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cortex, striatum, and hypothalamus
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Biological rhythms control gene expression, but effects on central nervous system (CNS) cells and
structures remain poorly defined. While circadian (24-hour) rhythms are most studied, many genes
have periods of greater and less than 24-hours; these fluctuations can be both site- and cell-specific.
Identifying patterns of gene rhythmicity across the CNS is necessary for both the study of
chronobiology and tomake sense of data obtained in the laboratory. We now identify cyclingmRNAs,
miRNAs, gene networks and mRNA-miRNA co-expression pairs in the cortex, hypothalamus, and
corpus striatum of male C57BL/6J mice using high-dimensional datasets. A searchable catalogue
(https://www.ghasemloulab.ca/chronoCNS) helps refine the analysis of cellular and molecular
rhythmicity across theCNS (using the liver as a control). Immunofluorescenceconfirms the rhythmicity
of key targets across cells in these structures, with strong cycling signatures in resting
oligodendrocytes.Our study sheds light on the contribution of diurnal, ultradian, and infradian rhythms
and mRNA-miRNA interactions to CNS function.

Circadian rhythms are 24-h endogenous processes that help organisms
adapt to the transition between day and night. Transcription-translation
loops govern these processes through clock genes, which regulate the
expression of genes in a tissue- and cell-specific manner to drive various
outcomes1. Emerging evidence from naïve and disease states suggests that
rhythms are integral to CNS function and activity. For example, the
hypothalamus controls circadian activity via hormone secretion2; this
rhythmicity affects outcomes including cognition and memory (e.g., in the
cerebral cortex)3, and goal-directed behavior (e.g., in the striatum)4. These
sitesnot onlyhavedistinct functions, but alsohighly specific gene expression
that represent over 5000 cell clusters5. Gaining an understanding of when
and where gene expression changes across the naïve CNS is fundamental to
our understanding of neurobiological outcomes; therefore, there is a need
for more detailed profiling of gene rhythmicity and gene-gene interactions
across CNS sites.

Circadian (24-h) rhythms governmost cycling genes, though ultradian
(<24-h) and infradian (>24-h) periods are also possible6. The suprachias-
matic nucleus of the hypothalamus synchronizes these rhythms. A foun-
dational study estimated that ~40% of the mouse protein-coding genome
has a circadian rhythm in at least one of 12 organs—including the

brainstem, cerebellum, and hypothalamus—though only 10 genes were
found to be cycling across all organs, of which seven were core clock
components7. Interestingly, it was found that 16% of genes in the liver
(considered to be among the most rhythmic organs) were under circadian
control, while the CNS sites studied had less than 4% rhythmic genes7.
Similar low levels of cycling gene expressionhave been found in the striatum
(5%)8 and forebrain cortex (6%)9. Ultradian gene expression was first
comprehensively described in the mouse liver, revealing a small subset of
geneswithperiods of either 8- or 12-h10.More recent analysis found that 6%
of transcripts in the human prefrontal cortex have a 12-h period, which can
be altered in neurological disease11. Previous work has observed infradian
rhythms among genes, often exemplified by variations in menstrual and
seasonal cycles6. However, there are few studies of gene rhythms for periods
between24- and48-h in theCNSorother organs/tissues. Beyondneeding to
elucidate the dynamics of cycling gene tissue specificity and variable cycling
periods in thenaïveCNS, post-transcriptional regulationof these genes adds
yet another complex variable to consider in CNS gene expression.

There is a discrepancy between rhythmic transcripts and proteins in
the brain and liver9,12, suggesting that post-transcriptional/translational
regulators generate rhythmicity; miRNAs are key post-transcriptional
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regulators that may contribute to this phenomenon. These short RNAs
typically bind to the 3’ untranslated region of mRNAs, leading to decreased
mRNA stability and protein production. Through this function, miRNAs
play important roles in neuroplasticity and neurodegenerative diseases13.
Moreover, miRNAs have cycling rhythms of expression across the
mouse transcriptome14,15, and are thought to modify the rhythmic char-
acteristics of mRNAs14,16. Furthermore, miRNAs act in a highly tissue-
specific manner, which may explain the tissue-specificity of circadian gene
expression17.

We therefore hypothesized that CNS rhythmicity would occur dif-
ferentially across CNS regions and cell types, and that cycling genes would
be co-expressed. Taking advantage of a transcriptomic dataset of 6-month-
old male C57BL/6J mouse cortex, hypothalamus, striatum, and liver col-
lected every 3-h over 36-h in a 12:12 light-dark environment, our work
identifies site-specific cycling genes in the CNS and works towards unco-
vering their impact in the naïve state. Potential interactions between cycling
mRNAs and miRNAs, whose post-transcriptional regulation of rhythmic
genesmaybe tissue-specific, are also revealed. Finally,wedescribe clusters of
cycling genes and their approximate cellular composition. We validate our
findings using cell-specific protein expression. Our results build a founda-
tion upon which potential molecular/cellular circadian gene networks and
interactions can be identified across the CNS, which we now provide as a
searchable database.

Results
Distinct biological rhythms of mRNAs and miRNAs across
CNS sites
We began by identifying cyclic mRNAs and miRNAs in tissues collected
from the naïve cerebral cortex, hypothalamus, and striatum, with the liver
used as a positive control (Supplementary Fig. 1; “Methods”). Bioinformatic
guidelines18 to detect rhythmic gene expression were employed for this
analysis using theRpackagesMetaCycle19, to detect geneswith a 24-hperiod
and bothRAIN20 andARSER21, to detect non-24-h rhythms. The cortex had
the highest number of cycling mRNAs among CNS tissues (Fig. 1a; Sup-
plementary Data 1). As expected7, the liver had the most 24-h cycling
mRNAs overall. However, the cortex had the most rhythmic genes when
considering non-24-hperiodmRNAs. To confirmour results, we compared
cycling genes detected by MetaCycle and RAIN; all genes identified using
MetaCyclewere also identified using RAIN for analysis (Fig. 1b). Moreover,
the periods for these overlapping mRNAs were largely estimated to be
24 ± 3-h by RAIN, showing concordance between the algorithms (Fig. 1c).
There was up to a >5-fold increase in the number of cycling mRNAs
identified among CNS sites (with only a ~20% change in the liver) when
using RAIN, suggesting an increased presence of non-24-h rhythmic genes
in the CNS.

While most cycling genes appear diurnal, ultradian and infradian
periods were also present in the CNS. As shown by others10,19, we found the
period of liver mRNAs clustered around 12-, 24-, and >24-h (Fig. 1d;
Supplementary Fig. 2-4). While these patterns also appear (though to a
lesser extent) in the CNS, most genes exhibited a 24 ± 3-h period (Fig. 1d).
As estimatedbyMetaCycle,mRNAphases across theCNS (butnot the liver)
appeared to exhibit a bimodal distribution, with high numbers of cycling
genes at ~ZT6–12 and 18–24; this distributionwas not observed in theCNS
or liver in phase estimates byRAIN (Fig. 1e). Relative amplitudes had awide
range across tissues, with the liver having the greatest range, whereas the
CNS was more restricted (Fig. 1f). We focused on the key clock genes
(Supplementary Fig. 5) and confirmed that their expression followed a 24-h
period. Among core clock genes, the transcription factor Bhlhe41 was
rhythmic across CNS sites but not in the liver; Adrb1was only cycling in the
cortex;Timeless andRuvbl2, a newly-discovered core circadian clock gene22,
were only rhythmic in the liver.

UsingMetaCycle, only eight cyclingmiRNAswere identified in at least
one site (miR-5099, miR-124a-2, miR-342, miR-150, miR-29b-1, miR16-1,
miR-6539, and miR-223), consistent with previous studies showing few

cycling miRNAs (Fig. 1g)7,14,23,24. As with our mRNA analysis, more cycling
miRNAs were identified usingRAIN thanMetaCycle (Fig. 1h).We also saw
concordance between MetaCycle and RAIN (Fig. 1i). Most miRNAs
exhibited a 24 ± 3-h period (Fig. 1j), and miRNA phases did not exhibit a
consistent pattern across tissues (Fig. 1k). Relative amplitudes of miRNAs
ranged from 0.1 to 0.5 (Fig. 1l). The proportions of genes changing across
CNS sites align with previous studies7–9,19,25, though results obtained using
ARSER found an unexpectedly high proportion of genes to be cycling
(Supplementary Fig. 6). Thus, our use of a broader range of cycling periods,
improved data resolution, and tissue collected from mice entrained to a
12:12 light-dark cycle during sample analysis identified, to the best of our
knowledge, new genes that are cycling in the CNS.

Specificity of cycling genes in three CNS structures
Wenext assessed the site-specificity of detected cycling genes by focusing on
the results obtained using RAIN, given that 24-h and non-24-h rhythms are
captured; MetaCycle results are presented in Supplementary Fig. 7. Rela-
tively few genes were cycling in all four tissues (Fig. 2a; mRNA= 1332;
miRNA= 1, miR-5099), with the liver containing the most unique cycling
genes and the striatum the fewest. In addition to the 1332 mRNAs cycling
across all tissues, 781 mRNAs were cycling across all CNS sites, again with
only miR-5099 showing rhythmicity amongmiRNAs. Many of these genes
exhibited different cycling parameters depending on the site assessed
(Supplementary Data 2). We identified 7391 mRNAs with period differ-
ences ranging between 3- and 21-h across sites (Fig. 2b); phase differences
between any twoCNS sites for 7235mRNAs, of which 3955 had an absolute
difference ≥6-h and 1131 were in antiphase (12 ± 3-h; Fig. 2c). Finally,
495 shared CNS genes were identified with relative amplitudes up to
0.71 (Fig. 2d).

It has been suggested that differential expression and/or rhythmicity of
regulatory factors (e.g., transcription factors or miRNAs) across sites could
account for site- or tissue-dependent cycling parameters7,26. In support of
this mechanism, pathway analysis of mRNAs with both large period (≥9-h)
andphase (12 ± 3-h)differences between tissues identified thebindingmotif
for transcription factor gene E2f3 as being significantly enriched (Supple-
mentary Fig. 8). This genewas cycling only in the cortex and hypothalamus,
and had varying phases and periods between these sites. E2f3 had a phase of
3 in the cortex but 15 in the hypothalamus, and a period of 12-h and 21-h,
respectively, in these sites (Fig. 3). Further, previous work has shown that
deletion of CRY2 upregulates the expression of genes targeted by factors in
the E2F family27.

Cycling genes are linked to human chronotype genetics
Given that cycling mRNAs identified byMetaCycle are estimated to have a
24-h period and thus may be under circadian control, we assessed their
overlap with 366 genes previously linked to human chronotype28. Of these,
cycling genes were overlapping in the cortex (n = 107, PBH = 1), hypotha-
lamus (n = 39, PBH = 1), striatum (n = 10, PBH = 1), and liver (n = 128,
PBH = 1).OnlyRbm6,Fbxl4,Rfx4,Ahsa2, andHexim1were shared across all
CNS sites (Supplementary Data 3). Transcription corepressor binding and
circadian rhythm/entrainment were key pathways identified among
chronotype genes, though no pathways were shared across all CNS sites
(Supplementary Fig. 9; Supplementary Data 4). These genes may be critical
to chronotype, which varies across mouse strains29–31.

Shared and unique pathways across the CNS and period
categories
Analysis of cycling mRNAs from RAIN found protein folding, cell migra-
tion, and RNA modification as shared pathways in the CNS and liver
(Fig. 4a; Supplementary Data 5); those unique to the CNS included axo-
nogenesis, learning or memory, mRNA stabilization, and macrophage
differentiation (Fig. 4b-d; Supplementary Data 6), while ribosomal and
metabolic pathways were unique to the liver (Fig. 4e; Supplementary
Data 7).We identifiedpathways uniquely enriched across period categories.
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Pathways involving autophagy, protein folding, and cellular stress were
unique to themRNAswith a 24 ± 3-h period and appeared in both the CNS
and liver (Fig. 5a-d; Supplementary Data 8). Pathways identified in the
cerebral cortex and corpus striatum with periods of 12 ± 3-h include
extracellular matrix binding and Hippo signaling (Fig. 5e, f), while liver
mRNAs with 12 ± 3-h periods were enriched in the endoplasmic reticulum
and Golgi processes (Fig. 5g), aligning with existing literature10,32. CNS-
specific pathways with 28–30-h periods included pre- and post-synaptic
membrane and retinoic acid-inducible gene 1 (RIG-1) binding pathways

(Fig. 5h-j), while 28–30-h period liver mRNAs were enriched in pathways
related to innate immunity (Fig. 5k).

miRNAs with a 24 ± 3-h period were enriched for pathways involved
in retinal cell development, response to inhibitory leukemia factor, sensory
perception of mechanical stimulus, and sensory perception of sound
(Fig. 6a-c), while 12 ± 3-h period miRNAs were involved in synaptic sig-
naling and cellular response to alcohol (Fig. 6d-f). Synaptic potentiation/
plasticity, response to forskolin, and energy homeostasis were key pathways
for the 28–30-h period miRNAs (Fig. 6g-i).

Fig. 1 | Variability in the number, period, phase, and relative amplitude of cycling
mRNAs and miRNAs across CNS tissues. a–f mRNAs, g–l miRNAs. a, g The
number (x-axis; PBH < 0.05) and percentage (listed in plots) of cycling genes in each
CNS tissue, with results using bothMetaCycle (red) andRAIN (grey). b, hOverlap of
the numbers of genes detected by only RAIN (grey) or bothMetaCycle and RAIN
(turquoise). c, i The distribution of period lengths (hours) predicted by RAIN

amongst cycling genes also detected byMetaCycle. Cycling parameters estimated in
the cerebral cortex (red), hypothalamus (green), corpus striatum (turquoise), and
liver (purple) usingMetaCycle and RAIN (grey). d, j Distribution of period lengths
between 6 and 30-h. e, k Distribution of phases between Zeitgeber Time 0 and 30,
with entrained darkness highlighted with a grey background. f, l The distribution of
relative amplitudes from 0.015 to 2.03.
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Identification of mRNA–miRNA pairs and pathways across
the CNS
Wenext tested for associations between 24-h cyclingmRNA–miRNApairs
in the CNS. This yielded 5618 pairs in the cortex and 2533 in the hypo-
thalamus (PBH < 0.05). The striatum could not be included in the analysis,
given the lack of 24-h cycling miRNAs. The liver, with its many cycling
genes, contained 42,659 mRNA–miRNA pairs (PBH < 0.05). Putative direct
control of mRNA expression by miRNAs was identified, using a negative
correlation and delay ≤0, in ~50% of pairs in the CNS and ~25% in the liver
(Supplementary Data 9), suggesting that miRNAs may play a more
important role inCNSrhythmicity than theywould in the liver.Of thedirect
interaction pairs, only a small subset has been previously predicted or
experimentally validated (Fig. 7; Supplementary Data 10, 11), highlighting
the need for further study of miRNA regulation of diurnal gene expression.
Previously predicted but unvalidated direct mRNA–miRNA cycling pairs
may present new targets for assessing post-transcriptional regulation of
CNS rhythmicity.

Since genes work in concert to influence complex biological functions,
we used network analysis to identify co-expressionmodules ofmRNAs and
miRNAs separately (Supplementary Fig. 10, 11; “Methods”). Cycling
mRNAs were enriched in 12 of 26 modules in the cortex, 7 of 15 in the
hypothalamus, 9 of 13 in the striatum, and7of 20 in the liver (Figs. 8a, b; 12);

themajority of hub genes in thesemoduleswere rhythmic.CyclingmiRNAs
identified using RAIN were found in all modules except the striatal green
module, while those identified using MetaCycle were found in 1 of 4
modules in the cortex, 2 of 3 in the hypothalamus, and 3 of 3 in the liver
(Fig. 8c, d). Visualizing the composition of cycling genes and their period
categories within modules showed that most modules contain genes with a
period of 24 ± 3-h (Supplementary Figs. 12, 13). However, there were some
exceptions: for example, the cortical yellow4 module has few non-cycling
mRNAs, of whichmost have a period of 27-h or greater. Finally, analysis of
cycling module eigengenes showed that 33 of 126 mRNA–miRNAmodule
pairs were associated (PBH < 0.05; Supplementary Fig. 14). Altogether, our
study identifies modules of coordinated rhythmic gene expression in
the CNS.

Cycling genes contribute to neuroimmune interactions in the
healthy state
The CNS is a complex organ that includes neuronal, glial, and supporting
cells. Thus, we examined the cellular composition of cycling mRNA mod-
ules that are typically thought to representdistinct cell types, although recent
evidence shows heterogeneous modules in the striatum25. CNS cell marker
genes were enriched in 8 cycling modules in the cortex, 1 in the hypotha-
lamus, and 3 in the striatum; as expected, none were enriched in the liver

Fig. 2 | Comparison of cycling genes across tissues. a Intersections of cyclingmRNAs fromRAIN across cycles. b Intersections of cyclingmiRNAs fromRAIN across cycles.
Distributions of cycling parameter differences between tissues. c, d Period and phase estimated by RAIN. e Relative amplitude estimated byMetaCycle.
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(Fig. 9a; Supplementary Data 13). Most modules appeared heterogeneous
and contained gene markers for multiple cell types, including neurons and
glial/immune cells, such as oligodendrocytes, microglia/perivascular mac-
rophages, and astrocytes. The cortical grey60module specifically was enri-
ched for oligodendrocyte, astrocyte, and endothelial cell markers and
pathways, including myelination, glial cell differentiation, and oligoden-
drocyte differentiation (Fig. 9b, c; Supplementary Data 14). These results
suggest that rhythmic cell-cell communication may play an important role
in driving CNS biology.

Finally, we sought to detail the cell- and site-specific nature of
cycling genes at the protein level and focused on the grey60 module
in the cortex, given its bias towards glial cell types and that ~80% of
its genes were RAIN cycling genes (Pg:SCS < 0.05) The hub gene in this
module, transferrin, showed rhythmic expression with a trough at
ZT2 and a peak at ZT14 (Fig. 10a, b) and has previously been shown
to be expressed by oligodendrocytes33. IL-33, also in this module and
known to play a role in myelination34,35, displayed diurnal changes in
immunofluorescent intensity in cortical Olig2+ cells that peaked at
ZT14 (Fig. 10c, d; Supplementary Fig. 15a, b, 16a). These results align
with recent data showing that oligodendrocyte precursor cell (OPC)
dynamics are subject to time-of-day differences in the naïve cortex
via Bmal1, regulating sleep architecture and OPC complexity36.
Candidate genes Fzd4, Eif1b, Lrrk2, Sphk2, and Adipor2 were also
selected for protein analysis given their strong rhythmicity and dif-
fering phases in the cortex and hypothalamus. We found these targets
to be expressed rhythmically at the protein level in neurons across
the CNS. AdipoR2 showed rhythmic expression in hypothalamic
neurons (peaking at ZT14), while Fz-4 expression peaked at ZT8 in
cortical neurons (Supplementary Figs. 15a, c, d, 16b, c). EIF1b, on the
other hand, exhibited rhythmic immunofluorescence in cortical
neurons with increased expression at ZT20/2 and reduced expression
at ZT8/14 (Supplementary Figs. 15a, e, 16d). SphK2 and LRRK2 co-
localized with neurons in the cortex but had no significant changes in
fluorescence intensity across the timepoints examined (Supplemen-
tary Figs. 15a, f, g, 16e, f). These findings highlight the need for
cataloging changes in rhythmic expression at both the gene- and
protein-level, in a cell- and site-specific manner.

Discussion
We identify cyclingmRNAs,miRNAs, genenetworks, andmRNA–miRNA
co-expression pairs in the naïve CNS, which were validated at the protein-
level with cellular resolution. Importantly, these rhythmic changes were
both tissue- and cell-specific, highlighting the different expression char-
acteristics of cycling genes and their variability across CNS sites. Thus,
diurnal rhythmicity must be considered when planning experiments
assessing gene function/activity and behavioral outcomes, for which our
curated catalog can be a starting point (https://www.ghasemloulab.ca/
chronoCNS/).

Our study confirms previous findings that diurnal gene expression is
highly tissue-specific, especially since cycling genes shared across tissues
may have different parameters (e.g., phase)7. Further, the known function of
these genes is also tissue-specific. For example, cycling genes in the cortex
are uniquely involved in synapse organization and axonogenesis. This result
is striking since the study that found that 6% of the forebrain cortex’s
transcriptome is cycling also found that synaptic transcripts are under
strong circadian control9. The same group also foundmore cycling synaptic
proteins than synaptic transcripts, meaning rhythmicity was most likely set
at the post-transcriptional stage. To our knowledge, this study is the first to
identify putative miRNA–mRNA pairs that could explain this discrepancy.
These results have important translational potential given that both circa-
dian rhythms and miRNAs have roles in neurodegenerative diseases, in
which synaptic plasticity is disrupted, such as Alzheimer’s Disease and
Parkinson’s Disease37,38. For instance, several studies now show the utility of
circadianmiRNAs (or circaMiRs) as biomarkers in bothhealthy anddisease
states39–41.

We identified groups of co-expressedmRNAs andmiRNAsusing gene
network analysis, many of which were over-represented by cycling genes,
with some having signatures of neuronal and/or glial cells. For example, the
cortical grey60 module was only enriched in glial cell markers and glio-
genesis pathways. In this module, Il33 exhibited rhythmic protein expres-
sion in oligodendrocytes. Meanwhile, the hypothalamus-specific
saddlebrown cluster was only enriched in neuronal markers, with AdipoR2
being rhythmic, particularly in neurons. These results confirm evidence
from others that cycling gene expression is cell-specific42,43, and further
support evidence that both glia and neurons are under circadian control5,43.

Fig. 3 | Expression and cycling parameters of the transcription factor gene E2f3.
Sampling timepoints represented in Zeitgeber time are on the x-axis. Normalized
gene expression counts are on the y-axis. Data points represent the normalized

counts ofE2f3 at each timepoint and tissue. Panel titles indicate the tissue,MetaCycle
results, and RAIN results.
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Disruption of these rhythms likely contributes to clinical pathologies,
including chronic pain, neurodegenerative and demyelinating diseases44,45.

The transcriptomic rhythmicity of these sites has previously been
described and, in addition to other tissues, can be explored using various
databases, notablyCircaDB46, CGDB47, andCircadiOmics48.However, these
databases either rely on microarrays and not the more robust RNA-
sequencing, fail to account for site-specific rhythms, do not capture an
adequate number of data points to account for ultra/infradian rhythms,
and/or lack data onmiRNAs. In addition, rhythms are likely governed at the
cellular level. Single-cell circadian datasets of the CNS are only available for
the murine suprachiasmatic nucleus and liver, and the much less complex
Drosophila brain42,43,49. A recent spatial cell type atlas of the mouse brain
contains samples taken from both the light and dark phases5. While this
dataset captured diurnal changes of clock genes, non-clock genes were not
assessed. As such,more comprehensive databases using single-cell methods
are necessary to fully capture the extent of rhythmicity at both site- and
cellular-specific levels.

Despite our study providing important insights into the diurnal
rhythmicity of gene expression and post-transcriptional regulation in the
CNS, our study has limitations. Our study used a publicly available dataset
that was created to identify diurnal gene expression patterns25, but its
characteristics may be optimized to better address this study’s aims. First,
the mice are 6-months-old compared to ~6–12-weeks-old mice previously

used to study circadian gene rhythmicity7,9,10,14,24. Aging has been shown to
reduce gene rhythmicity in mice50,51; however, rhythmicity appears con-
sistent between ~6-week-old mice and 6-month-old mice51, and this
decrease in rhythmicity does not occur until later in life51. Second, this study
only examines samples from male mice. While diurnal/circadian genome
atlas studies have focused on male mice/primates7,26,42, evidence suggests
that circadian gene expression has sex-specificity52–55. This male bias likely
skews our understanding of female gene rhythmicity56, and it is critical that
female subjects are incorporated in future studies. Third, mice were
entrained to a 12:12 light/dark cycle during sample collection, so cycling
genesmaybepartially influencedbyexternal stimuli suchas light and food57.
Fourth, samples were collected over a 36-h period, but a 48-h period would
be preferred. This shorter sampling period may be insufficient to show that
rhythms with a period ≥18-h repeat in their entirety. While we may show
that geneswith a24-hperiodbegin to repeat, includingcircadian clockgenes
having their expected 24-h periods, infradian genes particularly need to be
confirmed with a longer sampling period. Finally, while we use immuno-
histochemistry toperformexperimental validationof select cyclingmRNAs,
more extensive validation of cycling mRNAs, miRNAs, and their interac-
tions in their tissue context needs to be performed.

To the best of our knowledge, we provide the first examination of
mRNA andmiRNA rhythmicity and their interactions in themouse cortex,
hypothalamus, and corpus striatum. Our work builds a foundation for the

Fig. 4 | Comparison of pathways enriched in cycling genes across tissues. a Top
pathways that are enriched in all 4 tissues (Pg:SCS < 0.05; 10 ≤ term size ≤ 500).
Intersection size is the number of genes that are both cycling and in a pathway. Recall

is the intersection size divided by the size of a term/pathway. b–e Top pathways
uniquely enriched in their respective tissues (Pg:SCS < 0.05; 10 ≤ term size ≤ 500).
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study of circadian rhythms in the CNS by better understanding the naïve
state, particularly given the contribution of identified cycling genes across
neurological diseases, including Parkinson’s58–60, stroke61, and glioma62,63,
among others.

Methods
Transcriptomics analysis study design & data description
Our curated workflow for transcriptomics data analysis is summarized in
Supplementary Fig. 1 and detailed below. We used SRA-Toolkit v2.10.8 to
download data fromGene ExpressionOmnibus (GEO): GSE15156764,65. As
described by Wang et al.25, wild-type C57BL/6J male were purchased from
the Jackson Lab (JAX:000664). Mice aged 22 weeks were singly housed
within circadian cabinets under a 12:12 light/dark cycle. At 26 weeks, the
cerebral cortex, corpus striatum, hypothalamus, and liver of mice were
harvested every 3-h for 36-h. At each timepoint, two mice were chosen
pseudorandomly from different cabinets. Only mice that were active in the
dark period and had been resting for >15min in the light period were used.
Time 0 represents the beginning of daylight, and 12 is the beginning of
darkness. After tissues were harvested, they were flash-frozen and

transferred to Expression Analysis, Inc. for mRNA and miRNA extraction
and sequencing. There were 2–6 biological replicates for each timepoint,
with the exception that there were no miRNA-seq samples from Zeitgeber
time 15 in the striatum (Supplementary Fig. 17a). Specifically, the following
numbers of samples were used for mRNA-sequencing (mRNA-seq) ana-
lysis: (i) cortex: n = 6/timepoint; (ii) hypothalamus: n = 6/timepoint except
ZT9 n = 5; (iii) striatum: ZT0 = 5, ZT3 = 3, ZT6 = 5, ZT9 = 3, ZT12 = 6,
ZT15 = 2, ZT18 = 4, ZT21 = 6, ZT24 = 4, ZT27 = 5, ZT30 = 6, ZT33 = 6,
ZT36 = 5; (iv) liver: n = 6/timepoint except ZT33 n = 5. The following
number of samples were used for miRNA-seq analysis: (i) cortex: n = 6/
timepoint, (ii) hypothalamus: ZT0, 6, 12, 24-36 n = 6/timepoint, ZT3, 15-21
n = 5/timepoint, ZT9 n = 4; (iii) striatum: ZT0 = 3, ZT3 = 3, ZT6 = 3,
ZT9 = 4, ZT12 = 5, ZT15 = 0, ZT18 = 2, ZT21 = 5, ZT24 = 4, ZT27 = 3,
ZT30 = 5, ZT33 = 5, ZT36 = 4; liver: n = 6/timepoint except ZT33 n = 5.

Transcriptomics data preparation
We evaluated the quality of sequencing reads with FastQC v0.11.9 and
MultiQC v1.1266,67. For mRNA-seq reads, we filtered for base quality with
Trimmomatic v0.36 and aligned reads to the mouse genome (GENCODE

Fig. 5 | Comparison of pathways enriched in cyclingmRNAs across period length
categories (24-h, 12-h, and 28- to 30-h). Top pathways that are uniquely enriched
in the three period categories for each tissue (Pg:SCS < 0.05; 10 ≤ term size ≤ 500).
Intersection size is the number of genes that are both cycling and in a pathway.
Recall is the intersection size divided by the size of a term/pathway.

a, e, h Comparison of pathways within the cerebral cortex. b, i Comparison of
pathways within the hypothalamus. No pathways were unique to the period category
12 ± 3-h. For i, results are not filtered by term size. c, f, j Comparison of pathways
within the corpus striatum. d, g, k Comparison of pathways within the liver.
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release M32) with Hisat2 v2.2.168–70. Gene expression was quantified with
StringTie v2.1.5, and R package IsoformSwitchAnalyzeR v1.18.071,72. Adap-
ted fromRahmanian et al.73 miRNA-seq processing pipeline, we removed 3’
adapters from miRNA reads, filtered for base quality, aligned, and quanti-
fied gene expression using CutAdapt v4.2, Trimmomatic v0.36, and STAR
v2.7.9a68,74,75. Overall and unique alignment rates were calculated to evaluate
performance. One mRNA and one miRNA sample from the striatum were
removed before quantification due to low overall alignment rates (35% and
34.66%, respectively; Supplementary Fig. 18).

With the generated gene count matrixes, we evaluated this experi-
ment’s technical variability by finding the Spearman correlation between
samples from the same tissue and timepoint (Supplementary Fig. 19). Then,
we performed outlier detection and TMM normalization using the R
packages arrayQualityMetrics v3.60.0 and edgeR v4.2.0, respectively76,77.
arrayQualityMetrics uses threemetrics to consider a sample an outlier: 1) its
sumofdistances toother samples, 2) theKolmogorov-Smirnov statistic, and
3) the Hoeffding’s D-statistic. Samples were removed if marked an outlier
before and after normalization, or if multiple metrics marked them an

outlier after normalization. After removing outliers, we re-normalized gene
counts, and outlier detection was repeated. Based on these metrics, we
removed four (cortex), two (hypothalamus),five (striatum), and nine (liver)
samples from the mRNA dataset. One striatum and one liver sample were
removed from the miRNA dataset. We used principal component analysis
on variance stabilizing transformed counts to visualize the clustering of
samples with DESeq2 v1.44.0 (Supplementary Fig. 20)78. Two mRNA
hypothalamus samples appeared to be outliers andwere removed. The final
study design is displayed in Supplementary Fig. 17b. Finally, we considered
genes to be expressed for each tissue if their mean normalized counts per
millionwere≥1. Therewere 18,444 (cortex), 18,712 (hypothalamus), 18,248
(striatum), and 13,514 (liver) mRNA genes remaining. For the miRNA
dataset, there were 459 (cortex), 462 (hypothalamus), 458 (striatum), and
284 (liver) remaining miRNAs.

Identifying rhythmic features
Cycling mRNA and miRNAs were detected using R packages MetaCycle
v1.2.0 and RAIN v1.38.019,20. For MetaCycle, we used the meta2d function

Fig. 6 | Comparison of pathways enriched in cycling miRNAs across period
length categories (24-h, 12-h, and 28- to 30-h). Top pathways that are uniquely
enriched in the 3 period categories for each tissue (Pg:SCS < 0.05; 10 ≤ term size ≤
500). Intersection size is the number of genes that are both cycling and in a
pathway. Recall is the intersection size divided by the size of a term/pathway.

a, d, g Comparison of pathways within the cerebral cortex. b, e, h Comparison of
pathways within the hypothalamus. For e, results are not filtered by term size.
f Comparison of pathways within the corpus striatum. No pathways were unique to
the period category 24 ± 3-h nor 28- to 30-h. c, iComparison of pathways within the
liver. No pathways were unique to the period category 12 ± 3-h.
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with a minimum and maximum period of 24. P-values from the Lomb-
Scargle and Jonckheere-Terpstra-Kendall cycle algorithms were combined
with Fisher’smethod and corrected formultiple testing with the Benjamini-
Hochbergmethod. ForRAIN, weused the rain functionwith theparameters
“period = 17”, “period.delta = 13”, and RAIN’s adaptive Benjamini-
Hochberg multiple testing correction. MetaCycle was also used to run the
ARSER algorithm. For ARSER, one replicate from each timepoint was
randomly selected. We then used the meta2d function with the parameters
“minper = 4”, “maxper = 30”, and “cycMethod = c(‘ARS’).” For a gene with
multiple cycles, the highest amplitude cycle was considered dominant and
further analyzed. Cycling genes had an adjusted P < 0.05. Functional
enrichment analysis of cyclic geneswas performedwithRpackage gprofiler2
v0.2.3, with the g:SCSmultiple testing correctionmethod79,80. The databases
queried with gprofiler2 included Gene Ontology81,82, KEGG83, Reactome84,
WikiPathways85, TRANSFAC86, miRTarBase87, the Human Protein Atlas88,
CORUM89, and Human Phenotype Ontology90. Finally, we found the
overlap between MetaCycle rhythmic genes and proximal/eQTL-mapped
genes corresponding to 236 putative causal single-nucleotide polymorph-
isms that Jones et al.28 previously associatedwith self-reportedchronotype in
humans. The statistical significance of overlaps was tested using hyper-
geometric tests, where significant overlaps would have had a Benjamini-
Hochberg adjusted p-value < 0.05. The background set for all hypergeo-
metric tests was the genes remaining after nonspecific filtering.

Integrating mRNA and miRNA pairwise
To discover relationships between cyclingmRNAs andmiRNAs, we used R
packages lmms v1.3.3 and dynOmics v1.0 to collapse replicates and find the
delayed Pearson correlations between cycling mRNA–miRNA pairs91,92.
After accounting for the predicted delay in log2 expression, significant
associations had a PBH < 0.05. We considered associations with a negative
correlation and time delay ≤0, i.e., decreased mRNA expression after
miRNAexpression, to bepotentialmiRNAdirect targets. These associations
were compared to predicted and/or experimentally confirmed mRNA tar-
gets of cycling miRNAs identified with the R package multiMiR v1.26.093.
MultiMir compiles predicted miRNA-targets from the databases DIANA-
microT-CDS94, E1MMo95, MicroCosm96, miRanda97, miRDB98, PicTar99,
PITA100, andTargetScan101. These resources usedmiRNA–mRNAsequence
complementarity,mRNA–miRNAduplex thermodynamics, and/or species
conservation to identify miRNA targets. Before querying these databases,
the precursor miRNA IDs were converted to their respective mature ver-
sions with R packagemiRBaseConverter v1.11.1102.

Identifying co-expression networks of mRNA and miRNA
We used weighted gene co-expression network analysis (R package
WGCNA v1.72-5) to find interactions between groups of co-expressed
mRNA and miRNAs103. We calculated the pairwise Pearson correlations
between the log2-transformed gene counts for each tissue. We calculated
gene similarities by adding 1 to each correlation and dividing by 2, thus
creating a signed network. Using various soft-thresholding powers, we
created weighted adjacencymatrixes with scale-free topology fits (R2) > 0.8.
mRNA powers: 16 (cortex), 16 (hypothalamus), 18 (striatum), 16 (liver).
miRNApowers: 4 (cortex), 5 (hypothalamus), 6 (striatum), and9 (liver).We
then calculated topological overlapmatrices (TOM). Based on dissimilarity
(1-TOM), genes were grouped into modules by hierarchical clustering with
the dynamic tree-cut algorithm.

Once the networks were constructed, we found each module’s hub
gene, which is the gene with the highest connectivity within a module. We
also used a hypergeometric test to determine the enrichment of cycling
genes, both from MetaCycle and RAIN. We then used the Spearman cor-
relation betweenmRNAandmiRNA “cycling”modules’ eigengenes to find
potential mRNA–miRNA relationships, with P-values adjusted using the
Benjamin-Hochberg method. We also used a hypergeometric test to
determine the enrichment of brain cell types in cyclingmodules. Yao et al.104

single-cell sequencing data from the mouse cortex and hippocampus pro-
vided the gene-expression profiles of cell types. For each cell type cluster
(n = 387), we considered a marker gene identified by Yao et al.104 to be
expressed if its trimmed mean expression is greater than zero. We then
found the overlap between genes expressed in a cell type cluster and a
module. For visualization, cell type clusters were collapsed into higher-level
neighborhoods (MGE, DR/SUB/CA, CGE, L2/3 IT, L4/5/6 IT Car 3, NP/
CT/L6b, PT, andOther). Cell types in the “Other”neighborhood are instead
collapsed into their respective subclasses (Meis2, Oligo, CR, Astro, SMC-
Peri,Micro-PVM, Endo, andVLMC). The grey60module in the cortexwas
visualized with Cytoscape 3.10.0105. Finally, we performed pathway analysis
of modules with R package gprofiler2, as described above.

Animals for immunohistochemistry
All work was performed using 20- to 30-week-old C57BL/6J male mice,
matching the animals’ age in the miRNA/mRNA-seq datasets. The insti-
tutional animal care and use committees ofQueen’sUniversity approved all
animal care and procedures (Protocol # 2023–2428) following all guidelines
of the Canadian Council on Animal Care. We have complied with all
relevant ethical regulations for animal use.
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Immunohistochemistry
Animalswere transcardially perfusedwith phosphate-buffered saline (PBS),
followed by 4% paraformaldehyde. The brain was removed and placed into
30% sucrose in PBS for 24-h, embedded in Tissue TEK OCT (Fisher Sci-
entific) and frozen at –80 °C. 16 μm sections were collected using a Leica
CM1950 cryostat (Leica). Sections were blocked with 4% BSA (Sigma-
Aldrich) and 0.3% Triton X-100 (BioShop) in PBS for 1-h at room tem-
perature and incubated overnight at 4 °C with primary antibodies. Primary
antibodies for proteins of interest were anti-IL-33 (1:50, cat.no.AF3626,
R&D Systems), anti-AdipoR2 (1:200, cat.no. BS-0611R, Bioss), anti-FZD4
(1:200, cat.no. SAB4503265, Sigma-Aldrich), anti-EIF1B(1:100, cat.no.
ABX326521, Abbexa Ltd), anti-LRRK2 (1:200,cat.no.ab133474, Abcam),
anti-SPHK2(1:200, cat.no.17096-1-AP, Proteintech), and anti-Transferrin
(1:50, cat.no. ZRB1225, Sigma-Aldrich). Formarkers of neurons, microglia,

astrocytes, and oligodendrocytes, anti-NeuN (1:200, cat.no MAB377,
Sigma-Aldrich), anti-Iba1 (1:500, cat.no. 019-19741, Wako; 1:500 cat.no.
234 009, Synaptic Systems), anti-GFAP (1:1000, cat.no. 13-0300, Invitro-
gen;1:1000), anti-Olig2 (1:250, cat.no. MABN50, Sigma Aldrich). After
washing, sections were incubated with either Alexa Fluor 488, 594, or 647
conjugated secondary antibodies (1:500, Invitrogen) overnight at 4 °C.
Secondary antibody-only controls were used to confirm the specificity of
primary antibodies (Supplementary Fig. 21). The slidesweremountedusing
Prolong™ Diamond Antifade Mountant with DAPI (Life Technologies).
Randomization was not necessary and thus not performed.

Image analysis
Images were captured using an Eclipse Ti2microscope (Nikon) with NIS-
Elements AR (Nikon). Five ×40 images were captured in the brain region

Fig. 8 | Network analysis and enrichment of cycling genes. Overlap between gene
modules and cycling genes. Intersection size is the number of genes that are both
cycling and in amodule. Recall is the intersection size divided by the total number of
cycling genes considered. Datapoints are colored by the –log10(PPH) of cycling gene
enrichment in a module. a, b mRNA modules enriched with cycling genes

(PBH < 0.05). c, dmiRNAmodules that contain at least one cycling gene. a, cAnalysis
of MetaCycle cycling genes in modules. b, d Analysis of RAIN cycling genes in
modules.Modules that occur in bothMetaCycle andRAIN results are emphasized by
bold red text.
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of interest (ROI) for each animal, and for each protein and CNS cell
marker staining combination. ImageJ (NIH) was used to quantify the
fluorescence intensity of each protein within the boundaries of each CNS
cell body. Multichannel images were split into single channels, and then
channels containing CNS cell markers were thresholded to only contain
fluorescence signals within the cell body. The thresholded image was
turned into a selection, which created a ROI around the cells. The channel
containing the target protein was converted to a 16 bit image so that pixel
ranges were consistent, and the mean gray value of the image was mea-
sured. Then, the ROI’s were superimposed onto the channel, and the
mean gray value of the ROIwasmeasured. A circular ROIwith a diameter
of 20 µm (area 316.204 µm2) was created and placed in a region of the
image without target protein signal to measure background fluorescence.
To calculate fluorescence intensity, the mean background fluorescence
was subtracted from themean fluorescence intensity of the CNS cell ROI.

The fluorescence intensity for each image was averaged together. The
immunohistochemistry investigator needed to know the site and time
point for data collection, but they were blinded to the time of data col-
lection for analysis.

Statistics and reproducibility
Unless otherwise described, transcriptomics data analyses were conducted
in R v4.4.0106. Immunochemistry analyses used Graphpad Prism (v10,
Graphpad Software, Boston, USA). Analysis of variance (ANOVA) was
used to compare protein fluorescence data across timepoints and cell types,
with significance thresholds set atP < 0.05, using thepost hocTukey test and
Holm-Sídakmultiple comparisons test.Asdescribed above, transcriptomics
had 2–6mice per timepoint and tissue, except for zeromiRNA-seq samples
from ZT15 in the corpus striatum (Supplementary Fig. 17). Immunohis-
tochemistry had four mice per timepoint and tissue.

Fig. 9 | Enrichment of cell-type marker genes in cycling mRNA modules. a Cell
type clusters (n = 387) are collapsed into previously defined neighborhoods (MGE,
DR/SUB/CA, CGE, L2/3 IT, L4/5/6 IT Car 3, NP/CT/L6b, PT, and Other). The
“Other” neighborhood clusters were collapsed into their respective subclasses
(Meis2, Oligo, CR, Astro, SMC-Peri, Micro-PVM, Endo, and VLMC). RAIN cycling
mRNA modules enriched in cell-type marker genes and their respective cell-type
subclasses are shown (PBH < 0.05). The size of datapoints represents the mean
number of genes that are both a cell subclassmarker gene and in amodule, i.e., mean

intersection size. Datapoints are colored by the mean −log10(PPH) of a cell type
subclass’s marker genes enrichment in a cycling module. b Pathways enriched in the
cortical grey60 module (Pg:SCS < 0.05; 10 ≤ term size ≤ 500). c mRNAs with an
adjacency ≥0.03 are visualized (n = 180 of 290). mRNAs (circle nodes) are arranged
based on co-expression adjacency (grey edges). Nodes of cycling genes are colored by
period category. If a gene is not cycling, its node is colored grey. The hub gene has a
diamond node. Genes that underwent immunohistochemistry analysis, Trf and Il33,
have their nodes outlined in black and labels bolded.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Bulk sequencing data are available at GSE151567. Cycling genes and
mRNA–miRNA pairs can be interactively explored at https://www.
ghasemloulab.ca/chronoCNS. All other data supporting this study’s find-
ings are available from the corresponding authors upon reasonable request.

Code availability
No custom code was used to generate or process the data. However, scripts
used to analyze data and generatefigures are available at https://github.com/
ComputationalGenomicsLaboratory/chronoCNS.
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