.05 0.89 ± 0.07 0.92 ± 0.04 0.93 ± 0.06 0.94 ± 0.06 0.90 ± 0.1

Section to Reference
Dice Score

0.96 ± 0.06 0.94 ± 0.03 0.93 ± 0.04 0.93 ± 0.04 0.95 ± 0.05 0.95 ± 0.02 0.93 ± 0.08

The Dice score of the non-linearly aligned section versus the corresponding reference section from the structural volume (“Reference”) and the Dice score between a given section and its immediate
neighbors (“Inter-section”). Both Dice scores were consistently high across all tissue slabs and in both human andmacaque reconstructions. In themulti-slab human reconstruction, themiddle slabs had
slightly lowerDice scores (0.89–0.92) versus at the poles. These lower scores likely reflecting both the addeddifficulty of identifying the anterior andposterior bounds of these slabs on the reference volume
and the more varied set of morphological features in these middle slabs (e.g., basal ganglia and temporal lobe).

Fig. 6 | Quantitative validation of alignment to
reference and inter-section alignment. A Dice
scores for two different validations are shown.
Reference: Dice score between aligned sections
versus corresponding coronal section from refer-
ence volume, Inter-section: Average Dice score
between aligned section versus neighbors in pos-
terior and anterior direction along coronal axis.
Overall Dice score were high 0.89–0.95 but with
some sections that appear to be poorly aligned. B
Examples of sections that were either very poorly
(left) or well (right) aligned. The grey images indi-
cate the non-linearly aligned 2D segmentations and
the hot (orange-red) lines are the edges of the target
2D section from the structural reference volume.
The poorly aligned sections show that the source of
misalignment is frequently 2D sections that are
either very small (Slab 1,2,6), poorly segmented
(Slab 4), or incomplete sections (Slab 2,3). The sec-
tions that have been well aligned consistently
demonstrate a Dice score of 0.97, indicating an
upper ceiling for BrainBuilder.
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Many methods have been proposed to create smooth and continuous
3D volumes from 2D sections without the use of external references25–27,29,
such as fiduciary markers, block face images, or structural reference
volumes. In principle, thesemethodswould be helpful for creating the initial
reconstruction.However, thesemethods cannot be directly appliedhere due
to the fact that our dataset consists of sparse, irregularly sampled sections
with heterogeneous pixel intensities that cannot be naively stacked and
aligned in 3D to a reference volume. Fortunately, because the multi-
resolution schema begins at a very low spatial resolution of 4mm3, it only
requires that the sections be grossly aligned to start with.

Another promising approach has been proposed by Iglesias et al.28 to
align sections to corresponding sections from MRI volumes. Their
method uses Bayesian inference to estimate both physical transforma-
tions to the sections and the transformation of pixel intensities to align
sections acquired with different intensity distributions. A key assumption
of this approach is that the pixel intensities in sections are a warped
version of the corresponding MRI. This assumption is sensible given that
both MRI signal and histological signal derive directly, in the case of
histology, or indirectly, in the case of MRI, from the density of cells and
myelin in the brain tissue. It is not clear if this assumption would hold if it
were to be applied to modalities whose distribution of pixel intensities is
independent of cyto- and myeloarchitecture, as are the laminar dis-
tributions of receptor binding sites34.

Our method, by contrast, converts all sections to binary GM seg-
mentations and thereby transforms the problem of multi-modal alignment
to one uni-modal alignment that can be solved with traditional intensity-
based alignment algorithms, such as ANTS40. Our approach, therefore, only
assumes that the GM can be accurately segmented within the sections and
does not assume an intensity-based relationship between the acquired
sections and the structural reference volume. This not only means that
BrainBuilder canbeusedwithawide rangeof 2Dexvivo imagingmodalities
but also that our approach can in principle be applied with non-MR based
structural reference volumes, e.g., with computed tomography, provided the
latter have sufficient resolution to support accurate reconstruction.

Future work will apply the Iglesias, et al.28 joint registration and
synthesis approach to evaluate whether it provides enhanced 2D alignment
to the methods presented here. If so, their approach can be integrated into

the overall BrainBuilder framework to provide even more precise 3D
reconstruction.

BrainBuilder is subject to some limitations, many of which will be the
subject of future work to improve the reconstruction pipeline. The surface-
based interpolation schemeusedhere performs linear interpolationbetween
vertices and therefore assumes that pixel intensitiesmeasured from sections
change linearly between the acquired sections and the missing section.
Linear interpolation was chosen because it will only produce values within
the range of those observed in the acquired sections and because it provides
easily interpretable results.However, this approach isnot strictlybiologically
valid because there are sharp boundaries between receptor architectonic
areas33,34, whichwould be obscuredby this interpolationmethod. It does not
appearpossible todevise an interpolationmethod that could reproduce such
sharp regional boundaries without additional anatomic information. More
work is required to establish which interpolation scheme, e.g., linear, spline,
AI-based in-painting, Gaussian process regression, produces the most
reliable estimation of missing pixel intensities.

A potential limitation of our reconstruction method is that it relies on
the segmentation of accurate GM images from 2D sections, whether of
receptor density or cell andmyelin-stained sections. It is possible that there
are imaging modalities where this estimation of cortical GM may be more
challenging. However, the network used in this work is trained using only
synthetic data, which can, in principle, be extended to include different
tissue contrasts, more tissue classes, and additional imaging artefacts41. This
means that if there is aparticular typeof section that is notwell segmentedby
the current network, the synthetic data set can be augmented to reflect the
particularities of the problematic sections and hence improve the segmen-
tationof these sections. Futureworkwill expand the segmentation to include
not only the cortical but also the subcortical GM.

Currently, BrainBuilder uses linear interpolation to fill missing seg-
mented images between sections to create continuous 3D segmentation
volumes. However, at higher spatial resolution, thismay produce jagged 3D
volumes. Hence, for higher resolution reconstructions, we will implement
higher-order interpolation algorithms to create smoother 3D segmentation
volumes for alignment to the structural reference volume.

The reconstruction process is computationally expensive due to the
large number of sections and the high spatial resolution of the reconstructed
volumes. The 3D nonlinear alignment step using ANTs is the primary
bottleneck in termsofmemoryusage;however, if sufficientRAMis available
for this step, then the rest of the pipeline can run without additional con-
straints. For the reconstruction of a human hemisphere at 250 μm resolu-
tion, RAMusage peaked between 64 and 128 GB. Extrapolating from this, a
50 μm reconstruction would require ∼1 TB of RAM, which exceeds the
capacity of standard workstations and requires access to high-performance
computing clusters.

To address these limitations, future versions of BrainBuilder will
implement a piecemeal 3D volumetric alignment approach—aligning sub-
volumes independently—to reduce the memory burden for very high-
resolution reconstructions. This strategywill allow formore efficient scaling
while maintaining the accuracy of the reconstructed volumes.

BrainBuilder relies on sequential processing stages where errors in
earlier stagesmay be propagated to the end result.While the validation tests
aim to ensure the correct functioning of each step and the accuracy of the
final reconstructed values, errors remain a possibility especially with new
datasets. Several measures are implemented to facilitate the identification of
errors. Quality control images are generated for all downsampled, seg-
mented images, and for the alignment between 2D sections versus corre-
sponding sections in the target reference volume. Additionally, Dice scores
are calculated for all 2D alignments to facilitate plotting and identification of
outlier scores that may indicate poor alignment.

BrainBuilder presently only reconstructs the cortex and the hippo-
campus and does not include the subcortex. Nonetheless, the sagittal cross-
section of the human reconstruction in Fig. 4 shows that the subcortex is
surprisingly well aligned given that this region was not included in the
reference volume used for reconstruction. This will be improved by the

Fig. 7 | Comparison of receptor densities measured with 2D versus corre-
sponding 3D ROIs. The strong correlation between regional receptor densities
measured from areas manually defined on 2D autoradiograph versus the same
regional densities defined in the same regions on the Julich Brain Atlas4 indicate that
BrainBuilder produces accurate alignments at the scale of cytoarchitectonic areas.
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inclusion of the subcortex in the U-Net segmentation network and in the
reference volume. Future work will expand BrainBuilder to also include the
subcortex by implementing morphologically informed interpolation of
missing sections.

We have created an image processing pipeline for reconstructing 2D
sections into 3D volumes. The results here serve as a proof-of-principle that
BrainBuilder can reconstruct images of 2D sections processed for the
visualization of receptor, cell body or myelin density accurately at high

Fig. 8 | Validation of surface-based interpolation within acquired sections. The surface-based interpolation algorithm was evaluated within the human autoradiograph
sections and demonstrated a high correlation between interpolated and true pixel intensities.
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resolution in both the human and the macaque brain. We have also
demonstrated that this can be done even when noMRI volume is available
for the 2D data to be reconstructed. The work presented here will allow for
the creationof anunparalleleddata set of 20 receptor binding site volumes at
20 μm for three human brains and four hemispheres frommacaque brains.
Future work will focus on extending BrainBuilder to also reconstruct sub-
cortical structures and to evaluate its use on other species.

Methods
Data acquisition and preprocessing
The macaque specimen was obtained from Covance (now Labcorp Drug
Development), Munster, where they were used as control animals for
pharmaceutical studies performed in compliance with legal requirements.
The specimen was male, ~6 years old. All experimental protocols were in
accordance with the guidelines of the European laws for the care and use of
animals for scientific purposes. We have complied with all relevant ethical
regulations for animal use.

The human participant had given written consent before death and/or
had been included in the body donor program of the Department of
Anatomy, University of Dusseldorf, Germany. The human donor was a 78

year old male; who died from non-neurological causes. All ethical regula-
tions relevant to human research participants were followed. While these
brains are part of a larger data set consisting of three complete humanbrains
and four macaque brain hemispheres, only a single human and macaque
hemisphere was used for proof-of-principle of the proposed reconstruction
method.

The pipeline was initially developed for the 3D reconstruction of 2D
serial sections through the human brain, which had been processed by
in vitro receptor autoradiography for the visualization of multiple neuro-
transmitter binding site densities, and for which a structural reference
volume of the donor brain was available33,34. The pipeline was then adapted
to enable reconstruction of a comparable 2D multimodal dataset obtained
from the macaque brain, but which also included sections stained for cell
bodies and myelin fibers, and for which no structural reference volume of
the donor brain was available.

For bothhumans andmacaques, brainswere removed from the skull at
autopsy, the hemispheres were separated and the cerebellum removed.
Human hemispheres were cut into 6 coronal slabs, each ∼2–3 cm thick,
macaque hemispheres were cut in the coronal plane into a rostral and a
caudal block. Brain slabs were shock frozen and serially sectioned in the

Fig. 9 | Measurement of interpolation error between raw and reconstructed
autoradiograph sections. Binding densities were measured from human auto-
radiographs after applying 2D (left) and then 3D (middle) non-linear transfor-
mations to the autoradiographs and compared to binding densities measured from

the raw autoradiographs.While themean accuracy is similar after 2D alignment and
3D reconstruction, the variance of the accuracy increases for smaller sections after
3D reconstruction.
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coronal plane. ∼1402 sections were acquired for the macaque hemisphere
and 3142 sections in the human hemisphere. Alternating sections were
processed by in vitro receptor autoradiography for the visualization of
multiple types of receptor binding sites (20 in the human and 14 in the
macaque brain), or histologically for the staining of cell bodies and of
myelin33,34. The radioactively labeled sections were exposed against tritium-
sensitive films and the ensuing autoradiographs digitized as 8 bit images
with an in-plane spatial resolution of 20 μm resolution for the human and
macaque sections, respectively by means of a CCD camera attached to the
image acquisition and processing software Axiovision (Zeiss, Germany).
Images of the cell-body and myelin stained sections were acquired with a
TISSUEscopeTM Huron Scanner (Huron, Canada) as 8 bit images with an
in-plane spatial resolution of 1 μm per pixel.

For simplicity, in the following steps we will use the term “section” to
refer to the digitized images of both the receptor autoradiographs and the
cell-body or myelin stained sections.

Sections were quality controlled and sections that were severely
damaged, had clear binding artefacts, were visualized for non-specific
binding, or weremissingmore than 25% of the cortex were excluded. In the
human data 693 sections failed quality control, most of which were at the
ends of slabs where only small pieces of cortex were sliced from the frozen
tissue slabs, and 384 for the macaque.

For both species, sections were preprocessed to isolate the target piece
of brain tissue from each image and remove extraneous tissue and visual
cues (for details, see Funck, et al.42).

For the human brain, a binary MRI GM volume was derived from the
donor’s T1w MRI using a mesh representation of the cortical surface. The
contrast between the GM and surrounding tissue in the sections facilitates
alignment to the GM in the structural reference volume. Cortical surface
meshes were obtained from the MRI using the CIVET pipeline43. A super-
resolution cortical GM mask at 250 μm was obtained from these cortical
surface meshes by sampling points between the inner white-matter and
outer GM surface meshes44.

For themacaque reconstruction, theMEBRAINS template was used as
reference structural template36. Hence for the macaque reconstruction, the
structural reference volume did not come from the donor brain. The
MEBRAINS data release provides cortical surfaces derived with
Freesurfer45,46 and these were used for the reconstruction.

[18F]Flumazenil PET scans were acquired for ten healthy subjects (age
61 ± 10 years, 10 males)44. PET scans for all subjects with an ECAT HRRT
PET scanner in list mode (Siemens Medical Solutions, Knoxville, TN,
USA)47, with a spatial resolution of ~2.4mm FWHM. After a transmission
scan for attenuation correction (137Cs-source), ~370MBq[18 F]FMZwere
injected intravenously as a slow bolus over 60 s. The list mode data were
acquired for 60min after injection and were subsequently binned into
2209 sinograms (each of size 256 radial bins × 288 azimuthal bins) using
spannine compression for a total of 17 time frames (40 s, 20 s, 2 × 30 s, 360 s,
4 × 50 s, 3 × 300 s, and 3 × 600 s), resulting in images with a voxel size of
1.22 × 1.22 × 1.22 mm3. Fully 3D FBP by 3D reprojection was carried out
with aHammingwindowedColsherfilter (alpha = 0.5, cut off at theNyquist
frequency).

For each scan, normalized standardized uptake value ratio (SUVR)
images were calculated by dividing the PET images by the mean radio-
activity concentration in the WM.

BrainBuilder: initial inter-section alignment
The initial step of 3D reconstruction involves aligning the sections from
all available modalities to one another using 2D rigid body transforma-
tions. For simplicity, the ensuing volume is designated as the “initial
volume.” Low contrast sections are more likely to be misaligned due to
the difficulty in resolving all anatomic structures. It is therefore desirable
to first align sections with high contrast before proceeding to lower
contrast sections. To this end, sections are first ranked automatically by
the Michelson contrast48 of pixel intensity produced by each acquisition
method.

Within each tissue slab, the central section is designated as “fixed” and
serves as the reference to which all subsequent sections are aligned. Moving
outwards from the central section, sections visualizing the same biological
structure (e.g., a given receptor type) are aligned to their nearest “fixed”
neighbor towards the center of the slab. Once aligned, each newly added
section becomes “fixed” in place.

After aligning the highest contrast sections, they collectively serve as a
reference against which to align subsequent lower contrast sections. This
process iterates with progressively lower contrast sections until all sections
have been aligned.

For the reconstruction of the human brain, 6 initial volumes (one for
each of the slabs intowhich the hemispherewas cut) were produced by rigid
alignment of the section. For themacaque brain, the sectionswere treated as
belonging to only a single slab and hence a single initial volume was pro-
duced for the acquired hemisphere.

All alignments were calculated with ANTs. For details, see Supple-
mentary Information 5.1.1.

Brainbuilder: GM segmentation
Binary GM sections are generated from the sections using a deep neural
network. A multi-tissue segmentation of BigBrain at 200 micron isotropic
resolution was used to generate 10,000 2D training images (Supplementary
Fig. 3). To better synthesize intact in vivoMRIs, a skull segmentation of the
MNI152 atlas was coregistered to the BigBrain and used in 50% of training
examples. To generate synthetic training examples, random affine trans-
formations (with random scaling ~ uniform(0.9,1.1) and rotations ~ uni-
form(0,15°)) were first used to create randomly transformed versions of the
segmented BigBrain volume. From each of these transformed volumes, 500
2D sections were extracted and used as a training example. To synthesize
heterogenous laminar structure, the cortex was segmented into a random
number of cortical layers between 0 and 11, with random proportional
thicknesses49. The considered tissue classes included:WM, subcortical GM,
cortical GM layers, cerebellar GM, within- and outside- brain background,
and skull. For each training example, randomly generated values were
assigned to each tissue class in the 2D section from Gaussian distributions.
To introduce additional variation in the synthetic images, random
smoothing, noise, filtering, scaling, and cropping were applied to training
examples (see Supplementary Information 5.1).

The nnUNet (v.1) software package50 was used to automatically
identify optimal hyperparameters and train a U-Net37. The U-Net was
trained to segment synthetic sections into cortex, background and WM,
with a second task to identify the pixels at the boundaries between these
image classes.

While all images in the present studywere successfully segmentedwith
the U-Net, in the eventuality that the network fails to provide a segmen-
tation, i.e., returns an empty image, a segmentationmethod based onOtsu39

histogram thresholding is used.

Brainbuilder: alignment of 2D section to reference volume
The alignment of the initial volume to the structural reference volume was
done within a multiresolution hierarchical framework. If the sections were
sliced from a whole brain, then the structural reference volume comprises a
whole brain. If, as is the case of the human data in this work, the sections
were sliced from tissue slabs, then the structural reference volume is also a
slab extracted from a whole brain. The steps of the BrainBuilder pipeline
described in this section are repeated for each resolution in the hierarchy.
The resolutions in the hierarchywere 4.0, 3.0, 2.0, 1.0, 0.5mmand finally, at
0.25mm. This resolution schedule is specified by the user at run-time and
can be modified to suit the user’s particular dataset.

3D reconstruction of a multimodal 2D dataset results in a single
volume composed of extremely heterogeneous pixel intensities that are
discontinuous between neighboring sections. This makes it impossible to
perform volumetric alignment using either cross-correlation or an infor-
mation theoretic cost function. We simplified the problem of aligning the
heterogeneous initial volume to the structural reference volume by creating
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binarymasks representing cortical pixels in both the initial and the reference
volumes.

At each resolution in the multiresolution hierarchy, 2D GM sections
segmented with the U-Net are transformed using the best available trans-
formations to align themtogether into a single 3DGMvolume.At the initial
resolution, the rigid body transformations calculated in the initial inter-
section alignment serve as the best available transformations. At subsequent
resolutions, the best alignments are the non-linear 2D transformations
calculated for the previous resolution in the hierarchy (described below).
Therefore, after the first step of the multiresolution hierarchy, the 2D GM
sections are warped so that they better correspond to the actual anatomy of
the structural reference volume to which they were aligned at the previous
resolution of the hierarchy.

The aligned 2DGMsections contain gaps along the coronal axiswhere
1) no sections were acquired for a particularmodality and 2) due to sections
lost during acquisition. When reconstructing complete volumes for a par-
ticular modality, the missing pixel intensities produced by these gaps must
be filled to enable a continuous representation of the cortical GM.We used
linear interpolation between aligned 2D GM sections to estimate the mor-
phology of the cortex where no sections could be acquired.

When more than one slab of tissue is reconstructed, as in the human
data set, a significant challenge is to identify which portion of the structural
reference volume corresponds to each slab of brain tissue. Due to the
deformation of the tissue slabs prior to freezing and loss of sections between
slabs, the total width of the brain slabs along the coronal axis was less than
that of the brain in the MRI volume, hence the slabs could not simply be
placed adjacent to one another.

Wemanually identified the anterior and posterior most points of each
slab on the structural reference volume and extracted a corresponding slab
of tissue from the reference volume. The points were identified by an expert
neuroanatomist who localized structures that were easily and uniquely
identifiable in both the MR images and both autoradiographs and photo-
graphs of the slabs before and after their shock freezing. These structures
included the fundus of sulci, tips of gyri and the edges of dimples. We also
identified the most rostral and/or caudal portions of the corpus callosum
and of subcortical structures such as the caudate nucleus or the pulvinar
nucleus. Importantly, we did not restrict identification of microanatomical
landmarks to the most rostral and caudal portions of the slab, i.e., to the
portion corresponding to the interface between slabs. Rather, we set land-
marks throughout the entire lateral and medial surfaces of each slab. The
alignment of the receptor slab was therefore limited to a manually defined
portion of the corresponding structural reference volume. This was only
necessary for the human data, whose acquisition within non-parallel tissue
slabs is idiosyncratic. For most data sets, e.g., as was effectively the case for
themacaque data set, step may be omitted if sections sampled from a single
tissue slab spanning a whole hemisphere are being reconstructed.

For each slab, the reconstructed GM volume is non-linearly aligned
with ANTs40 to the portion of the structural reference volume. For details,
see Supplementary Information 5.3.2.

After the initial 3D alignment of the reconstructed GM volume to the
structural reference volume, the alignment is refined by aligning the sections
in 2D to their corresponding coronal sections in the structural reference
volume. This 2D alignment between corresponding coronal sections is
possible because the 3D alignment in the previous stage produces a struc-
tural reference volume that has been transformed into the coordinate space
of the reconstructed GM volumes for each tissue slab. The alignment is
performed with ANTs40, for details see Supplementary Information 5.3.2.

Brainbuilder: Interpolation of missing pixel intensities
Intermediate cortical surfaces are generated by evenly subdividing theWM-
GM and pial-GM border (Supplementary Fig. 3.A). Each cortical mesh is
then supersampled in BrainBuilder such that the maximum distance
between any two neighboring vertices is less than or equal to the final
resolution of the reconstruction, i.e., 500 μm for the human reconstruction
and 1mm for the macaque reconstruction (Supplementary Fig. 3.C).

Specifically, for each triangle of three vertices (A,B,C) on the surface mesh,
two vectors are defined (AB, AC). Points inside the surface triangle, P, are
defined by the linear combination of the two vectors by scaling factorsα and
β, where α and β are defined as increments of one half the reconstruction
resolution, r:

P ¼ Aþ αABþ βAC; i ¼ AB=ð0:5rÞ; α 2 ½0; 1�; β 2 ½0; 1�; αþ β 2 ½0; 1�

This upsampling step produces a set of points such that there is at least
one vertex per voxel in sections where sections have been acquired. For a
reconstruction of 0.25mm the upsampled mesh in the humans was
12,129,727 vertices in the human and 1,022,442 vertices in the macaque.

For the human brain, 18 intermediate cortical surfaces were generated,
yielding a total of 20 cortical meshes spanning the depth of the cortex
between theWM-GMandGM-pial border (Supplementary Fig. 3.B). In the
macaque brain, eight intermediate cortical surface meshes are generated
between the WM-GM and GM-pial border, yielding a total of ten cortical
surface meshes. The number of surfaces would be increased for higher
resolution reconstructions such that at least one intermediate surface would
intersect every pixel between the WM-GM and GM-pial border.

The surface meshes are transformed with ANTs40 from the coordinate
space of the structural reference volume to the coordinate space of each of
the slab volumes, respectively, by applying the inverse 3D linear transfor-
mations and non-linear deformation fields that align the reconstructed
volume to the reference volume. The pixel intensities in sections are pro-
jected onto the surfaces in the native coordinate space of the slab with
nearest neighbor interpolation (Supplementary Fig. 3.D).

When pixel intensities from acquired sections are projected onto the
cortical mesh, the gaps between acquired sections from a given modality
result in vertices with missing pixel intensities. These missing vertex values
are estimated for vertices atwhichnopixel intensitiesweremeasuredusing a
surface-based approach. All of the meshes along the depth of the native
cortical surfaces are inflated to spheres (Supplementary Fig. 3.E) using the
Freesurfer’s mris_sphere (iterations = 100) and mris_inflate46. The inflated
spherical meshes are then upsampled to the same number of vertices as the
already upsampled cortical surfaces (Supplementary Fig. 3.F) so that the
vertex values canbe estimatedat a sufficient spatial resolution for thedesired
reconstruction resolution.

The missing pixel intensities for each cortical surface mesh are inter-
polated by applying linear interpolation over each of the corresponding
upsampled inflated spherical meshes (Supplementary Fig. 3.G) using the
SSRFPACK algorithm51 implemented in the stripy52 Python package. The
interpolationwas performedon the inflated sphere instead of directly on the
cortical surfaces, because it is computationally simpler to calculate distances
between vertices on a simple geometric object like a sphere than on the
complex surface of the cortex. Furthermore, given that the surface inflation
process preserves relative distances between vertices46, the interpolated
densities on the inflated sphere are equivalent to those which would have
been calculated directly on the cortical surface.

Finally, we implemented an algorithm to project intensity values from
the surfaces spanning the cortex into a volume (Supplementary Fig. 3.H).
This was done for each voxel within the cortical ribbon by averaging the
intensities of the vertices located within the volume of each respective voxel.
This method may leave gaps in the reconstructed cortex where no surface
vertices are located within the volume of a voxel. The voxel intensities of
these empty voxels are estimated by linear interpolation based on the values
of the neighboring voxels with pixel intensities.

Statistics and reproducibility
Statistics were calculated in the context of validating various aspects of the
Brainbuilder pipeline. Statistical computations were performed using
Python (NumPy, SciPy). Sample sizes, statistical metrics, and validation
protocols are specified for each experiment in the relevant methods
subsections.
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Validation: U-NET GM segmentation
The prediction accuracy of the U-Net was validated using manually seg-
mented GM images from randomly selected autoradiographs from the
human data (n = 39) and macaque data (n = 10). The manual GM seg-
mentationsweredrawnon the raw imagesusing theGNUImageProcessing
(GIMP) software. The raw and segmented images were downsampled to
images of 415 × 558 pixels to reflect the image size used to train the network.
For comparison, segmented GM images were also created using Otsu
thresholding39. The Dice score38 between the predicted GM, both using the
U-Net andOtsu thresholding, and themanually segmentedGMwas used to
validate the accuracy of the segmentation.

Validation: alignment accuracy of brain sections
To demonstrate the efficacy of BrainBuilder, it was applied to sections
acquired from human andmacaque brains. The final reconstruction for the
human and macaque data was generated at 250 μm isotropic voxel reso-
lution. This resolution was chosen because it was sufficient to demonstrate
the accuracy of the reconstruction. The alignment accuracywas evaluated in
three ways. First, we calculated the Dice score between the aligned GM
segmentation of the sections and the corresponding sections in the GM
structural reference volume. Next, to quantify the accuracy of the inter-
section alignment, we calculated theDice score between adjacent sections in
the anterior and posterior directions along the coronal axis, averaging these
values. Finally, we compared average receptor densities measured in
cytoarchitectonic areas defined on the raw autoradiographs to average
densities measured from the 3D reconstructed volumes using an indepen-
dent 3D cytoarchitectonic atlas4.

A challenge in quantifying the accuracy of the alignment is that several
of the tissue sections were damaged during acquisition and are missing
pieces of tissue. Hence, even if the remaining tissue from a damaged section
is perfectly aligned to the corresponding section from the structural refer-
ence volume, the resulting Dice score53 will be low and not reflect the
accuracy of the alignment with the available tissue. To avoid this problem
quantitative validation was performed by calculating the dice score within a
5 × 5movingwindowbetween the alignedGMsegmentation of the sections
and the corresponding sections in the GM structural reference volume.
These localDice scoreswere only calculatedwhere tissuewas available in the
GM tissue segmentations. The local Dice scores were then averaged to
produce a global Dice score.

Finally, to validate the alignment using independently defined cortical
regions, we compared the neurotransmitter receptor densities measured in
specific cytoarchitectonic areas, manually defined on the raw 2D images
from previous work by expert neuroanatomists33,34, to the densities in the

same cytoarchitectonic areas as defined on the Julich Brain cytoarchitec-
tonic atlas4. The donor brainwasnon-linearly alignedusingANTs40, and the
Julich Brain parcellations were transformed onto the donor brain. We
selected 29 regions that were defined both in the manual 2D annotations of
the autoradiographs and on the Julich Brain atlas. The regions included the
visual, primary sensory,motor, cingulum, parietal, andorbitofrontal regions
(See Supplementary Information 5.3 for the list of regions). The receptor
densities in the 2D annotations were measured in previous work, while the
JuBrain regions were used to measure receptor densities in the 3D recon-
structed volumes. To assess the accuracy of the reconstruction, we per-
formed a regression analysis of the 2D regional receptor densities onto the
corresponding receptor densities measured in the 3D reconstructed
volumes using the JuBrain atlas.

Validation: surface-based estimation of missing pixel intensities
For each type of binding site, respectively, 10,000 vertices that
intersected acquired autoradiographs were selected at random. For
each of these “seed” vertices, neighbors were identified within n steps
along the surface mesh within the same plane as the acquired
autoradiograph (all vertices in Fig. 10), where n follows a uniform
probability distribution n ~U(2,6). For the purpose of validation, the
vertices from the seed vertex to the n-1 neighbor (purple, green, and
blue vertices in Fig. 10) were treated as though the pixel intensities at
these locations were missing, though in fact all pixel intensities were
known because the vertices all intersect an acquired autoradiograph.
A subset of m neighbors around the seed vertex, where m ~U(1,5),
were then identified (purple and green vertices in Fig. 10). These
form a core patch of vertices whose average pixel intensity was
estimated.

The vertices thatweren edgesaway fromthe seedvertex (red vertices in
Fig. 10) were considered to have known pixel intensities. The surface-based
linear interpolation algorithmwas then used to estimate pixel intensities for
vertices within the seed and core patch of vertices given the vertices with
“known” intensities. Pixel intensities were estimated for each vertex indi-
vidually and then averaged together.

In the human data, the average sampling distance between sections of
the same type was ∼570 μm. The value of n was chosen such that the
interpolated vertices were 0.05–1.2mm away from vertices with known
pixel intensities.

Validation: Interpolation accuracy
To ensure that the reconstruction pipeline did not affect the mea-
sured pixel intensities, regions in the unprocessed autoradiographs

Fig. 10 | Illustration of validation method for
surface-based interpolation. A toy example of a
mesh patch used to validate the surface-based linear
interpolation for estimating missing pixel inten-
sities. Here a seed vertex, purple, with a neigh-
bourhood of core vertices, m = 1, is estimated using
known border vertices, red, n=3.
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were compared to the corresponding regions in the reconstructed
volumes. Regions of interest (ROIs) were generated based on similar
patterns of pixel intensity distribution, with a mean area of
21 ± 11 mm2 (see Supplementary Fig. 4 for illustration). These ROI
were not intended to be biologically meaningful per se, but rather to
reflect the spatial characteristics of real parcellation schemes, e.g.,
ROI from atlases such as the Julich Brain4, which we anticipate will
be used to analyze the reconstructed data.

The parcellation of ROIs was produced using K-Means cluster-
ing with the “slic” function from Skimage54. The autoradiograph
parcellations were transformed using the same 2D and 3D trans-
formations as were applied to their corresponding autoradiographs
during reconstruction (see Supplementary Fig. 4 for illustration). The
accuracy of the transformed pixel intensities was quantified by cal-
culating the absolute error between true and interpolated values,
divided by the true intensities.

Validation: reconstructed values versus in vivo PET
To assess the validity of the reconstructed GABAA -benzodiazepine
receptor volume, we compared its regional receptor density mea-
surements to those obtained from [18-F]-flumazenil PET scans
acquired from nine healthy controls. We quantified the similarity
between the reconstructed receptor volume and WM normalized
SUVR images derived from the PET scan and, for comparison,
measured the similarity among SUVR images themselves. SUVR
images were used because they partially control for the amount of
non-specific ligand binding versus specific binding to the receptor.
This approach tested whether reconstructed receptor volumes exhibit
a level of similarity to PET-derived receptor distributions comparable
to the similarity observed among PET scans themselves.

Both the benzodiazepine receptor autoradiographs and PET
scans were acquired using the [18-F]-flumazenil ligand, making them
ideal for direct comparison. Regional receptor densities were
extracted from the reconstructed flumazenil volume using the Julich
Brain Atlas4.

Each PET scan was linearly aligned to the corresponding participant’s
MRIwith a rigid transformation. TheMRI scans of the healthy controls and
the brain donor were then non-linearly aligned to the MNI152 (2009c)
template55 using ANTs. PET scans and the reconstructed benzodiazepine
receptor volumes were subsequently transformed into MNI152 space, and
regional receptor densities were extracted using the Julich Brain Atlas4.

To quantify similarity, we calculated the Spearman’s ρ correlation
between regional receptor densities from the reconstructed and PET-
derived volumes. To evaluate whether the reconstructed receptor volume
was as similar to PET-derived receptor distributions as PET scans were to
one another, we compared the mean Spearman’s ρ from reconstructed vs.
PET comparisons to the mean Spearman’s ρ from PET vs. PET
comparisons.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Derived metrics used for validation of Brainbuilder are publicly available
(https://doi.org/10.6084/m9.figshare.28934441)56.

Code availability
The code used in this manuscript is available at https://github.com/tfunck/
brainbuilder.
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