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Human alveolar macrophage response to
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individual variability
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Mycobacterium tuberculosis (M.tb) infection infects human alveolar macrophages (HAMs). In freshly
isolatedHAMs from28 healthy adults, we observe large inter-individual differences in bacterial uptake
and growth, with tenfold variation inM.tb load by 72 h. WhileM.tb infection triggers expression
changesof numeroushostmRNAs,weexaminedwhichgenes aremost variably expressed (VEgenes)
between donors, as potential biomarkers of individual tuberculosis (TB) risk. The HAM RNA
transcriptome following infection revealed thousands of differentially expressed (DE) genes and
differential secretion of 25/27 proteins. Yet only 324 DE genes represent VE genes detected
exclusively among DE genes in infected cells. Of 36 DE genes detected at all time points (2, 24, and
72 h), 14 are VE genes, indicating early emergence of the VE gene profile. 9/27 DE proteins following
infection were encoded by VE genes. Systems analysis of VE RNAs identified a top-scoring network
anchored by IL1B, involved in TB immune response. Independent M.tb-HAM transcriptome results
from a TB-endemic region show significant overlap in DE genes, including VE genes identified in the
main study. Thus, we identify a VE gene network activated upon M.tb-HAM infection with high inter-
person variability, guiding studies on determining individual risk of M.tb infection and/or disease.

Mycobacterium tuberculosis (M.tb) is estimated tohave infected one-quarter
of the world’s population, and with an estimated 1.3 million deaths in 2022
from tuberculosis (TB), a continuing worldwide public health problem1.
Since only a fraction (5–15%) of infected individuals progresses to active

TB2,3, we must understand the immunopathogenesis of M.tb infection,
including host susceptibility or resistance factors, in order to develop
effective diagnostic, therapeutic and vaccine strategies tailored to different
individuals and populations4.
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Aerosolized M.tb enters the alveolar lung space where it is phagocy-
tosed by alveolar macrophages (AMs), unique resident cells with a complex
immunologic profile, to become an intracellular pathogen. M.tb infection
activates several macrophage immunobiological pathways involved in
phagocytosis, vesicle trafficking, and triggering of inflammatory cytokines,
oxidants, and cell death pathways—all processes of innate immunity. Yet,
critical factors in thehumanhost that promote or impedeM.tb infectionand
progression to TB remain uncertain—a roadblock to understanding an
individual’s susceptibility to TB5–7.

The host response toM.tb infection ranges from complete clearance of
infection to latent, incipient, subclinical andactiveTB8. Therapy andvaccine
trials further highlight response variability across individuals and
populations4,9 with BCG vaccination trials attaining only 50% efficacy10.
Evolutionary adaptation of M.tb to the host is considered a main factor
modulating virulence, host response and TB severity11,12. For example,
evasion of immune surveillance by suppression of IL1B was proposed to be
largely dictated by virulence of the M.tb strain11; however, expression of
differentially expressed (DE) genes, including IL1B, during infection with a
singleM.tb strain, can vary >10-fold between individuals13. Therefore, both
genetic14 and environmental/epigenetic15–18 host factors also play a role,
while being less well understood.

Heritability estimates of susceptibility to TB range from 80% (twin and
population studies) to 25–50% (polygenic risk scores)19; yet, GWAS-
significant genetic variants alone fail to account for most of the estimated
heritability19,20. Both in vitro and in vivo transcriptome studies of M.tb-
infected macrophages and other immune cells reveal candidate genes21–24

and associated gene networks6,16,25–27, including type I IFN-associated sig-
natures in active TB, as potential biomarkers24,28. Similarly, protein studies
invoke factors associated with TB status, including indoleamine oxidase 1
(IDO1), a blood-based biomarker of active TB29. Complexity of these
interacting processes confounds predictions of individual TB risk.

Our study addresses a critical gap in the field, the poorly understood
substantial inter-individual variability in response to a singleM.tb strain in
humanAMs (HAMs).We address this by characterizing immune response
genes and pathways that differ between individuals during infection of
HAMs from healthy donors.We identify a set of host DE genes with highly
variable expressionbetweenHAMdonors (VEgenes). TheseVEgenes form
networks, and we identify hub genes enriched with already recognized
biomarkers of active TB11,24,29–31. The enrichment of TB susceptibility genes
among the detected VE genes in infected HAMs supports a framework for
understanding individual differences in the outcomes of M.tb infection,
including TB risk or protection, focusing on key genes displaying signatures
of evolutionary selection.This study sets the stage for future studies designed

to understand different host responses to distinctM.tb strains, vaccines, and
therapies.

Results
Heterogeneity inM.tb uptake, adaptation and growth in HAMs
among donors
We isolated HAMs from 28 adult healthy donors of both sexes and four
different races (Table 1) and, within 6 h, infected them with a virulentM.tb
strain (H37Rv, lineage 4), engineered to emit light (expressed in relative
luminescence units, RLUs)32–35. After 2 h, we washed the infected cells and
then measured RLUs over 72 h (Fig. 1; Supplementary Table 1). Given the
focus of this study on host variation in response to infection rather than
M.tb strain differences, we selected a single, well-studied strain (H37Rv). The
assays presented throughout were conducted at a multiplicity of infection
(MOI) of 2:1 or 10:1 (M.tb/HAM cells), and macrophage monolayers were
maintained throughout the assays. RLUs correlate withM.tb colony forming
units (CFUs) over time, jointly reflecting the number of intracellular bacilli
and microbial metabolic activity33–35. RLU levels at 2–24 h post-infection
largely reflectM.tb cellular uptake, metabolic activity, and early intracellular
adaptation while increases from 24 to 72 hmost accurately reflect changes in
abundance (growth) of metabolically active intracellular M.tb. Similar fold
increases in RLUs were observed when HAMs were infected at both MOIs
of 2:1 and 10:1 (Supplementary Table 1). After correcting batch effects, large
inter-individual variations in RLU values were detectable at each time point
(Fig. 1B). HAMs from different donors with the highest and lowest RLUs
displayed a nearly tenfold difference at 72 h.

HAM-secreted proteins capture the immune response toM.tb
infection
To assess the inflammatory mediator response by macrophages to M.tb
infection, we measured 27 secreted proteins, previously implicated in cellular
responses toM.tb infection, in all HAMs over 72 h (Supplementary Table 2).
Among the secreted proteins 25/27 (92.6%) displayed significantly increased
secretionwith infection over the 72 h time periodwith onlyMMP1andCCL4
not showinga significant increase inat leastone timepoint (Fig. 2). Evenat2 h,
3 proteins (11%) displayed significantly increased secretion afterM.tb infec-
tion (CCL3, CSF2 and MMP2; Fig. 2). Conversely, 4 proteins (CCL22, IL7,
IL16, MMP9) did not show a significant difference until 72 h. Inflammatory
mediators including IL1B, TNF and IL6 displayed significantly increased
secretion with infection at 24 h and 72 h, consistent with their important
contribution to a pro-inflammatory response to infection. Early protein
secretion over the first 2 h of infection could influence transcription profiles
over the entire incubation period, to be presented further below.

Table 1 | Donor demographics of HAM samples used in this study (n = 28)

Donor Sex Age (years) Race Donor Sex Age (years) Race

D1 Female 24 Asian (Chinese) D15 Male 18 Hispanic

D2 Male 24 African-American D16 Female 25 Caucasian

D3 Male 27 Caucasian D17 Female 20 Caucasian

D4 Female 26 Caucasian D18 Female 26 Caucasian

D5 Female 26 Caucasian D19 Male 19 African-American

D6 Male 21 Caucasian D20 Female 22 Hispanic

D7 Male 24 Caucasian D21 Male 20 Asian (Chinese)

D8 Female 22 Caucasian D22 Female 19 Not stated

D9 Male 23 Caucasian D23 Female 19 Caucasian

D10 Male 21 Caucasian D24 Male 23 Caucasian

D11 Female 46 Caucasian D25 Male 24 Hispanic

D12 Female 22 African- American D26 Male 23 Caucasian

D13 Male 27 Asian (Indian) D27 Female 20 Caucasian

D14 Male 33 Asian (Chinese) D28 Female 19 Caucasian

Male/Female = 14/14; Caucasian = 60% (17/28), Asian = 14% (4/28), African American = 11% (3/28), Hispanic = 11% (3/28). All donors were non-smokers.
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Transcriptomes of uninfected control andM.tb-infected HAMs
reveal DE gene profiles
Transcript profiles were assessed for each HAM sample with and without
M.tb infection at 2, 24, and 72 h post infection using AmpliSeq36. This
method is scalable across a large concentration range36. At each time point,
10,000–14,000 mRNAs were detectable. Reads per million (RPM) from
replicate assays were highly correlated (r2 ≥ 0.99), enabling sensitive detec-
tion of DE genes.

A principal component analysis (PCA) of all datasets from control and
infected HAMs revealed that 52% of the variance in gene expression
between time points resulted from exposure of HAMs to ex vivo culture
conditions alone, while M.tb-induced RNA expression changes were
smaller but increased over time (Supplementary Fig. 1). While ex vivo
culture alone altered gene expression profiles at 24 and 72 h, infected
samples were clearly distinguished from uninfected control samples at each
time point by PCA of gene expression (Supplementary Fig. 1). Ex vivo
cultured HAMs begin to display a transcriptional profile of ex vivo differ-
entiated monocyte-derived macrophages (MDM) after 6 h incubation36,
further supported by the dataset explored in this study (Supplementary

Fig. 2). Canonical HAM markers were highly expressed at 2 h in both
control and infected samples. These markers included SERPING1,
LGALS3BP, MRC1, MARCO, MCL1, HLA−DQA1, CCL18, CES1,
TREM2, A2M, MMP7, CD84, MMP9, CD36, NOS2, IL18, CCL8, CCL5,
IL23A, CD40, CCL3, CCL4, IL1B, TLR2, CD80, FCGR2A, SOCS3, TNF,
CD86, FCGR1A, FCGR3A, IL12A, TLR4, IL1R1, CCL11, IL13, VEGFA,
IL10, TLR8, CD200R1, CCR2, TLR1,CD68, CCL22, CCL1, CCL17, CCL24,
ARG1, IL4, PPARG, CD163, and TGFB1.

To identify significant DE genes (FDR adjusted p ≤ 0.05) specific to
infection, we analyzed RNA expression by comparing uninfected control
cells to infected cells at each time point. This yielded 62 DE genes at 2 h,
2,177 at 24 h, and 3662 at 72 h post infection (Supplementary Table 3)36.
Thirty-six genes were significantly DE at all time points, all but 2 were
upregulated (Figs. 3A and 4), including those encoding inflammatory
cytokines (IL1A, IL1B, TNF) and chemokine receptors (e.g., CCR7) char-
acteristic of a spectrum typically reported as representing “M1 type” cell
states, and GPR84, a regulator of macrophage functions37.

Macrophage polarization is often simplified to the trajectory towards
M1-like or M2-like states, the former representing a pro-inflammatory
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Fig. 2 | Levels of secreted proteins in 28 control andM.tb-infected HAMs at 2, 24,
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secretion with infection at any of the three time points occurs with 2 MMPs, 4
inflammatory mediators, all 6 cytokines, and 10 chemokines. At 2 h, MMP2, CCL3
and CSF2 are significantly increased in secretion, each also encoded by VE genes,
discussed later.

Fig. 1 | Time course of M.tb interaction with
HAMs and intracellular growth over 72 h.
A Schematic of M.tb cell attachment and uptake,
adaptation, and growth in HAMs. B Changes in
normalized RLU values over the course of M.tb
infection. The RLUs represent mostly uptake and
adaptation at 2 h and 24 h, and growth at 48 h and
72 h (see Supplementary Table 1; results shown here
are with bacterial MOI of 2:1).
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state38. To explore the relevance of these polarized states to differences
between control and infected samples, we first assessed changes in the
abundance of M1- and M2-associated mRNA transcripts between control
and infected cells (Supplementary Fig. 2) using a curated set ofM1- andM2-
associated genes39. Therewas a substantial overlap betweenDEgenes at each
time point and M1/M2 genes (Fig. 3B–E), with 44.0% of M1 genes and
34.0% M2 genes differentially expressed at 72 h. An independent analysis
supported the importance ofM1/M2genes. Gene set enrichment analysis of
72 h DE gene profiles, using gene co-expression modules previously iden-
tified during macrophage differentiation40, showed significant enrichment
ofM1-likemodules (Fig. 3F).While our data supports the relevance of ‘M1’-
like states to M.tb infection, they also indicate that macrophages are not
simply M1 or M2. Polarization into either ‘M1’ or ‘M2’-like states is
increasingly recognized as a false dichotomy with macrophages actually
residing across a spectrum of states41–44.

DEgenes display themost variable expression inHAMsbetween
donors (VE genes)
The analysis ofDEgenes across allHAMdonors doesnot identify genes that
reveal variable expression between individuals – the principal goal of this
study. For example, induction of the highly significantDE transcript STAT1
(a transcription factor associated with an M1-like state) varied between
HAMdonors froma2-fold reduction to a 25-fold increase.To capture inter-

individual variation,weanalyzedvarianceof gene expression inboth control
and infected HAMs at all time points combined, yielding a set of 324 genes
with highly variable expression, exclusively found in M.tb-infected HAMs
(VE genes; Levene’s test, ratios of variances <0.15; Supplementary
Table 4A). Considering the lack of VE genes in control HAMs, their
emergence in infectedHAMs supports the notion thatM.tb infection causes
highly variable gene expression.

All 324VE genes are also significant DE genes whichwere upregulated
in the M.tb-infected HAMs. Examples include IFI6, IL1B, CCL4, IDO1,
GBP5, IRF1, JAK3, UBD, CXCL5, CCL20, VDR, CD80, IFI44L, NLRP3, and
IL7R, several previously implicated in TB pathogenesis [reviewed in
refs. 19,45]. Among the 27 secreted candidate proteins measured, 9 also
scored as VE gene-encoded proteins (CCL2, CCL3, CCL4, CCL20, CCL22,
CXCL5, IL1A, IL1B, MMP2). Moreover, among the 36 genes differentially
expressed at all time points, 14 were VE genes (AMPD3, CCL2, CCL4,
CCL20, CXCL1, CXCL5, F3, G0S2, GPR84, IL1A, IL1B, NBN, PTX3,
TNFAIP6), indicating that a unique individualmRNApattern is established
as early as 2 h after infection.

Among the VE genes, a subset of them was tightly co-expressed with
IDO1, displaying extreme variability betweenHAMs, including IL1B,CCL5,
GBP2, IFI44L, IRF1, JAK3, STAT1 andUBD (Fig. 5). For example, IDO1 [a
well-characterized TBmarker29] was expressed over a large range of RPMs,
with only a portion of HAMs showing substantial expression (well above
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500RPMs) at 24 h (Fig. 5B–H),while IL1Bwasmore broadly expressed, but
with high expression mostly coinciding with high IDO1 expression at 72 h
(Fig. 5A). VE genes with large differences in expression between HAM
donors are primary candidates for potential relevance to individual sus-
ceptibility to TB. Since several VE gene transcripts are formed andmultiple
VE proteins (CCL3,MMP2, CSF2) are secretedwithin 2 h ofM.tb infection
(Fig. 2), it appears that large inter-individual differences in cellular HAM
response toM.tb infection emerge almost immediately.

Reactome analysis of the 324 VE genes yielded several significant
pathways, including Immune System and Cytokine Signaling (Supple-
mentary Table 4B). Ingenuity Pathway Analysis (IPA) of the VE genes
yielded the highest scoring hierarchical network with IL1B, IRF1, IDO1,
STAT1 andUBD asmain hub geneswithmany connections, and secondary
hub genes with 4 or more connections (CCL2, CD40, CD80, CD274, CFB,
CXCL3, GBP2, IL1A, IL1RN, OSM, PSMB2, PSMB8, STAT2, TRL2,
TNFRSF4, TNFRSF10, USP18) (Fig. 6, full gene annotation in Supple-
mentary Fig. 3). Both STAT1 and IRF1 interact with the IDO1 promoter46

and play a role in macrophage polarization and may therefore represent
biomarker candidates affecting inter-individual variability in response to
HAM infection.

These combined analyses reveal VE genes meeting multiple criteria as
potential candidate biomarkers linked to individual TB susceptibility: dif-
ferential expression upon infection, high interindividual variability in
expression,member of a critical genenetwork, andprevious evidence forTB
biomarker status.

Relationships between protein secretion at 2h and transcript
profiles of VE genes
Among the 27 proteins measured (Fig. 2), 25 were encoded by DE genes,
and 9 by VE genes (CCL2, CCL3, CCL4, CCL20, CCL22, CXCL5, IL1A,
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Fig. 5 | Expression of IDO1 compared to IL1B and other co-expressed genes in
HAMs infected withM.tb at 24 or 72 h. A Expression of IDO1 compared to IL1B at
72 h: both are variably expressed with a similar pattern across the 28 HAMs
(R2 = 0.81). B–H Select mRNA transcripts with co-expression patterns highly

correlated with IDO1 at 24 h (R2 ≥ 0.80). IDO1 is expressed in all HAMs over a wide
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expressed genes with IDO1 representing the most variably expressed gene cluster
(B–H). Gene expressions are shown in RPM on both axes.
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IL1B, MMP2). This overlap supports the selection of these proteins as
candidates for a role in individual donor-M.tb interactions. Differential
secretion of proteins can result from direct effects of M.tb on cellular
metabolism, increased transcription, translation, and secretion, or as a result
of secondary autocrine/paracrine effects of the secreted proteins themselves.
To test this early in the infection, we assessed how changes in secreted
protein levels in control and infected HAMs at 2 h post M.tb infection
correlatewithmRNAexpression at 2, 24, and72 h (SupplementaryTable 5).
We focusedonmRNAs encodedbyVEgenes todetermine atwhat point the
VE gene profile and gene network are activated. The correlation pattern
between secreted proteins at 2 h and VE transcripts revealed robust corre-
lations already at 2 h and more robustly at 24 h and 72 h post infection,
shown in Fig. 7 for VE transcripts at 24 h. Strong correlations (R up to 0.6
andFDR p < 0.01)were observed between several proteinswithmultipleVE
mRNAs for both control and infected HAMs. Significant correlations were
found either in the controls or in infected HAMs, or in both. For example,
2 h protein levels of CCL2,3,20, CSF2, CXCL10,11 and IL6,8 correlated
positively with IFITM1-3, GBP3, OAS, ISG20, and IRF1 transcripts at 24 h
in infected cells (Fig. 7, see lower left and right panels). The correlation
between 2 h CCL3 protein and 24 h ISG20 transcripts was significant in
infected HAMs (R = 0.56, FDR p = 0.0003) but not in controls (R = 0.09,
FDR p = 0.26). The same proteins correlated with another set of mRNAs
more strongly in the control cells, indicating that infection reverses changes
incurred from incubation of cells alone (e.g., VDR, C1RF, CSF1, CCL24)
(Fig. 7, lower middle panel). The correlation between CCL3 and VDR was
R = 0.52 (FDRadjusted p = 0.07) in the controls andR = 0.08 (FDRadjusted
p = 0.70) in infected HAMs. Yet other proteins displayed only modest
changes in correlations between controls versus infected HAMs (e.g.,
CCL20, IL13, 17, 19). These results demonstrate thatM.tb infection causes
rapid rewiring of protein secretion and expression ofVEgenes already at 2 h
of infection with distinct differences compared to changes caused by
incubation alone for a subset of VE gene transcripts.Moreover, these results
support the hypothesis that early protein secretion plays a role in deter-
mining individual cellular responses to M.tb infection over time, exerting
autocrine or paracrine stimuli that further enhances early evolution of the
VE gene network.

Among the secreted proteins, robust release of MMP2 into the
medium occurred in the absence of any changes inMMP2mRNA levels at
2 h, unique amongall otherproteins tested (Fig. 2; SupplementaryTables 2,
3A). MMP2 mRNA was stimulated by M.tb only at 24 and 72 h.

MMP2 protein levels at 2 h post infection correlated with several tran-
scripts at 24 honly in the infected cells:VDR (R = 0.43, FDR p = 0.03), IL1B
(R = 0.59, FDR p = 0.01) and CCL20 (R = 0.54, FDR p = 0.004) (Supple-
mentary Table 5), suggesting a downstream effect on M.tb-HAM
interactions.

Replication study of freshly isolated HAMs in a different popula-
tion using RNA-Seq
To determine whether the HAMDE or VE genes identified in our primary
cohort would be seen in a replication cohort, we applied full RNA
sequencing in HAM samples infected similarly with M.tb H37Rv from a
different population in South Africa. This population included 9 donors
used as healthy controlswithQuantiFERONpositive status (Table 2),where
all donors did not have HAM samples from all 3 time points of infection
(2 h, 24 h, 72 h). Analysis of the RNA sequencing data yielded a set of DE
genes that overlappedwith those inHAMsamples of our primary study.DE
genes are presented in Supplementary Tables 6A–C, and Supplementary
Fig. 4. At 2 h post infection, fewer RNAs were assigned DE status (n = 45),
and only 3 upregulated RNAs overlapped with the DE genes in the primary
study, likely owing to the small number of samples and the less precise and
less targeted RNA-Seqmethodology.However, at 24 h, 360 of 773DE genes
(46.6%), and at 72 h, 89 of 148 DE genes (60.1%) overlapped with the DE
genes reported in the main study. Pathway analyses revealed a similar
spectrum of enriched functional terms for upregulated genes, including
cytokine signaling in immune system, interferon signaling, and innate
immune system (Supplementary Tables 6D, E). Inspection of keyDE genes,
irrespectiveofHAMdonors and infection timepoints, replicated thefinding
of substantial inter-individual differences, for example IDO1 and its co-
expressed genes (Supplementary Fig. 5). We next sought to determine the
overlap between VE genes in the larger 28 HAM panel of the main cohort
with DE genes in the South African samples (Supplementary Fig. 6).
However, owing to the smaller sample size, a direct variance analysis to
defineVEgeneswasnot considered viable, while overlappingwithDEgenes
in the replication cohort provided a measure of VE gene expression. Since
the mean expression of all VE genes was upregulated in the main study, we
considered only upregulatedDEgenes in the replication study. This analysis
revealed that VE genes are enriched among the DE genes at 24 and 72 h,
representingmore than 34% of all upregulatedDE genes at 72 h (45 of 131).
This result is a further indication thatVEgenes are an important component
of the transcriptome response toM.tb infection.

Fig. 6 |Network ofDEgeneswith highly variable RNAexpression (VE/DEgenes).
These VE/DE genes (n = 324) were identified in the 28 HAMs after M.tb infection
across all time points. Standard pathway enrichment program, Ingenuity Pathway
Analysis (IPA) (https://www.qiagenbioinformatics.com/products/ingenuity-

pathway-analysis/), generates a top scoring gene network with IL1B, UBD, STAT1,
and IRF1 as key hub genes. STAT1 and IRF1 co-operatively bind to the promoter of
IDO1, another hub gene, which is also highlighted (fully annotated network is
depicted in Supplementary Fig. 3). These key proteins are highlighted in red.
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Fig. 7 |Heatmap of correlations between secreted protein levels (y-axis,n= 27) in
control and M.tb-infected HAM incubations at 2 h post M.tb infection versus
cellular VE mRNAs 24 h post M.tb (x-axis, n= 324). This heatmap illustrates
potential effects of early secreted proteins on subsequent mRNA levels at 24 h,
indicating potential autocrine/paracrine effects. A clear pattern of enhanced cor-
relation of proteins (e.g., CCL3,4, CSF2, CXCL5,10, IL6) with mRNA expression
encoded by several VE gene transcripts (e.g., IRF1, IFI6) is visible, highlighted in the

lower expanded sections on the left and right.However, the sameproteins display the
opposite trend with higher correlations in the control cells (e.g., C1RL, CSF1,
CCL24) (gene transcripts in the lower middle section). Other proteins do not show
such a pattern (e.g., IL10) or even opposite correlations throughout (e.g., IL13, IL7,
and IL19). All data are in Supplementary Table 5, including all correlations between
2 h protein levels and 2, 24, and 72 hmRNA levels). For a high-resolution version of
the top of figure inset, please see Supplementary Fig. 7.
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Discussion
This study highlights substantial inter-individual variation in the tran-
scriptomic andproteomic response toM.tb infectionofHAMs fromhealthy
human donors. Using a single virulentM.tb strain, and in the absence of co-
morbidities, our results define a gene network with tight co-expression and
high variability (VE genes) between HAM donors. Application of the high
precision AmpliSeq RNA assay enabled detection of numerous significant
DE RNAs across the 28 donors for HAMs36, similar to previous results24,31.
To focus on genes likely to affect M.tb interactions with HAMs, we per-
formed variance analysis to identify a smaller set of 324 VE genes between
donors (Supplementary Table 4). All VE genes were also DE genes present
only in infected but not control HAMs, indicating that the VE profile was a
specific response toM.tb infection and thus represents potential key factors
in determining an individual’s cellular response to M.tb. VE genes have
previously been proposed as markers of individual susceptibility or resis-
tance to disease phenotypes47. The VE gene set emerged as early as 2 h post
M.tb infection and contained multiple genes previously implicated in TB
pathogenesis. Supporting these conclusions, a smaller replication studywith
HAMs obtained from a South African cohort identified an overlapping set
of DE genes that also included a substantial share of VE genes identified in
the main study (Supplementary Table 6 and Supplementary Figs. 4–6).

Analysis of the VE genes yielded a top scoring gene network with IL1B
as anchor (Fig. 6). Sousa et al.11 had demonstrated that secretion of IL1B is a
surrogate marker distinguishing between mild and severe TB disease,
attributing differences in IL1B induction to virulence of the strains tested,
independent of the host. Both laboratory and clinical strains of M.tb have
been shown to induce increased production of caspase-1 independent IL1B
which could clear the bacterial burden from infected animal lungs. Thus,
IL1B plays a major role in host defense to M.tb48,49. Here we show that a
single virulentM.tb strain elicits substantial differences in IL1B expression
between individual HAM donors, along with additional associated candi-
date genes, indicating that preexisting host factors could potentially serve as
predictive markers of TB susceptibility.

Parallel analysis of 27 selected candidate proteins secreted by HAMs
revealed significant stimulation by M.tb of all but 2 proteins (Fig. 2), also
with substantial inter-subject variability (Supplementary Table 2). Nine of
these proteins were encoded by VE genes (CCL2, CCL3, CCL4, CCL20,
CCL22, CXCL5, IL1A, IL1B, MMP2), highlighting potential relevance as
individual biomarkers of host susceptibility. Robust correlations between
proteins secreted during the first 2 h post infection and VE gene expression
at later time points (Fig. 7 and Supplementary Table 5) suggest autocrine
and paracrine mechanisms contributing to the cellular response to M.tb.
Secretion of MMP2 at 2 h occurred in the absence of increased mRNA
expression, consistent with release of pre-formed MMP2 from the cell
during bacterial attachment. Matrix metalloproteinases are known to be
upregulated by M.tb infection, degrading the extracellular matrix and
thereby affecting cellular infectivity50; hence the level of MMP2 secretion
could serve as an early distinguishing factor in M.tb infection. Further
proteomic and metabolomic studies could reveal early rapid cellular
mechanisms of differential HAM responses during M.tb attachment and
cellular uptake. These earliest interactions with HAMs at the cell surface
play an underappreciated role in regulating subsequent effects during the
intracellular residence ofM.tb [so-called step 151].

Reactome and IPA analyses of VE genes yielded Immune System and
Cytokine Signaling in the Immune System as the top pathways (Supple-
mentaryTable 4B). The top-scoringnetworkwith IL1B, STAT1, and IRF1 as
dominant hubs (Fig. 6; Supplementary Fig. 3) included genes previously
implicated in the cellular response toM.tb [e.g.,23,24,31]. TheVE gene product
GBP2 is an IFN/IL1B activatedGTPasemediating antibacterial defense, one
of the genes in the blood-based RISK6 transcriptome proposed as a bio-
marker for TB disease and treatment response52. This IL1B-dominated
network connects STAT1, and IRF1 to IDO1 (Fig. 6), consistent with pre-
vious reports that the IRF1/STAT1 transcription complex binds to the IDO1
promoter46,53. IDO1 has been proposed as a sensitive and selective bio-
marker for active TB29. Its metabolic products, immunosuppressive
kynurenins, act by preventing access of cytotoxic T cells to infected mac-
rophages in TB lung granulomas30. IDO1 is encoded by a key VE gene
robustly expressed in only 8–10 of 28 HAMs afterM.tb infection (Fig. 5A),
with a highly correlated expression profile with CCL5, IL1B, IFI44L, UBD,
STAT1, IRF1, JAK3 and GBP2 (Fig. 5). Further proteins encoded by VE
genes relevant to M.tb pathogenesis include UBD and GPR84. Ubiquitin
pathways, including UBD, mediate cellular responses to intracellular
pathogens by modulating autophagy and pyroptosis54,55. The phosphatase
PtpB from M.tb requires ubiquitin binding to inhibit the host
inflammasome-pyroptosis pathway. Since disrupting PtpB activity reduces
intracellular pathogen survival, highly variable UBD expression levels in
host cells likely play a role inM.tb infection and survival inHAMs. Similarly,
the short chain fatty acid sensor GPR84 can enhance pro-inflammatory
responses, bacterial adhesion and phagocytic activity of macrophages, thus
playing a key role in macrophage responses37. We propose that M.tb-
induced expression of these VE genes could be early predictive indicators of
susceptibility toM.tb for a given individual. In future studies, this hypothesis
can now be addressed in readily accessible cells [e.g., AlveolarMacrophage-
Like (AML) cells, derived from blood monocytes], recently published as a
surrogate for HAMs, which maintain a HAM-like phenotype over days in
culture44,56–58].

Although macrophages were initially characterized as having polar
phenotypes, i.e., M1 or M259, HAMs represent a unique spectrum of phe-
notypes with both M1 and M2 markers43. Thus, as expected, employing
published modules39 defining classical M1 or M2 type genes, we find that
upregulated genes represent both activated M1 and M2 types (Fig. 3). A
previous study reported that M.tb ESAT-6-induced macrophage polariza-
tion to anM1phenotype occurred early and then switched toM2phenotype
at a later stage of infection60. Differences in the baseline level of expression of
M1 and M2 marker genes could account in part for inter-individual dif-
ferences inM.tb-AM interactions that control the fate ofM.tb in these cells.

In conclusion, our results identify key genes and their encoded
transcripts and proteins in the early phase of M.tb infection of freshly

Table 2 | Healthy control demographics of South African HAM
samples used for replication study (n = 9)

Donor ID sexa Age
(years)

Smoker raceb RNA-seq samplesc

2 h 24 h 72 h

A257
(LS_109-120)
Female

62 Yes SAC No Yes Yes

A258
(LS_121-126) Male

51 Yes SAC Yes Yes Yes

A316
(LS_141-148)
Female

46 Yes SAC Yes Yes Yes

A335
(LS_149-158)
Female

47 Yes SAC Yes Yes No

A352
(LS_161-166)
Female

43 No SAC Yes Yes No

A367
(LS_169-174)
Female

58 No SAC Yes No No

A411 Female 62 No SAC Yes No No

A415
(LS_177-182)
Female

53 Yes SAC No No Yes

A416
(LS_183-184)
Female

52 No SAC Yes No No

aThe designation in parenthesis refers to a range of RNA sample numbers obtained under different
conditions from the same donor used for RNA-seq.
bSAC: South African Colored (mixed ancestry with Khoisan, Bantu, European and Asian roots).
cHAM samples from three different time-points of infection available for RNA-seq.
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isolated HAMs from healthy donors that are expressed with high
variability between individual donors, a potential characteristic of
disease-associated genes. Many of these VE genes have been shown to
play a role in TB pathogenesis. Variations between individuals in VE
genes underlie alterations in common pathways that play a fundamental
role in pathogenesis. We postulate that a focus on VE genes and their
associated co-expressed gene modules can serve as a foundational
approach for identifying early predictive biological indicators of an
individual’s susceptibility or resistance to M.tb infection, TB disease
progression/severity, and response to therapies and vaccines61.

Limitations
The current study employs freshly isolatedHAMs (usedwithin 6 h of harvest)
and hence is distinct fromMDMs isolated from peripheral blood after 5 days
of in vitro incubation, accounting for substantial differences of RNA profiles
between them36.After 2 h incubation, bothcontrol and infectedHAMsdisplay
a strongmRNAexpression profile attributable to freshly obtainedHAMs, this
pattern dissipates over longer incubations (Supplementary Fig. 2), as we have
foundpreviously36. Tomitigate in vitro artifacts, we infectedHAMswithin 6 h
of harvest and used uninfected HAM controls at each time point for each
donor.Whereas the incubation conditions alone induced substantial changes
in gene andprotein expression, exposure toM.tb generated adistinct set ofDE
genes, many also being VE genes, as early as 2 h of incubation, readily dis-
tinguished from control expression profiles and even reversing some changes
caused by incubation conditions alone (Fig. 3; Supplementary Figs. 1, 2;
SupplementaryTables 3, 4).Thesefindings indicate that early events causedby
M.tb exposure arise from a state of HAM cells still close to the in vivo state.
However, the changing HAM phenotype during the incubation period con-
founded correlations between gene expression andM.tb growth and therefore
were not included here.

While the study group of 28 healthy HAM donors was sufficient to
reveal significant genes associated withM.tb-HAM interactions (this is a
relatively large study given the difficulty of obtaining fresh HAMs from
healthy individuals), supported by a smaller replication cohort, func-
tional studies will be required to establish causal relationships. Also,
larger cohorts will be needed to rigorously address contributions of
ethnicity and genetics, sex, age and environmental factors. Nevertheless,
this study provides rich datasets facilitating development of predictive
biomarker panels of individual TB risk. The design of our study pre-
cluded repeat measures from each donor. However, our longstanding
studies with healthy donor human MDMs and HAMs have demon-
strated that individual healthy donors provide consistent results for
comparable measurements over time.

Methods
Measurements of uptake, adaptation, and growth rate ofM.tb in
infected HAMs
Freshly obtained HAMs were prepared and cultured within 6 h from 28
tuberculin skin test (TST)-negative non-smoking, healthy donors from
Caucasians, Asians, and Africans, according to the demographics of the
Columbus, Ohio area (Table 1), under an approved IRB protocol at the
Ohio State University Wexner Medical Center. The informed consent
from each donor was obtained and all ethical regulations relevant to
human research participants were followed. Isolation and culture of
HAMs from bronchoalveolar lavage (BAL) was done as described62,63.
Briefly, BAL fluid was centrifuged and washed once in cold RPMI at 4 °C,
and the cell pellet was re-suspended in RPMI medium. A portion of the
cell suspension was subjected to cytospin followed by HEMA 3 differ-
ential staining and microscopy to determine the percentage of macro-
phages (94 ± 5%; mean ± SD, n = 10). HAMs were adhered for 2 h in
either a 24-well plate (1.5 × 105 cells/well) or 96-well plate (5 × 104 cells/
well) in RPMI containing 10% humanAB serum and Penicillin G (10,000
U/ml). The resultant uninfected HAM monolayer was then washed
(~99% pure as assessed by phase contrast microscopy), and cultured in
RHH media (10 mM HEPES, 0.1% human serum albumin, RPMI) for

another 2 h (this is the time period where M.tb was added to separate
wells for the infection). Supernatants were collected for protein and cell
monolayers lysed for RNA analysis. For longer time points, monolayers
were washed, medium replaced, and incubations continued for 24 or 72 h
for repeat protein and RNA analysis.

ForM.tb infection ofHAMs, virulentM.tbH37Rv single cell suspensions
were prepared64. The virulentM.tb strain used retains PDIMs and contains
the entire bacterial Lux operon cloned in a mycobacterial integrative
expression vector (M.tb H37Rv-Lux) as described

32,33. M.tb cellular uptake,
adaptation, and intracellular growth were assessed as relative luminescence
units (RLUs) at 2, 24, 48, and 72 h in 3–5 wells for each condition (mean
values of 3–5 technical replicates are provided for each donor) using a
multiwell plate reader (Glomax, Promega). Each 2 h incubation was per-
formed at amultiplicity of infection (MOI) of both 2:1 and 10:1 (M.tb/HAM
cells for RLU assays); RNAand proteinweremeasured onlywithMOI of 2:1.
Cellswere imageddailywith a lightmicroscope to assessmonolayer integrity,
which was maintained throughout the experiment.

For technical reasons, HAM uptake and growth assays from donors
1–16 were incubated in 24 well plates, while HAMs from donors 17–28
were incubated in 96 well plates. Use of the different-sized plates resulted
in ~3-fold difference in mean RLUs between the two sets of donor groups
(directly related to a different number of HAMs/well and thus bacteria/
well). For all analyses we performed batch correction of protein, tran-
script and RLUs using ComBAT65 to remove the impact of different
plates used during culture, as such we specified the batches as individuals
1–16 and 17–28.

Measurement of secreted proteins in control andM.tb-
infected HAMs
Supernatants from culture wells of uninfected and infected HAMs from 28
donors at 2, 24, and 72 h were analyzed for secreted proteins relevant to
M.tb-macrophage interactions using multiplex kits from Meso Scale Dis-
covery (MSD) (Rockville, MD). The supernatants were collected at 2 h and
replaced with fresh medium, followed by continuing incubation until 24 or
72 h. Twenty-seven secreted proteins were measured: 4 inflammatory
mediators (TNF-a, IL-6, IL-1b, IL-10; usingV-PLEXkit), 6 cytokines [CSF2
(GM-CSF), IL-15, IL-16, IL-1a, IL-7, VEGFA] and 12 chemokines [IP-10
(CXCL10), MCP-1 (CCL2), MCP-4 (CCL13), MDC (CCL22), IL-8, TARC
(CCL17),MIP-1a (CCL3),MIP-1b (CCL4), ENA-78 (CXCL5), IL-18,MIP-
3a (CCL20), MIP-3b (CCL19); using U-PLEX (customized multiplexing)
kit], and 5matrixmetallo-proteinases (MMP-1,MMP-2,MMP-3,MMP-9,
MMP-10; using MMP 3-PLEX and MMP 2-PLEX kits).

Measurement of RNA expression from uninfected control and
M.tb-infected HAMs
Expression of 20,804 RNAs, including 2228 non-coding RNAs
(ncRNAs), was measured with AmpliSeqTM (Whole transcriptome
Human Gene Expression Kit, Life Technologies) for 28 donor HAMs at
2, 24, and 72 h after infection, for both uninfected controls and infected
HAMs at each time point (MOI 2:1). AmpliSeq transcriptome analysis
incorporates a targeted, amplicon-based (~110 bps, spanning exons)
workflow, and is quantitative over orders of magnitude. The precision of
AmpliSeq analysis detects M.tb-induced expression changes with high
sensitivity in human MDMs and HAMs infected with M.tb36. Genomic
DNA and total RNA (TRIzol® Reagent (AmbionTM, Austin, TX)) were
prepared from HAMs using published procedures13. RNA was purified,
DNase-treated, concentration measured, and its integrity assessed as
described36. Reverse transcription of 10 ng total RNA was performed by
using the SuperScript® VILO™ cDNA Synthesis kit and the AmpliSeq
primers. The cDNAs were amplified for 12 cycles with Ion AmpliSeq™
primers and barcoded adapters, resulting libraries purified and pooled in
equal amounts for emulsion PCR on an Ion OneTouchTM 2 instrument,
followed by sequencing with the Ion ProtonTM sequencer36. Reads were
aligned to BED (Browser Extensible Data) file specific for AmpliSeq
amplicons. Typically, we obtained 5–9 million mappable reads per

https://doi.org/10.1038/s42003-025-08337-9 Article

Communications Biology |           (2025) 8:950 9

www.nature.com/commsbio


sample, with ~50–60% of RNA targets detected36. Repeat experiments
with the same sample yielded correlation values of r2 > 0.99 (for both
independent replicates and sequencing chip replicates). The HAM
sample from donor D17 at 2 h and 72 h yielded <1 million reads and was
excluded from the analyses. The AmpliSeq reads were normalized to
mapped fragments per million reads for quantifying transcript expres-
sion levels66, yielding relative abundance for predicted transcripts in
each HAM.

Differentially expressed (DE) genes between control andM.tb-
infected HAMs
To identifyDEgenes,we employedDESeq267. FDRadjustedp-valuesof 0.05
were used as a cutoff for identifying DE genes at each time point. We
estimated size factors using the “poscount” approach to correct for different
sequencing depth and performed independent analysis at each time point,
specifying the individual/donor and condition (infected or control) in
the model.

Detection of genes with variable expression (VE) in control and
M.tb-infected HAMs, characterized by variance measures
To identify the most variably expressed (VE) RNAs separately in control
HAMsand in those afterM.tb infection, allHAMtranscriptomedata at each
time point were subjected to Levene’s test68, with ratios of variances as test
statistics, yielding the reported adjusted p-value (FDR) for selected RNAs. A
second variability test assesses whether the entropy of a given RNA’s
expression is higher than expected given the total entropy in the M.tb-
infected HAMs69. A permutation test yields p-values for significance of the
entropy computations.

Gene pathway and ontogeny analysis
We performed over representation analysis of gene ontology (GO) terms
and reactome pathways usingWebGestalt70 taking the relevant gene lists for
each comparison as an input and using default parameters.We retainedGO
terms or pathways which reached an FDR corrected p-value of 0.05.
Comparison to genes associated with M1 and M2 states was performed
using a curated list of genes from Viola et al.71 and Li et al.72.

Replication study of HAMs from a South Africa cohort
HAMs were collected from 9 close contacts of TB patients (n = 9) in Cape
Town, South Africa (Table 2), under the approval of the Health Research
Ethics Committee of Stellenbosch University. The informed consent from
each donor was obtained and all ethical regulations relevant to human
research participants were followed. Close contacts were defined as indivi-
duals who shared a closed space with a newly diagnosed TB patient for at
least 5 h per week (all contacts were QuantiFERON positive). These TB
household close contacts were used as healthy controls. The processing of
BAL fluid to isolate HAMs and their downstream uses were performed as
described above for the main cohort from Columbus, Ohio with minor
variations. HAMs were adhered and cultured in 96-well plate (1.3 × 105

cells/well, in triplicate) inRPMImediumcontaining 20%humanAB serum.
Cells were infectedwith wild-typeM.tbH37Rv at anMOI of 1:1. CFU, RNA,
and protein were estimated at 2, 24 and 72 h.

HAM samples were initially stored in RNAlater and transferred to
TRIzol prior to shipment. RNA was isolated using Quick-RNAMicroprep
Kit (R1050; ZymoResearch) as per themanufacturer’s instructions. Isolated
RNA was quantified using the Qubit RNA High Sensitivity Assay Kit
(Q32852) and Qubit 4 Fluorometer (both from ThermoFisher Scientific).
Before doingRNAsequencing,RNAqualitywas assessedwith theFragment
analyzer (Agilent). Samples with an RNA integrity number (RIN) higher
than 7were used for RNA-Seq. RNA-Seq libraries were prepared from25 to
500 ng of total RNA using the NEB Next directional RNA library pre-
paration Kit with poly (A) enrichment module (Ipswich, MA). RNA
sequencing was carried out at the Genome Sequencing Facility (GSF) at UT
Health San Antonio using the HiSeq 3000 platform (Illumina), with 50 bp
single read sequencing with approximately 25M reads per sample.

The analyses of RNA-Seq data of the South African cohort samples
were carried out using CLC Genomics Workbench 2273. Low-quality
sequences and adapters were trimmed. Trimmed reads weremapped to the
human hg38 reference genome. The reads were assigned to the transcripts
using theEMalgorithm. TheTMMnormalization74 in EdgeR75,76 andmulti-
factorial statistics based on a negative binomial Generalized Linear Model
(GLM) were carried out for differential expression analysis. Genes with
FDR-adjusted p-values < 0.05 were considered to be statistically significant.
Gene Set EnrichmentAnalysis (GSEA)77 andKOBASanalysis78 were carried
out to identify over-represented GO terms and biological pathways.

Statistics and reproducibility
Differential protein secretion between infected and uninfected control HAMs
were analyzed using non-parametric Wilcoxon tests. Transcriptome profiles
of control and infected macrophages for 2, 24, and 72 h were analyzed using
the Wald test in DESeq2 and presented as log2 fold change in Figs. 3 and 4.
Correlations of expression of IDO1with several tightly expressed VE genes in
Fig. 5 were analyzed by linear regression. The correlation between protein
secretionat 2 handVEmRNAexpressionat 24 hbyboth control and infected
cells in Fig. 7 was estimated using the Pearson correlation coefficient (r, where
0 indicates no correlation and 1 indicates a perfect positive correlation), and p
values corrected using the FDR approach. Unless otherwise stated, Student’s t
tests were used to perform statistical analysis of comparisons. Significancewas
determined at p values indicated in the figure legends. NS: no significance at
p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001: statistically
significant at the level as indicated.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Source data for Fig. 1 can be found in Supplementary Table 1. Source data
for Fig. 2 can be found in Supplementary Table 2. Source data for
Figs. 3 and 4 can be found in Supplementary Table 3. Source data for Fig. 6
canbe found in SupplementaryTable 4A. Sourcedata forFig. 7 canbe found
in Supplementary Table 5 (Cor 2 h Protein 24 h RNA VEGs & Pval 2 h
Protein 24 h RNA VEGs). The RNA sequencing data were deposited into
the GEO database under accession numbers GSE189996 and GSE223863.
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