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Changes in cortical beta power predict
motor control flexibility, not vigor

Check for updates
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Nathalie George 2,4,5 & Camille Jeunet-Kelway1,5

The amplitude of beta-band activity (β power; 13-30 Hz) over motor cortical regions is used to assess
anddecodemovement in clinical settings andbrain-computer interfaces, as βpower is often assumed
to predict the strength of the brain’s motor output, or “vigor”. However, recent conflicting evidence
challenges this assumption and underscores the need to clarify the relationship between β power and
movement. In this study, sixty participants were trained to self-regulate β power using
electroencephalography-based neurofeedback before performing different motor tasks. Results
show thatβpowermodulations can impact differentmotor variables, or the same variables in opposite
directions, depending on task constraints. Importantly, downregulation of β power is associated with
better task performance regardless of whether performance implied increasing or decreasing motor
vigor. These findings demonstrate that β power should be interpreted as ameasure ofmotor flexibility,
which underlies adaptation to environmental constraints, rather than vigor.

Movement is associated with a decrease in the power of the brain electrical
signal in the beta frequency band (β; 13–30Hz), which can be detected non-
invasively with electroencephalography (EEG) overmotor cortical regions1.
This decrease in β power has long been thought to reflect the activation of
motor cortical neurons2. It also occurs without actual movement during
motor imagery, though in an attenuated way3. Thus, β power is widely used
to decode movement-related activity during motor imagery in the field of
brain-computer interfaces (BCIs)4. In addition, β power has been the target
of numerous non-invasive and invasive neurostimulation studies aiming to
restore motor function in several motor disorders, such as Parkinson’s
disease5–7 and stroke8,9. However, these studies provided mixed evidence
regarding the efficacy ofmodulating β power on improvingmotor function,
probably due to a poor understanding of the precise influence of β power on
movement10–13.

From an electrophysiological perspective, EEG spectral power is
influenced by the degree of spatial and temporal synchrony in local
activation of cortical neurons14. The extent of neuronal synchronization
across different frequency bands is thought to underlie distinct functions.
Previous evidence suggested thatβ power is associatedwith the strength of
motor output or movement “vigor”15–17. This hypothesis is supported by
non-invasive neurostimulation studies that showed significant decreases
in movement speed18 and force19 when driving the activity of motor
cortical neurons at a β rhythm. Moreover, recent studies showed that

downregulation of β power with neurofeedback (NF), which consists of
providing real-time feedback of brain activity20, can speed up movement
initiation21–23. According to this view, reducing β power leads to increased
movement vigor. Yet, some studies failed to find significant correlations
between changes inβpower and reaction time (RT)16,24, or even tofind any
significant difference inβpower betweenmovements thatwereperformed
at very different speeds and forces10,25–27. These inconsistent findings led to
an alternative hypothesis, according to which the impact of β power on
motor function should be interpreted in terms of both efferent and
afferent signal processing within motor cortical regions28,29. Indeed,
decreasing β synchronization is thought to facilitate the processing of
novel incoming inputs30,31. Hence, downregulation of β power could foster
updating of the motor command and, thereby, improve adaptation to
environmental constraints or motor “flexibility”32,33. Such an assumption
may reconcile the inconsistent findings mentioned above. If β power
affects motor flexibility, one may expect a significant association between
β power and RT only in tasks in which participants are asked to initiate
their movements as fast as possible. Furthermore, according to this view,
downregulation of β power might not only speed upmovement initiation
and execution, as formerly demonstrated21–23,34, but it may also slow down
movements if this leads to better task performance. In other words,
downregulation of β power may result in higher movement vigor (i.e.,
stronger/faster movements) only when it concurs with task constraints
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and allow better task performance. To our knowledge, such a hypothesis
has not been properly tested yet.

The present study aimed to clarify the impact ofmotor corticalβpower
modulation on movement execution by assessing whether changes in β
power rather predict motor vigor or flexibility. To do so, a total of 60
participants were trained to down- and up-regulate their motor cortical β
power through visual NF. In a first experiment (EXP1), NFwas followed by
a force task, in order to determine if modulations of β power specifically
impact themotor variable involved in taskperformance (i.e., force) or rather
allmotor variables related tomovement vigor (i.e., force, RT andmovement
time (MT)). In a second experiment (EXP2), NF was followed by a speed
task, in which participants were asked tomove either at a fast or a slow pace.
The goal of EXP2 was to determine if the direction of the relationship
betweenβpower andmovement speed varies according to speed instruction
(motor flexibility hypothesis) or if it consistently remains negative (motor
vigor hypothesis).

Results
Atotal of 60participantswere included inEXP1 (n = 30) andEXP2 (n = 30).
Trials of EXP1 andEXP2 included anNFphase, followedby amotor task. In
EXP1, participants executed an isometric motor task in which they were

asked to squeeze a dynamometer with their right handwith a force superior
or equal to 70% of their maximal force and to maintain it as long as the go
cue was on (~ 5 s, Fig. 1B). In EXP2, participants performed a dynamic
motor task consisting of 4 repetitions of openingof the right hand, either at a
fast (Fast), slow (Slow) or Comfortable (Comf) pace, determined on an
individual basis. In EXP1 and EXP2, NF was designed in order to enforce
downregulation of β power (β-down) in some blocks, and upregulation of β
power (β-up) in other blocks. Blocks of passive control condition (Sham-
Passive) were also included (see Fig. 1 and Methods for details).

NF condition (EXP1 and EXP2) and speed instruction (EXP2)
significantly impacted motor cortical β power
The first step of data analysis consisted in determining if the NF paradigm
used in EXP1 and EXP2 induced significant changes in motor cortical β
power. Cluster-based permutation tests showed significant reduction of β
power over a left central cluster of electrodes in β-down as compared to β-
up, centered on C3 electrode in EXP1 (Fig. 2A, top panel) and D19 (C3
equivalent in the ABCD system) electrode in EXP2 (Fig. 2A, bottom panel).
These electrodes were the ones used for NF computation (see Methods).
Thus, NF condition (β-down versus -up) had a significant influence on
motor cortical β power. There was not any significant cluster either for the

Fig. 1 | Experimental protocol of EXP1 and EXP2. A Left, schematic illustration of
NF. In EXP1 and EXP2, β power of the signal recorded over the left motor cortex
with EEG was computed and represented as a virtual gauge. Participants were asked
to try to fill up the gauge for as long as it was presented on the screen, which required
them to self-regulate their β power. Right, illustration of the NF conditions that were
implemented in EXP1 and EXP2. In β-down (blue) and β-up (orange), the level of
the gauge increased as participants respectively decreased and increased their motor
cortical β power in regard to baseline values that were predetermined individually.
Participants were encouraged to use motor imagery and relaxation/selective atten-
tion to facilitate self-regulation of their motor cortical β power in β-down and β-up,
respectively. In Sham-Passive (gray), the level of the gauge varied according to β

power from prerecordings and participants were asked not to try controlling the
level of the gauge.BTop to bottom: name, duration, and illustration of visual stimuli
that were presented on screen during each phase of a trial in EXP1 (top) and EXP2
(bottom). C Presentation order of blocks of trials in EXP1 (first row) and EXP2
(second and third rows). Blocks of trials are illustrated as colored rectangles in their
order of presentation during the experiment, starting first with a block of famil-
iarization trials. N refers to the number of trials included in each block. The color of
the rectangles indicates the experimental condition that each block of trials pertains
to (see legends on the right). The bidirectional black arrows indicate conditions that
were counterbalanced across subjects (see “Methods” section for details).
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comparison of β-down and Sham-Passive, nor for the comparison of β-up
and Sham-Passive. Pooling data frombothEXP1 andEXP2, anANOVAon
β power from C3/D19 electrode confirmed this result: NF conditions sig-
nificantly impacted β power (F(1.6,88.6) = 4.7, p = 0.019), with significantly
lower β power in β-down in comparison to β-up (W(57) = 510, p = 0.028,
r = –0.40). Themean β power in Sham-Passivewas intermediate between β-
down and β-up and did not significantly differ from mean β power in β-
down (t(57) = -1.6, p = 0.159, d = –0.22) and β-up (W(57) = 699, p = 0.227,
r = 0.18) (Fig. 2B).Within-subject comparisonsofβpower inβ-downversus
β-up indicated that onaverage 58%ofparticipants (60.7%inEXP1, 56.7% in
EXP2) downregulated their β power in β-down relative to β-upwith amean
effect size (Cohen’s d) of –1.21 (SD = 0.51).More precisely, in EXP1, 60.7%,
17.9%, and 21.4% of participants were classified as responders, anti-
responders, and non-responders, respectively (see Methods for criteria for
classification). In EXP2, 56.7%, 30%, and 13.3% of participants were clas-
sified as responders, anti-responders, and non-responders, respectively.
Further analysis of online measurements of β power during NF trials con-
firmed that participants overall decreased their β power in β-down as
compared to β-up, and that they did so from the first block of each
experiment (Supplementary Results, section 1; Fig. S1). Baseline β power
was significantly correlated with β power downregulation across partici-
pants in β-down, but not with overall NF responsiveness (difference in β
power between β-down and β-up) (Supplementary Results, section 2;
Fig. S2). Inter-individual variability in modulations of β power between NF
conditions was considered in the following analyses and used as a leverage

for dissociating the respective effects of β power modulation and NF
instruction on motor variables.

The second step of the analyses consisted in assessing the effect of
speed instruction on motor cortical β power in EXP2, since β power has
been previously linked to movement speed11,16,18,26. Speed instruction
(Fast, Slow, Comf) significantly influenced β power (F(1.6,47.2) = 6.6,
p = 0.005). β power was higher in Comf in comparison to both Fast
(t(29) = –2.5, p = 0.025, d = –0.46) and Slow (t(29) = –3.3, p = 0.008,
d = –0.60) conditions, but no significant difference in β power was found
between Fast and Slow conditions (t(29) = 0.3, p = 0.734, d = 0.06)
(Fig. 2C). Speed instruction was also included as factor in the following
analyses, which aimed at studying the relationship between β power
changes and motor variables.

Modulations of motor cortical β power specifically impacted
motor variables that determined task performance (EXP1)
Most NF studies targeting motor cortical β power reported a facilitatory
effect of β power downregulation on RT and MT21–23,34, suggesting that
reducing β power may increase movement vigor and, therefore, effort
exertion. Yet, whether the reported boosting effect of downregulation of β
power on RT and MT reflects an overall increase in movement vigor or
rather an increase in motor flexibility, resulting in better task performance,
remains unclear. In order to address this question, we designed amotor task
where performance exclusively relied on movement force (EXP1, see
“Methods”).

Fig. 2 | NF condition and speed instruction significantly impactedmotor cortical
β power. ATopographicalmaps ofmean β power difference between β-down and β-
up at 4 time instants before go cue onset in EXP1 (top panel) and in EXP2 (bottom
panel). The overall mean of the difference across subjects is represented for each
experiment. Cold (blue) and warm (yellow to orange) colors illustrate, respectively a

decrease and an increase in β power in β-down as compared to β-up. Electrodes
showing a significant difference in β power in β-down versus β-up are highlighted in
white.B,CDistributions of subject-level averages of percentage of change in β power
from baseline across NF conditions (EXP1 and EXP2 data pooled) and speed
instruction (EXP2 data). **p < 0.01, *p < 0.05, n.s. not significant.
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As a preliminary, we tested the correlation among motor variables.
Between-subject correlation analyses confirmed that themean force exerted
during the motor task of EXP1 was neither significantly correlated with RT
(r = 0.02, p = 0.938), nor with MT (r = 0.06, p = 0.758). RT was negatively
correlated with MT (r = –0.59, p = 0.001). In this context, if changes in β
power affect movement vigor, one should expect significant linear asso-
ciations between β power on one hand and force, RT, andMT on the other
hand. Alternatively, if changes in β power affect motor flexibility, then one
should expect a significant association between β power and force, but not
between β power and RT or MT, as those variables were irrelevant to task
performance and decorrelated from movement force (Fig. 3A, D, and G).

Linear mixed-effect (LME) models were conducted to determine if β
power significantly predicted each motor variable (force, RT, and MT)
across trials and participants. NF instruction was included in these LME
models to assess the respective effects ofNF instructionandβpowerchanges
onmotor variables. This approach enabled the dissociation of the influence
of the differentmental strategies thatwere applied acrossNFconditions (i.e.,
motor imagery, relaxation/selective attention, and passive) from the impact
of actual changes inβpowerduringNF trials onmotor variables. Participant

ID was included as random factor and a full random effect structure was
adopted to account for between-subject variability in the effects of interest
(see Method for details). Separate LME models were conducted on mean
force, RT andMT. The frequential selectivity of brain-behavior associations
was further examined by running the same LMEmodels but with power in
1Hz bins from 8 to 35Hz instead of β power. Only the first 10 trials of each
block of active NF trials (β-down and β-up, n = 20 trials per block) were
included in LMEmodels to ensure adequate comparison ofmotor variables
across NF conditions since blocks of Sham-Passive trials comprised only 10
trials and mean force significantly decreased throughout trials due to phy-
sical fatigue (Supplementary Results, section 3; Fig. S3; Table S1).

Results from LME models showed a significant negative relationship
between β power and movement force (F(1,20.6) = 8.1, p = 0.010) (Fig. 3B,
left). No significant effect of NF instruction was found on movement force
(F(2,22.9) = 1.9, p = 0.178), nor any significant interaction between β power
and NF instruction (F(2,12.1) = 1.4, p = 0.282) (Fig. 3B, bottom right).
Frequential selectivity analyses further demonstrated a significant negative
linear association between spectral power and movement force between 8
and 17Hz (mean slope estimate = –0.420, min = –0.540, max = –0.247)

Fig. 3 | Modulations of motor cortical β power specifically impacted motor
variables that determined task performance in EXP1. A, D, G Schematic illus-
tration of expected results according to the motor vigor (left) and motor flexibility
(right) hypotheses. Blue and gray curves indicate expected significant and non-
significant associations, respectively. B, E, H Left, linear regression lines of each
motor variable tested (B: Force, E: RT, H: MT) on β power, estimated from LME
models. Lines depicting results in β-down, β-up and Sham-Passive are respectively
represented in blue, orange, and gray. The main effect of β power (i.e., averaged
across NF conditions) on motor variables is depicted as a black line. Shaded areas
indicate 95% confidence intervals. Slope estimates of each line and their respective
95% confidence intervals are written on top of each plot, with p value from one-
sample t test of mean slope against zero, written in bold when significant. Top right,

distribution of single trial values of each motor variable. Mean (μ) and standard
deviations (σ) of distributions are written on each panel in magenta for corre-
spondence between z-scores used in the models and actual values. Bottom right,
distributions of subject-level averages of motor variables across NF conditions (β-
down: blue, β-up: orange, Sham-Passive: gray). *p < 0.05, n.s. = not significant.C,F, I
Slope estimates of the linear regressions of motor variables (C: Force, F: RT, I: MT)
on signal power at each 1 Hz frequency band between 8 and 35 Hz. In all plots,
shaded areas illustrate 95% confidence intervals. Confidence intervals that do not
include zero correspond to statistically significant p values (p < 0.05), while those
that include zero are not significant. Slope estimates that significantly differed from
zero are further highlighted with an asterisk.
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(Fig. 3C).Converting z-scores back into actual values (Fig. 3B, top right), this
model predicted that each 1% increase in force was associated with a 8.1%
decrease in low β power between 8 and 17Hz.

In contrast, RT was significantly influenced by NF instruction
(F(2,23.9) = 5.9, p= 0.008) (Fig. 3E, bottom right), but not by β power
(F(1,24.6) = 2.4, p = 0.136) (Fig. 3E, left). RT was significantly increased in β-
up in comparison to β-down (t(26.5) = 2.5, p = 0.030) and Sham-Passive
(t(26.6) = 2.6, p = 0.049), whereas no significant difference in RT was found
between β-down and Sham-Passive (t(26.5) = –0.5, p= 0.637). There was
also a significant interaction between β power and NF instruction
(F(2,43.9) = 3.2, p= 0.049). It reflected a negative linear association between β
power and RT in β-up (slope parameter estimate = –0.106, 95% confidence
interval = [–0.205; –0.007]), but this effect did not survive FDR correction
(t(17.7) = –2.3, p= 0.110). No significant association was found between β
power and RT in β-down and Sham-Passive ( | t | <0.3, p > 0.885). The lack
of significant effect of β power on RT was not explained by the selected
frequency band, as no significant association was found in frequential
selectivity analyses between 8 and 35Hz (Fig. 3F). Furthermore, althoughNF
duration significantly impacted RT, including NF duration as fixed factor in
the model did not modify the main findings, with a significant main effect of
NF instruction but not of β power on RT (Supplementary Results, Section 4).

Finally, there was not any significant effect of β power, NF instruction,
or interaction between β power and NF instruction on MT (F < 0.7,
p > 0.541) (Fig. 3H). The analysis of frequential selectivity of the association
between spectral power andMT showed a local negative linear relationship
at 15and16Hz (Fig. 3I). Themeanslope estimate for this effect (–0.125)was
less pronounced than for the association found between low β (8–17Hz)
power and force (–0.420).

Additional analyses using identical LME models were performed to
assess whether averaging β power over the entire NF presentation period
(2–10 s) could account for the absence of a significant relationship between
β power and both RT andMT. To this end, β power was averaged over the
final 500ms preceding the go cue and included as a fixed factor in an LME
model with the same structure (i.e., same predictors and full random-effects
structure) as the main analyses. Consistent with the results using β power
averaged over the entire NF period, β power averaged over the last 500ms
before the go cue was not significantly associated with RT (F(1, 35.4) = 0.8,
p = 0.366) or MT (F(1, 24.4) = 1.8, p = 0.191).

Overall, in EXP1, downregulation of β power was associated with
increased force, without significantly affectingRTandMT.The relationship
between β power and force was the strongest in the low β band (8–17Hz).
These findings support the view that motor cortical β power is associated
with motor flexibility rather than with motor vigor. However, it may be
argued that these two processes were not fully dissociated in EXP1 asmotor
flexibility relied on increased motor vigor in the form of higher force.
Additional analyses indicated that mean and peak rates of force develop-
ment, whichmay representmore precisemeasures ofmovement vigor than
RTandMTinEXP1,were significantly influencedbyNF instructionbutnot
by actual changes in β power, similarly to RT (Supplementary Results,
Section 5; Fig. S4). Still, we designed a second task (EXP2) dissociating the
impactofmodulations ofβpower onmotorflexibility andvigorby assessing
the directionality of the relationship between β power and MT.

The direction of the relationship between β power and
performance-related motor variables depended on task
instruction (EXP2)
In EXP2, themotor task consisted in hand opening and closing at either fast
or slow pace in separate trials (see “Methods”). In this context, if β power
influences movement vigor, then downregulation of β power should speed
up movements, reducing movement time (MT), regardless of the speed
instruction of the motor task. In contrast, if β power impacts motor flex-
ibility, then downregulation of β power should lead to shorter MT when
instructed tomove fast and, conversely, longerMTwhen instructed tomove
slowly.Hence, EXP2paradigmaimed to furtherdisentangle themotor vigor
and flexibility hypothesis by confronting their opposite predictions in the

slow movement condition (i.e., negative vs positive linear relationship
between β power and MT according to motor vigor and motor flexibility
hypotheses, respectively) (Fig. 4A, D, G).

The motor variables in EXP2 were MT, RT, and mean absolute
acceleration ( | Acc | ). Indeed, as EXP2was a dynamicmotor task, |Acc|was
computed as ameasure of vigor, in lieu of force (used in the isometric task of
EXP1), considering that |Acc| has been used previously to measure motor
effort in speed tasks35. The analysis of the correlation amongmotor variables
showed that MT was significantly positively correlated with RT in Slow
(r = 0.42, p = 0.021), but not in Fast movement conditions (r = 0.32,
p = 0.085). MT and |Acc| were strongly negatively correlated in Fast (r =
-0.90, p = 10–11) and, to a smaller extent, in Slow (r = –0.38, p = 0.040).
Correlations between RT and |Acc| in Fast and Slow were not statistically
significant (Fast: r = –0.36, p = 0.052; Slow: r = –0.29, p = 0.115). Notably,
these correlationswere expected in the context of this speed task anddid not
undermine testing EXP2 hypotheses. Indeed, unlike EXP1, the objective of
EXP2 was not to determine if β power specifically predicts one motor
variable, but rather the impact of task instruction (Fast vs Slow) on the
relationship between β power and a performance-related variable (MT).

As for EXP1, we used linear mixed-effect (LME) models to test the
respective effects of β power changes and NF instruction on each motor
variable. Speed instruction (Fast, Slow) was also included as fixed-effect
factor in the models. Separate LME models were conducted on |Acc | , RT,
and MT. The frequential selectivity of brain-behavior associations was
further examined by running the same LMEmodels but with power in 1 Hz
bins from 8 to 35Hz.

LMEmodels confirmed that |Acc| was significantly impacted by speed
instruction (F(1,29.0) = 53.4, p = 10–8). There was not any significant main
effect of either β power (F(1,24.1) = 3.5, p = 0.073) or NF instruction
(F(2,27.2) = 1.0, p = 0.380), and the interaction between speed instruction
and β power was not significant (F(1,26.3) = 0.9, p = 0.340) (Fig. 4B). The
frequential selectivity analysis showedanegative linear relationship between
|Acc| and β power between 16 and 24Hz in Fast (mean slope = -0.108,
min = –0.098,max = –0.120) (Fig. 4C).No significant associationwas found
between |Acc| and the power of any of the tested frequency bands in Slow.

Likewise, RT was significantly impacted by speed instruction
(F(1,28.1) = 221.2, p = 10–14), but not by β power and NF instruction
(F < 1.5, p > 0.261) (Fig. 4E). There was a significant interaction between β
power and speed instruction (F(1,20.3) = 4.8, p = 0.041). However, the
analysis of simple effects of β power according to speed instruction did not
show any significant linear association between RT and β power either in
Fast or in Slow (Fig. 4E). In Fast, a positive linear relationship was found
between RT and power between 29 and 35Hz (mean slope = 0.150, min =
0.122,max = 0.179) (Fig. 4D).Nosignificant associationwas foundbetween
RT and signal power in any of the frequency bands tested in Slow. Including
NF duration as fixed factor in the model did not modify the main findings,
with a significantmain effect of speed instruction but not of βpower andNF
instruction on RT (Supplementary Results, Section 4).

Results from the LME model confirmed that MT was significantly
influenced by speed instruction (F(1,28.9) = 563.6, p < 10–16). There was not
any significant main effect of either β power or NF instruction (F < 2.1,
p > 0.165). Importantly, a significant interactionwas foundbetweenβpower
and speed instruction (F(1,27.9) = 8.1, p = 0.008). Post-hoc analysis showed
that the direction of the relationship between β power andMTwas reversed
depending on the speed instruction: it was positive in Fast (t(23.1) = 2.2,
p = 0.041) and negative in Slow (t(28.3) = –2.4, p = 0.022) (Fig. 4H). Fre-
quential selectivity analyses showed that, in Fast, signal powerwas positively
associated withMT in the low alpha band (8–10Hz), as well as in the low β
band (13–18Hz) (mean slope = 0.119, min = 0.098, max = 0.141) (Fig. 4I).
Based on this model, each 15.38% decrease in low alpha/low β power pre-
dicted a 10ms decrease in MT in Fast. In Slow, there was a negative linear
relationship between MT and signal power between 12 and 18Hz (mean
slope = –0.156, min = –0.121, max = –0.181) (Fig. 4I). Based on this model,
each 7.13% decrease in low β power predicted a 10ms increase in MT
in Slow.
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As for EXP1, additional analyses using identical LME models were
performed to assess whether averaging β power over the entire NF pre-
sentation period (2–10 s) could account for the absence of a significant
relationship between β power and RT. In line with above results, β power
averaged over the last 500ms before the go cue was not significantly asso-
ciated with RT (F(1,47.2) = 0.4, p = 0.555), and no significant interaction
was found between β power averaged over the last 500ms before the go cue
and speed instructiononRT (F(1,26.5) = 0.8, p = 0.385). Similar resultswere
found for MT, as β power averaged over the last 500ms before the go cue
was also not significantly associated with MT (F(1,26.5) = 1.3, p = 0.263),
and the interaction effect between β power and speed instruction was not
significant (F(1,27.7) = 2.8, p = 0.107). The latter suggests that the reversed
relationship found between β power andMT according to speed instruction
relied on sustained regulation of β power.

Additional analyses were conducted to assess the respective con-
tributions of movement amplitude and speed (estimated as |Acc | ) to
movement time (MT). Only |Acc | , and not movement amplitude, was
significantly affected by speed instruction and accounted for a significant
portion of the variance in MT (Supplementary Results, section 6; Fig. S5).

In sum, in EXP2, modulations of β power impacted MT in a task
instruction-dependent manner: reducing β power resulted in faster move-
ments when participants were instructed to move fast and, conversely, it

resulted in slower movements when participants were instructed to move
slowly. The association between motor cortical power and MT was the
strongest in the low β band, both in Fast and Slow conditions.

Discussion
The aim of the present study was to dissociate the impact of changes in
motor cortical βpower onmovement vigor andmotorflexibility, in order to
clarify howmotor cortical β power relates to movement. This was achieved
through two experiments (EXP1 and EXP2) combining an NF task to train
self-regulationofmotor corticalβpowerwith amotor task, in order to assess
the effects of β power down- and up-regulation on movement execution.
EXP1 findings showed that modulations of β power were significantly
associated with changes in force, but not with changes in RT andMT, in the
context of a force task. More precisely, reducing β power resulted in higher
force exertion. Therefore, changes in β power appeared to specifically
impact themotor variable thatwas involved in taskperformance. This result
was replicated andextended inEXP2, inwhichmodulationsofβpowerwere
significantly associated withMT in the context of a speed task. EXP2 results
highlighted that the direction of the relationship between β power and MT
depended on task instruction: β power downregulation was associated with
fastermovement (i.e., decreasedMT)when instructed tomove at a fast pace
vs slower movement (i.e., increasedMT) when instructed to move at a slow

Fig. 4 | The direction of the relationship between β power and performance-
related motor variables was reversed depending on task instruction in EXP2.
A,D,G Schematic illustration of expected results according to the motor vigor (left)
and motor flexibility (right) hypotheses. Red and cyan curves indicate expected
linear associations in Fast and Slow, respectively. B, E,H Left, linear regression lines
from LMEmodels between β power and eachmotor variable tested (B: |Acc | , E: RT,
H: MT) and NF condition (blue: β-down, orange: β-up, gray: Sham-Passive) and
averaged across NF conditions in Fast (left plot, red line) and Slow (right plot, cyan
line). Slope values of each line and their respective 95% confidence intervals are
written on top of each plot, with p-value fromone-sample t test ofmean slope against

zero. Right, distribution of single trial values of each motor variable. Fast trials are
represented in red and Slow trials in cyan. Mean (μ) and standard deviations (σ) of
distributions are written on the right of each panel in Fast (red) and Slow (cyan)
separately.C, F, I Slope estimates of the association found between signal power and
motor variables in LME models at each 1 Hz frequency band between 8 and 35 Hz.
Red and cyan curves represent results in Fast and Slow, respectively. In all plots,
shaded areas illustrate 95% confidence intervals. Confidence intervals that do not
include zero correspond to statistically significant p values (p < 0.05), while those
that include zero are not significant.
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pace. Finally, no significant influence of NF instructionwas found on any of
the motor variables tested except for RT in EXP1. In both experiments, the
association between β power and performance-related variables was the
strongest in the low β band.

Overall, the present findings show that changes in β power do not
appear to specifically impact one motor variable, but rather any motor
variable that is involved in task performance. While most NF studies
reported a shortening of RT accompanying NF-induced decreases in β
power21–23, results of EXP1 and EXP2, gathered on a total of 60 participants,
did not show any significant effect of modulations of β power on RT.
Nevertheless, a significant linear association was found between β power
and force in the force taskofEXP1, aswell as betweenβpowerandMTin the
speed task of EXP2. These associations appeared task-specific as there was
not any significant linear association between βpower andMT inEXP1, nor
between β power and |Acc | -which can be used as ameasure ofmotor effort
in speed tasks35- in EXP2. It is only when breaking down β power into 1 Hz
bins ranging from 8 to 35Hz that a significant negative association between
15 and 16Hz power andMT in EXP1 was found, as well as between 16 and
24Hz power and |Acc| in Fast in EXP2. Still, the former was considerably
weaker than the association found between low β power and force (slope
estimatewas almost 4 times lower), and the latterwas likely explained by the
strong correlation (r = -0.90) found between MT and |Acc| in Fast.

At first glance, the significant negative relationship found between is β
power and force in EXP1 could be interpreted as downregulation of motor
cortical β power boosting activation of motor regions, which has been
proposed to increase movement “vigor” and effort exertion, resulting in
faster and stronger movements15–17. However, both EXP1 and EXP2 find-
ings invalidate such a hypothesis. Indeed, in EXP1, RT and MT were
unaffected by changes in β power, showing that downregulation of β power
was associated with stronger, but not faster movements. Additional mea-
sures ofmotor vigor, namelymeanandpeak rate of force development,were
also not significantly impacted by β power modulation. Even more strik-
ingly, EXP2 results show a reversal of the direction of the relationship
between β power andMTwith speed instruction, with downregulation of β
power resulting in fastermovements onlywhenparticipantswere instructed
tomove fast. Conversely, decreasingβpowerwas associatedwith longerMT
when instructed to move slowly such that, in either way, downregulation of
β power enhanced task performance. According to this result, the effect of
changes in β power on motor behavior that has been consistently reported
by previous studies (i.e., faster movement initiation and execution when
reducingβpower) is unlikely to be explainedby changes inmovement vigor.
Rather, it supports the view that β power is associated with motor control
flexibility. Indeed, decreasing neuronal synchronization in the β band (i.e.,
decreasing βpower) is thought to facilitate the processing of novel incoming
inputs13,30,31. In the context of motor planning, it implies that motor com-
mands are more readily actuated based on environmental disturbances,
resulting in more flexible motor control for better adaptation. In line with
this hypothesis, several studies demonstrated significant reduction of β
power during early phase of visuomotor adaptation tasks, which attenuates
once errors decrease and participants no longer need to adapt their
behavior33,36,37. In EXP2, both fast and slowmovement conditions required a
certain degree of motor adaptation as participants needed to adjust their
movement speed to an instructed MT, which was 3 standard deviations
away from their habitual, comfortable MT. Results confirmed that β power
was significantly lower for fast and slow movements in comparison to
movements executed at a comfortable pace. The significance of these
findings may extend to pathological brain states, as they are consistent with
recent evidence on bradykinesia in Parkinson’s disease, which is associated
with excessive β synchrony within motor cortex-basal ganglia loops11.
Bradykinesia has been suggested to originate from a deficit in switching
between dynamic and stable movement states, leading to less flexible or
“rigid”motor control, rather than from a deficit in vigor38. In line with the
motorflexibility hypothesis, a recent study demonstrated that reduction ofβ
power at the subcortical level with electrical stimulation of the subthalamic
nucleus can lead to larger absolute adjustments of force irrespective of

direction, and that themore the stimulated areawas connected to the cortex,
the greater the force adjustment39. Overall, the present study provides novel
direct evidence of motor cortical β power as a relevant target for enhancing
motor flexibility and, thereby, task performance.

Whether NF constitutes an adequate tool to reliably and sustainably
enhance motor flexibility through downregulation of β power remains an
open question. Around 60% (34/58) of participants showed significant
reduction of their β power in β-down in comparison to β-up, which is
consistent with the proportion of responders typically reported in NF and
BCI studies40. Indeed, NF “illiteracy” (i.e., the difficulty some individuals
experience in learning to self-regulate their brain activity) is a well-known
phenomenon in both the NF field and broader BCI field, with some studies
reporting non-responder rates as high as 50%40. Additionally, the propor-
tion of responders was possibly reduced in the present study due to the
alternation between opposite trainings of self-regulation of β power (down-
vs up-regulation) in the two experiments, which may have interfered with
each learning process. Indeed, achieving self-regulation of specific patterns
of brain activity with NF training relies on brain plasticity mechanisms that
often require several days of training41. Conducting β power down- and up-
regulation in two separate sessions did not increase responder rate in EXP2
in comparison to EXP1. Providing longer uninterrupted NF training over
several sessions andassessingmotor performancepre- andpost-NF training
in each session represents a relevant alternative. In any case, optimizing β
power regulation appears as a key factor to significantly impact motor
flexibility with NF, considering that β power, and not NF instruction,
accounted for motor effects in LME models. Still, NF instruction as such
(that is, the mental strategies used during NF trials) may also induce non-
specific effect, as demonstrated by the significant association between sev-
eral motor variables related tomotor readiness, such as RT and rate of force
development, andNF instruction in EXP1. Yet, this effectwas not replicated
in EXP2 and, therefore, was distinct from the effect of β power down- versus
up-regulation. Those non-specific effects are considered an inherent aspect
of NF paradigms42. Including NF instruction as a separate factor in LME
models allowed us to disentangle some of these effects. Still, the impact of
individual cognitive strategies (beyond the provided NF instructions) on
motor behavior warrants further investigation. Trial-by-trial fluctuations of
participants’ cognitive states may account for some part of variability in
motorbehavior, but are also challenging to control, especially given that self-
regulating one’s brain activity represents a cognitively demanding task.
Finally, in the present study, a bidirectionalNFwas used in order to produce
experimental conditions with significantly different level of β power before
initiating movements (β-down and β-up) and overall maximize intra-
individual variations in pre-movement β power. Without NF training, the
within-subject variability in β power would likely have been substantially
reduced, whichwould have compromised the ability of themodels to detect
any significant associations between β power and motor variables. Impor-
tantly, although only ~60%of participants were classified asNF responders,
all participants were included in LME models while considering inter-
individual variability by using a full random effect structure. This approach
allowed us to draw conclusions about the relationship between β power and
motor variables that generalize to all participants, regardless of their NF
responsiveness. Considering that NF was specifically used as a tool to
determine the impact of modulations of β power on movement execution,
the potential efficacy of NF training for improving motor performance
should not be inferred from the present results. A proper sham condition
(with active motor imagery) would be required to do so. Rather, as men-
tioned above, the present findings emphasize the importance of optimizing
NF training to induce a reliable and strong enoughdecrease in βpower from
its baseline level, so that it may result in significant improvement of motor
flexibility and, hence, task performance.

Finally, the task-specific associations found between β power and
motor variables shed light on the importance of considering task constraints
for β power-based applications such as BCIs. Indeed, β power is commonly
used as input for machine learning algorithms to decode movement
intention in motor imagery BCIs4. However, real time decoding of
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movement intention based on this method, especially using non-invasive
signals such as EEG, remains challenging43. Here we show that environ-
mental constraints critically matter when trying to decode movement
intention based on motor cortical β power. What motor variables and how
theycanbedecoded fromchanges inβpower appear to strongly relies on the
environmental constraints the subject is being exposed to. Hence, decoding
of β power is likely relative rather than absolute. This is a critical point
considering that, based on the models from the present study, similar β
power values can be associated with substantially different movement
kinematics. For instance, discriminating fast from slowmovements may be
complicated by similar β power values reached in the two conditions.While
thedevelopmentofmore elaborate andprecisemachine learning algorithms
mighthelpovercoming this issue44, feeding those algorithmswithotherEEG
data thanmotor cortical β power may be key to improve BCI performance.
Amore thorough understanding of the dynamics of EEG signal underlying
movement preparation and execution appears crucial to this aim.

Methods
Participants
Thirty individuals (15 females, age (mean ± standard deviation): 22 ± 3
years old) participated in EXP1 and thirty other individuals (15 females, age
(mean ± standard deviation): 24 ± 4 years old) participated in EXP2.
Inclusion criteria included being right-handed or ambidextrous (the overall
criterion being that they would perform daily motor tasks with their right
hand), free of any known neurological or psychiatric condition and of any
recent injury to the right upper limb that could limit their movements or
cause any pain, and having normal or corrected-to-normal vision. In EXP1,
data from two participants were removed from the analyses because of
excessive noise in their EEG data. All participants gave their written
informed consent before participation in the study, which had been
approved by the French committee for the protection of individuals (CPP
number 2022-A00626-37). This study conformed to the standards set by the
latest version of the Declaration of Helsinki. All ethical regulations relevant
to human research participants were followed.

Material
EXP1. Participants were first seated in front of a computer screen
(60 × 34 cm) that displayed the visual stimuli used for the experiments.
A 32-channel EEG system was used (EEGo Sports, ANTneuro) with a
500 Hz acquisition rate. Participants were asked to hold a dynamometer
(K-Force Grip, Kinvent) with their right hand without exerting any
pressure on it unless receiving the instruction to do so. Data from the
dynamometer was acquired using Bluetooth® and custom scripts in
Unity 2021.3.15f1, with a 75 Hz acquisition rate. Acquisition of EEG data
was conducted with OpenViBE 3.4.045. Visual stimuli (including NF)
were designed and displayed on screen using Unity 2021.3.15f1.
Recordings from the dynamometer and EEG were synchronized by
means of digital stimulation codes indicating the onset of each visual
stimulus that were generated by OpenViBE and sent to Unity using Lab
Streaming Layer (LSL).

EXP2. Participants were first seated in front of a screen (60 ×34 cm) that
displayed the visual stimuli used for the experiments. A 128-channel EEG
systemwas used (ActiveTwo, Biosemi) with a 2048 Hz acquisition rate. A
light sensor (LUX, BITalino) and an accelerometer (ACC, BITalino)were
fixed on the distal phalange of the index of participants’ right hand,
respectively on the ventral and dorsal side. A lightwas placed 20 cmabove
the hand. Participants were asked to keep the back of their right hand
against the table, their palm facing the light. With this setting, the light
sensor captured most light when the hand was fully open, and the least
when the handwas closed. Data from the light sensor were acquired using
Bluetooth®, OpenSignals 2.2.1 (PLUX) and custom scripts in Matlab
R2023a (MathWorks), with a 1000 Hz acquisition rate. Acquisition of
EEG data was conducted with OpenViBE 3.4.045. Visual stimuli
(including NF) were designed and displayed on screen using

Psychtoolbox-346 in Matlab. Recordings with EEG, the light sensor and
the accelerometer were all synchronized by means of digital stimulation
codes indicating the onset of each visual stimulus that were generated by
OpenViBE and sent to Matlab using LSL.

Overview of the experimental tasks
EXP1 and EXP2 included a bidirectional NF paradigm. Bidirectional NF
consists of training participants to self-regulate a specific brain activity
pattern (herein, motor cortical β power) in opposite directions (i.e., down-
and up-regulation) in separate experimental blocks (β-down and β-up). β-
downand β-up trialswere performedwithin a single session inEXP1, and in
2 separate sessions in EXP2 (Fig. 1C). The aim of this bidirectional NF
paradigm was to maximize differences in β power between NF conditions
(β-down and β-up), in order to properly assess the influence of β power on
motor variables. Bidirectional NF indeed represents a more appropriate
control than sham to determine brain-behavior relationships47. An addi-
tional Sham-Passive (control) condition was implemented, which included
similar sensory inputs as in β-down and β-up, but without congruent NF
nor mental strategy applied. The interest of this control condition was to
measureβpower andmotor variableswithout activemodulationofβpower.
This led to 3 NF conditions: active NF aiming to down-regulate motor
cortical β power (β-down), activeNF aiming to up-regulatemotor cortical β
power (β-up), and passive and sham NF aiming not to significantly mod-
ulate motor cortical β power (Sham-Passive) (Fig. 1A).

1. Trial timeline
EXP1. Trial timeline is depicted in Fig. 1B. Each trial started with a black
screen which lasted 3 s. Then, a white fixation cross appeared for 3 s,
informing participants that they should stay still and look at the cross in
preparation for the upcoming NF phase. The cross was then replaced by the
NF, which consisted in a virtual gauge whose level varied according to online
changes in motor cortical β power that were recorded with the EEG (see
Neurofeedback section). The NF phase lasted between 2 and 10 s. It was
immediately followed by the appearance of a go cue (“GO!”) indicating the
beginning of themotor task, during which participants were asked to squeeze
a dynamometer for 5 s at an individualized force level (see Motor task
section). Once the motor task was over, participants rated their subjective
perception of effort about the motor task on a virtual scale ranging from 0 to
100, by displacing a cursor with a computer mouse. Then, they received a
feedback about their performance at the motor task for 2 s. Participants were
asked to minimize eye and head movements during the presentation of the
virtual stimuli, except during the intertrial interval (3-s black screen).

EXP2. Each trial started with a black screen which lasted 4 s. Then, a white
fixation cross appeared for 3 s, informing participants that they should stay
still and look at the cross in preparation for the upcoming NF phase. The
cross was then replaced by the NF phase, which was identical to EXP1. It was
immediately followed by the appearance of a go cue indicating the beginning
of the motor task and speed instruction (drawing of a hand with either
“FAST”, “SLOW” or “COMFORTABLE”), during which participants were
asked to execute 4 repetitions of hand opening/closing, starting from an open
hand position (see Motor task section). Once the motor task was over,
participants received a feedback about their performance at the motor task
for 2 s. Participants were asked tominimize eye and headmovements during
the presentation of the virtual stimuli, except during the intertrial interval
(4-s black screen). Trials in which movements were performed at a com-
fortable pace did not include a NF phase nor feedback about performance at
the motor task, as the aim of those trials was to obtain a baseline mea-
surement of MT, without instruction nor active modulation of brain activity.

2. Experiment timeline
EXP1. The session began with NF and force calibration. NF calibration
consisted of a 1min resting-state period to determine an individualized
baseline β power value that was then used for NF settings (see Neurofeed-
back section). During this period, a white fixation cross was presented at the
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center of the screen. Participants were asked to keep their eyes open and
looking at the fixation cross, while minimizing head, eye and body move-
ments. They were also asked to place their right hand on the dynamometer
without exerting any force on it. The cross was displayed for 1min but only
the last 30 s were used to compute baseline β power in order to ensure that β
powerwasmeasuredwhile participants were resting. Participants were then
asked to squeeze the dynamometer with their right hand as hard as possible
during 3 s in order to establish theirmaximal voluntary contraction (MVC)
which value would be used to calibrate the motor task (see Motor task
section). This procedure was repeated 3 times. MVC was calculated as the
mean force of the 3 repetitions.

Afterwards, a first block of 5 Sham-Passive trials was presented to
familiarize participants with the task. These familiarization trials were not
included in the analyses. Then, participants performed 2 blocks of 20 β-
down trials, 2 blocks of 20 β-up trials, and 4 blocks of 10Sham-Passive trials,
presented in an alternated order (Fig. 1C, top). The interest in alternating
presentation of NF conditions was to account for the effect of cognitive and
physical fatigue, which ineluctably increased over the course of the experi-
mental session. The presentation order of β-down and β-up conditions was
counterbalanced across participants (either β-down/ β-up/ β-down/β-up or
β-up/ β-down/ β-up/ β-down). Each block of β-down or β-up trials was
preceded by a block of Sham-Passive trials.

EXP2. In EXP2, blocks of β-down and β-up trials were performed in two
separate sessions, taking place 1 to 3 weeks apart from each other. The
organization of the blocks was similar between the two sessions (Fig. 1C,
bottom). The order of presentation of NF conditions (session 1 = β-down
and session2 = β-upor vice-versa)was counterbalanced across participants.
Participants began each session with a calibration recording, consisting of
one block of 20 trials without NF in which they were asked to execute the
motor task (i.e., 4 repetitions of hand opening) at a comfortable pace. MT
criteria for themotor taskwere set based onmeanMTduring thisfirst block
(see Motor task section). NF settings were based on β power during the
preparatory period of this first block (see Neurofeedback section). Similar
blocks (i.e., without NF and with movements executed at a comfortable
pace) including 15 trials were presented at the middle (Block 7) and at the
end of the experiment (Block 12). After the first block, a block of 10
familiarization trials with active NF (β-down or β-up depending on the
session) was presented. Participants were not only familiarized withNF but
also with the motor task, as this block included 5 trials with the motor task
executed at a fast pace (Fast) and the 5other trials at a slowpace (Slow).As in
EXP1, familiarization trials were not included in the analyses. Afterwards,
participants performed 4 blocks of 20 trials of β-down or β-up trials and 4
blocks of 15 Sham-passive trials, in an alternated order. Blocks of β-down or
β-up trials were followed by blocks of Sham-passive trials with the same
speed instruction (e.g., a block of β-down/Fast trials was followed by a block
of Sham-Passive/Fast trials). Two different sequences of speed instructions
could be presented across blocks: either Fast-Fast-Slow-Slow-Comf-Slow-
Slow-Fast-Fast-Comf or Slow-Slow-Fast-Fast-Comf-Fast-Fast-Slow-Slow-
Comf. These sequences were chosen such that one of the 2 blocks aiming to
measure participants’ baseline MT (no NF, movements executed at a
comfortable pace) occurred after a Fast block, and the other after a Slow
block, thus accounting for potential changes in speed due to the influence of
the speed instruction of the previous block. The order of presentation of
speed instructions was counterbalanced across participants, but not across
sessions (i.e., if one participant began with a Fast block in the first session,
they would start with a Fast block in the second session as well).

Neurofeedback
NFwas represented as a virtual gauge. The level of the gauge reflected online
changes of β power with respect to baseline β power. In EXP1, baseline β
power corresponded to the median of the distribution of β power values
during the 30-s resting-state recording. More precisely, online β power was
computed as the squared amplitude of the signal recorded at C3 electrode,
with bandpass (15–25Hz, 4th order Butterworth) and Laplacian (spatial

coefficients: 6 for C3, –1 for adjacent electrodes (F3, FC5, CP5, P3, CP1,
FC1)) filtering applied. Laplacian filtering was used to minimize con-
tamination of the signal by artefactual sources such as electromyography by
reducing the relative contribution of distant sources48,49. Bandpass filtering
was applied on a narrower frequency band than the general β band (15–25
instead of 13–30Hz) considering filter roll-off, that is the incomplete
attenuationof frequencies beyondcutoff points50.Additionally,most studies
reporting a significant impact of modulating β power on motor behavior
targeted frequencies at or around 20Hz18,19,23. Online β power was averaged
over 500-ms epochs, with a 250-ms step, based on the method of He and
colleagues (2020)23. The 250ms overlap between consecutive epochs was
introduced in order to smooth the signal and thus improve readability of the
NF.Median, 25th and75th percentilesofβpowerduring the30-s resting-state
recording were determined based on a distribution of 120 online β power
values (1 value per 250ms) after outliers rejection. Outliers were identified
as values inferior tomedian β power– 3*median absolute deviation (MAD)
and superior to median β power + 3*MAD51. Median, 25th and 75th per-
centiles of baseline β power were then used for setting the NF individually
(see paragraph below). In EXP2, baseline β power was computed during the
3-s preparatory period (white fixation cross, no NF and no movement) of
the first block, representing 60 s of recording (3 s x 20 trials). The same
method as in EXP1 was applied to calculate online β power, except that the
Laplacian filter was applied on different but equivalent electrodes than the
onesused inEXP1(spatial coefficients: 6 forD19 (C3equivalent), -1 forC24,
D4, D10, D16, D26, A6). As in EXP1, median, 25th and 75th percentiles of β
power during the baseline recording were computed and used for NF
settings.

The design of the NF was the same in EXP1 and EXP2. A gauge,
consisting of a white vertical rectangle cut by a white horizontal midline, was
presented. The rectangle was filled with a bar, which height was determined
by the relative difference between online and baseline β power. In β-down
and β-up, the inferior boundary of the gauge corresponded to the median
value of baseline β power. In β-down, the bar reached the horizontal midline
(i.e., middle of the gauge) when online β power was equal to the 25th per-
centile of baseline β power, whereas in β-up, the bar reached the horizontal
midline when online β power was equal to the 75th percentile of baseline β
power. The absolute value of the difference between themedian and the value
at the horizontal midline (i.e., 25th percentile in β-down, 75th percentile in β-
up) was computed as Δ (Fig. 1A). The top of the gauge was reached when
online β power was equal or inferior to median – 2*Δ in β-down, and when
online β power was equal or superior to median + 2*Δ in β-up. Online β
power was converted into the level of the gauge (i.e., height of the vertical bar)
by normalizing its value between 0 and 1, 0 corresponding to the inferior
boundary of the gauge (i.e., median baseline β power) and 1 to the superior
boundary of the gauge (i.e., – 2*Δ in β-down, + 2*Δ in β-up). The vertical
bar was filled in red when 0 < normalized online β power value < 0.5 (i.e., the
level of the gauge was between the inferior boundary and the horizontal
midline) whereas it was filled in green when normalized online β power
value≥ 0.5 (i.e., the level of the gauge was at the level of or above horizontal
midline). Participants were asked to try to keep the gauge green as long as
possible while it was displayed on the screen. Thus, participants were trained
to maintain their online β power equal or inferior to the 25th percentile of
their baseline β power in β-down, and equal or superior to the 75th percentile
of their baseline β power in β-up. Different values (25th and 75th percentiles)
were targeted in β-down and β-up in order to maximize the difference in
online β power that participants could reach between the two conditions.
Although different, these values were both extracted from the distribution of
baseline β power values to make sure that they were attainable.

NF stopped and was replaced by the go cue as soon as participants
maintained the gauge green for 2 consecutive seconds, or after 10 s if they
failed doing so. This variable NF duration was chosen to increase the like-
lihood that online β power would be comprised in the targeted values at the
time of go cue onset, in addition to further incentivize modulation of β
power by giving participants the opportunity to reduce the duration of the
experiment by improving their NF performance. In Sham-Passive, the
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design and settings of the gauge were the same as in β-down and β-up, the
difference being that the level of the gaugewas based onEEGprerecordings.
In EXP1, prerecordings were extracted from pilot data and presented in the
same order for all participants. In EXP2, prerecordings were replays of the
participants’ online β power in the preceding block. Participants were asked
if they noticed anything particular with the gauge in Sham-Passive trials
once the second sessionwas over, but none of them reportedhaving noticed
that it was based on replays of the preceding blocks.

Mental strategies that could be used to facilitate self-regulation of their
motor cortical β power were explained to the participants before beginning
the experiment. In β-down, participants were advised to use motor imagery,
that is imagining themselves making a movement without actually executing
it. Indeed, motor imagery can significantly reducemotor cortical β power52,53.
When combined with NF, the reduction in β power induced by motor
imagery can reach and even exceed the reduction in β power observed
during motor execution54. Thus, motor imagery is commonly used as a
mental strategy in NF studies intending to attenuate motor β power23,34,55. In
opposition to motor imagery, relaxing body parts, conscious breathing and
task-unrelated thinking appear as themost efficient strategies for increasing β
power56. These strategies were detailed to the participants to help them
improving their NF performance in β-up. Nonetheless, participants were
told that making use of these mental strategies was not mandatory, and that
they were free to use any other strategy that they would find efficient to
improve their NF performance. The only restriction was to not make any
body, head or eye (including closing/opening eyes) movements. Participants
were also asked not to use any mental strategy in Sham-passive trials. They
were not informed that the NF was a sham, but they were asked to merely
keep their gaze on the gauge without trying to control its level, and to let their
thoughts flow freely while staying focused during the motor task. The sug-
gestedmental strategies associated with each NF condition were reminded to
the participants at the beginning of each block, both orally by the experi-
menter and with a message that was displayed for 5 s on the screen.

Motor task
EXP1. Participants were instructed to hold a dynamometer in their right
hand and to start squeezing it as soon as the go cue appeared on the
screen. They were asked to try to maintain the force they exerted above
70% of their MVC, as long as the go cue stayed on (5 s). This force
threshold was selected to keep the task challenging and effortful, while
avoiding rapid physical exhaustion as when asking participants to exert
maximal force at each trial. Participants were not provided with any real-
time feedback about the force they were applying during this phase to
prevent them from using effort minimization strategies (i.e., keeping
their force close to the threshold in order not to unnecessarily exceeding it
too much). Once the force task ended, the go cue was replaced by a visual
analogical scale on the screen and participants could stop applying any
force on the dynamometer. The visual scale was represented as a gray
horizontal line, ranging from 1 (left extremity) to 100 (right extremity),
with a white bar superimposed vertically on the middle of the line. This
white bar was a cursor that participants could slide along the horizontal
line to rate how effortful they felt it was to apply enough force on the
dynamometer during the preceding force task. They displaced the cursor
using a computer mouse with their left hand (to avoid moving the right
hand away from the dynamometer) until it was positioned over the
desired score. Visual feedback about performance during the preceding
force task was given only after the subjective rating of effort was com-
pleted to ensure that effort evaluation was not biased by it. This feedback
consisted in a message which content varied according to the percentage
of time spent above the force threshold during the force task (>50%: “Well
done!”, 25–50%: “Not bad!”, < 25\%: “Could do better!”).

EXP2. Participants were asked to keep their right hand open until the go
cue was displayed. They were instructed to close their hand 4 times as
soon as the go cue appeared, with movements executed with maximal
amplitude at each repetition. The go cue remained on screen for 8 s and

was then replaced by a black screen indicating intertrial interval if it was a
Comf trial, or by visual feedback about their performance at the motor
task if it was a Fast or Slow trial. Feedback was positive (“Bravo!”) if the
mean MT of the 4 repetitions of hand opening reached the speed cri-
terion, andnegative if themeanMT fell outside (“Too fast!” / “Too slow”).
The aim of this feedback was to encourage participants to correct their
MT if they started slowing down in Fast or speeding up in Slow. Speed
criteria in Fast and Slowwere determined based on the distribution ofMT
values in the first block of Comf trials. Fast speed criterion corresponded
to mean MT – 3*standard deviation, implying that participants received
positive feedback in Fast whenever their mean MT was equal or inferior
to this criterion. In Slow, participants received positive feedback when-
ever their mean MT was equal or superior to mean MT+ 3*standard
deviation.

Data processing
Behavior. Data processing was conducted on Matlab R2023a (Math-
Works). In EXP1, movement onset was defined as the first time parti-
cipants’ force exceeded 3 kg, and movement offset as the first time their
force dropped below 3 kg after movement onset. Movement force was
computed as mean force during the time separating movement onset
from movement offset, in percentage of the MVC. MT was calculated as
the delay separating movement onset from movement offset, and RT as
the delay between the appearance of the go cue and movement onset. In
EXP2, MT was computed as the time separating 2 peaks of luminosity
detected by the light sensor, corresponding to the moments when the
hand was fully open. MT was averaged across the 4 repetitions. RT was
computed as the time separating go cue onset and the first luminosity
peak. |Acc| corresponded to the mean absolute acceleration between go
cue onset and the end of the fourth repetition. Outliers were calculated
separately for each motor variable per participant and condition. They
were defined as values inferior to themedianminus 3 absolute deviations
around the median (MADs)51 or superior to the median plus 3 MADs.
They were removed from the analyses (4.6% and 2.6% trials in average
across motor variables that have been measured in EXP1 and in EXP2,
respectively).

EEG. Preprocessing of raw EEG data was performed using EEGLAB
toolbox in Matlab57. Similar EEG preprocessing pipelines were applied
for data of EXP1 and EXP2. First, data was downsampled to 250 Hz.
Then, a bandpass filter between 1 and 49 Hz was applied. Noisy channels
were automatically detected using the Clean Raw Data algorithm from
EEGLAB with the following parameters: signal flat for more than 5 s,
standard deviation of high-frequency noise superior to 4, and correlation
with nearby channels inferior to 0.8. The original signal from those
channels was removed and interpolated based on the activity from their
neighboring electrodes. Data was then segmented into epochs of 11.5 s
duration locked around go cue (–11 s to +0.5 s). This period encom-
passed NF duration (2–10 s preceding go cue onset, see Neurofeedback
section), with some additional time beforehand that included EEG
activity at rest (i.e., during the preparatory period). Considering the
minimum duration of one trial (~ 16 s in EXP1 and 19 s in EXP2), the
chosen time window length also prevented from overlapping between
epochs. Independent component analysis (ICA) was run including
epochs of all NF conditions for each participant separately using runica
algorithm from EEGLAB. Artefactual components related to eye move-
ments were identified based on their anterior location, spurious occur-
rences and low frequency dominant spectrum58. The signal was then re-
referenced to the average scalp potential. Afterwards, time-frequency
decomposition was performed with Morlet wavelets (5–40 Hz with 1 Hz
step, 3 to 6.6 cycles (i.e., increment of 0.1 per 1 Hz)) using functions from
FieldTrip toolbox59. Afterwards, mean β power was computed by aver-
aging power values between 13 and 30 Hz during NF presentation at C3
electrode for EXP1 data, and D19 (C3 equivalent in ABCD system)
electrode for EXP2 data, separately for each participant and experimental
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condition. β power was expressed as the percentage of change from
baseline β power (i.e., β power = (actual β power – baseline β power) /
baseline β power * 100). Considering that baseline β power that was used
for NF calibration was acquired in different mental states in EXP1
(resting state) and EXP2 (3 s before go cue in the first block of Comf
trials), baseline β power that was used for correcting β power in EXP1was
recomputed as mean β power during NF presentation of the first block of
Sham-Passive trials. As for behavioral data, outliers were detected
separately for each participant and condition and defined as values
inferior to the median minus 3*MADs or superior to the median plus
3*MADs, before being removed from the analyses (3.9% and 2.4% of
trials in average in EXP1 and EXP2, respectively). Outliers from the first
blocks of each experiment were removed before computing baseline-
corrected β power.

Statistics and reproducibility
Within-subject experimental designs were conducted in EXP1 and EXP2.
Cluster-based permutation tests were first applied to β power from each
experiment dataset separately, using functions from FieldTrip toolbox. NF
conditions were compared to each other, in order to test if the signal from
electrodes thatwere used to computeNFwas significantlymodulated across
NF conditions, and ifβpower fromother brain regionswas impacted byNF.
Then, a repeated measure ANOVA including data from EXP1 and EXP2
was conducted to compare β power across NF conditions (β-down, β-up
and Sham-Passive). β power was also compared across speed instructions
(Fast, Slow, Comf) in EXP2 data using repeated measure ANOVA.
Greenhouse-Geisser’s correction was applied to p-values when sphericity
assumption was violated (Mauchly’s test p value < 0.05). Considering
effective sample sizes (n = 28 in EXP1,n = 30 in EXP2), amediumeffect size
(f = 0.25) anda type1 error set at 5%, the statistical powerof this analysiswas
81.2% inEXP1and84.1% inEXP2,basedoncalculations fromG*Power 360.
Posthoc analysis with pairwise comparisons was conducted using paired
Student’s t tests when observations were normally distributed (Shapiro-
Wilk’s test p value ≥ 0.05), and Wilcoxon’s rank tests when normality
assumption was violated (Shapiro-Wilk’s test p value < 0.05). When com-
paring average value of a variable to a tested value, one-sample t tests were
used when observations were normally distributed (Shapiro-Wilk’s test p
value ≥ 0.05), and one-sample Wilcoxon’s rank tests when normality
assumption was violated (Shapiro-Wilk’s test p value < 0.05). P values were
corrected formultiple comparisons using the False Discovery Rate (FDR)61.
Effect sizeswere reported as partial eta squared (η²p) forANOVAs, Cohen’s
d (d) for paired Student’s t tests, and rank biserial correlation (r) for Wil-
coxon’s rank tests. Statistical analyses were conducted in Jamovi 2.3.28 and
Matlab R2023a.

Changes in motor cortical β power and motor behavior were also
assessed at the level of each participant individually, using paired t tests on
the distribution of single-trial data across NF conditions. Participants were
classified as responders if they showed significant decreases in β power in β-
down as compared to in β-up (i.e., p value < 0.05 and t-value < 0), anti-
responders if they demonstrated significant increases in β power in β-down
as compared to in β-up (i.e., p value < 0.05 and t-value > 0), and as non-
responders if they demonstrated no significant change in β power when
comparing β-down to β-up (i.e., p value ≥ 0.05).

LME models were conducted to determine the significance and
directionof the relationshipbetweeneachmotor variable andβpower,while
considering variance due to individual differences. β power (continuous)
and NF condition (3 levels: β-down, β-up, Sham-Passive) were included as
fixed factors and Participant ID (1 level per participant) as random factor.
The equation used for the model was the following: Motor variable ~ 1+ β
power + NF condition + β power: NF condition + (1 + β power + NF
condition + β power:NF condition | Participant ID). An additional speed
instruction factor (Fast, Slow) was included in LME models of motor
variables of EXP2, as fixed factor and random slope, considering that the
direction of the relationship between motor variables and β power was
expected to potentially vary in function of speed instruction. Frequential

specificity of the effect of β power on motor variables was assessed by
conducting LMEmodels including spectral power in a 1Hz frequency band
as β power factor (the equation used was the same as described above),
separately for all frequencies between 8 and 35Hz, motor variables and
speed instruction in EXP2 (28 frequencies*3motor variables = 84models in
EXP1; 28 frequencies*3motor variables*2 speed instructions = 168models
inEXP2). Parameter estimates (slopes) of the effect ofβpowerand their 95%
confidence intervals were extracted fromeachmodel. In EXP1, only the first
10 trials of each block of active NF trials (β-down and β-up, n = 20 trials per
block) were included in LME models to ensure adequate comparison of
motor variables across NF conditions as mean force dropped significantly
throughout each block (Supplementary Results, section 3; Fig. S3, Table S1)
and blocks of Sham-Passive trials comprised only 10 trials. Since no sig-
nificant effect of block was found onMT in EXP2 (Supplementary Results,
section 7; Table S2), all trials were included in LME models.

In addition to providing adequate statistical power for the analyses,
the relatively large sample of participants (n = 58), divided across two
experiments, allowed us to replicate and extend the findings of EXP1 in
EXP2. Furthermore, the use of LME models, which accounted for inter-
individual variability by including participant number as random factor,
strengthened the investigation of brain–behavior relationships in both
experiments. This approach enhances the reproducibility of our results
by demonstrating consistent effects across all 58 participants included in
the analysis.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The EEGand behavioral data fromEXP1 and EXP2are publicly available in
aZenodo repository62. The sourcedata behind the graphs in thepaper canbe
found in Supplementary Data 1. Requests should be addressed to E.P.
(emeline.pierrieau@u-bordeaux.fr).

Code availability
CustomMatlab (R2023a) codes used for analyses are publicly available in a
Zenodo repository62.

Received: 19 February 2025; Accepted: 30 June 2025;

References
1. Pfurtscheller, G. & Lopes da Silva, F. H. Event-related EEG/MEG

synchronization and desynchronization: basic principles. Clin.
Neurophysiol. 110, 1842–1857 (1999).

2. Neuper, C., Wörtz, M. & Pfurtscheller, G. ERD/ERS patterns reflecting
sensorimotor activation and deactivation. Prog. Brain Res. 159,
211–222 (2006).

3. Pfurtscheller, G. & Neuper, C. Motor imagery activates primary
sensorimotor area in humans. Neurosci. Lett. 239, 65–68 (1997).

4. Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y. & Zhao, X. A
comprehensive review of EEG-based brain-computer interface
paradigms. J. Neural Eng. 16, 011001 (2019).

5. Guerra, A. et al. Driving motor cortex oscillations modulates
bradykinesia in Parkinson’s disease. Brain J. Neurol. 145, 224–236
(2022).

6. He, S. et al. Subthalamic beta-targeted neurofeedback speeds up
movement initiation but increases tremor in Parkinsonian patients.
eLife 9, e60979 (2020).

7. He, S. et al. Beta-triggered adaptive deep brain stimulation during
reaching movement in Parkinson’s disease. Brain J. Neurol. 146,
5015–5030 (2023).

8. Pichiorri, F. et al. Brain-computer interface boosts motor imagery
practice during stroke recovery. Ann. Neurol. 77, 851–865 (2015).

https://doi.org/10.1038/s42003-025-08465-2 Article

Communications Biology |          (2025) 8:1041 11

www.nature.com/commsbio


9. Ramos-Murguialday, A. et al. Brain-machine interface in chronic
stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108
(2013).

10. Kilavik, B. E., Zaepffel, M., Brovelli, A., MacKay,W. A. & Riehle, A. The
ups and downs of β oscillations in sensorimotor cortex. Exp. Neurol.
245, 15–26 (2013).

11. Jenkinson, N. & Brown, P. New insights into the relationship between
dopamine, beta oscillations andmotor function. Trends Neurosci. 34,
611–618 (2011).

12. Spitzer, B. & Haegens, S. Beyond the status quo: A role for beta
oscillations in endogenous content (re)activation. eNeuro 4,
ENEURO.0170-17.2017 (2017).

13. Betti, V., Della Penna, S., dePasquale, F. &Corbetta,M. Spontaneous
Beta Band Rhythms in the Predictive Coding of Natural Stimuli.
Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 27, 184–201
(2021).

14. Musall, S., von Pföstl, V., Rauch, A., Logothetis, N. K. & Whittingstall,
K. Effects of neural synchrony on surface EEG. Cereb. Cortex NYN
1991 24, 1045–1053 (2014).

15. Tan, H. et al. Subthalamic nucleus local field potential activity helps
encode motor effort rather than force in parkinsonism. J. Neurosci. J.
Soc. Neurosci. 35, 5941–5949 (2015).

16. Savoie, F.-A. et al. Luring the motor system: Impact of performance-
contingent incentives onpre-movement beta-bandactivity andmotor
performance. J. Neurosci. J. Soc. Neurosci. 39, 2903–2914 (2019).

17. Uehara, K., Fine, J. M. & Santello, M. Modulation of cortical beta
oscillations influencesmotor vigor: A rhythmic TMS-EEGstudy.Hum.
Brain Mapp. 44, 1158–1172 (2023).

18. Pogosyan, A., Gaynor, L. D., Eusebio, A. &Brown,P. Boosting cortical
activity at Beta-band frequencies slows movement in humans. Curr.
Biol. CB 19, 1637–1641 (2009).

19. Joundi, R. A., Jenkinson, N., Brittain, J.-S., Aziz, T. Z. & Brown, P.
Driving oscillatory activity in the human cortex enhances motor
performance. Curr. Biol. CB 22, 403–407 (2012).

20. Sitaram, R. et al. Closed-loop brain training: The science of
neurofeedback. Nat. Rev. Neurosci. 18, 86–100 (2017).

21. McFarland, D. J., Sarnacki, W. A. & Wolpaw, J. R. Effects of training
pre-movement sensorimotor rhythms on behavioral performance. J.
Neural Eng. 12, 066021 (2015).

22. Khanna, P. & Carmena, J. M. Beta band oscillations in motor cortex
reflect neural population signals that delay movement onset. eLife 6,
e24573 (2017).

23. He, S., Everest-Phillips, C., Clouter, A., Brown, P. & Tan, H.
Neurofeedback-linked suppression of cortical β bursts speeds up
movement initiation in healthy motor control: A double-blind sham-
controlled study. J. Neurosci. J. Soc. Neurosci. 40, 4021–4032 (2020).

24. McAllister, C. J. et al. Oscillatory beta activity mediates neuroplastic
effects of motor cortex stimulation in humans. J. Neurosci. J. Soc.
Neurosci. 33, 7919–7927 (2013).

25. Haddix, C., Al-Bakri, A. F. & Sunderam, S. Prediction of isometric
handgrip force from graded event-related desynchronization of the
sensorimotor rhythm. J. Neural Eng. 18, 056033 (2021).

26. Pierrieau, E., Berret, B., Lepage, J.-F. & Bernier, P.-M. From
Motivation to Action: Action Cost Better Predicts Changes in
Premovement Beta-Band Activity than Speed. J. Neurosci. J. Soc.
Neurosci. 43, 5264–5275 (2023).

27. Zhang, X. et al. Movement speed effects on beta-band oscillations in
sensorimotor cortex during voluntary activity. J. Neurophysiol. 124,
352–359 (2020).

28. Palmer, C., Zapparoli, L. & Kilner, J. M. A new framework to explain
sensorimotor beta oscillations. TrendsCogn. Sci. 20, 321–323 (2016).

29. Alayrangues, J., Torrecillos, F., Jahani, A. & Malfait, N. Error-related
modulations of the sensorimotor post-movement and foreperiod
beta-band activities arise from distinct neural substrates and do not
reflect efferent signal processing. NeuroImage 184, 10–24 (2019).

30. Brittain, J.-S. & Brown, P. Oscillations and the basal ganglia: Motor
control and beyond. NeuroImage 85, 637–647 (2014).

31. Engel, A. K. & Fries, P. Beta-band oscillations–signalling the status
quo?. Curr. Opin. Neurobiol. 20, 156–165 (2010).

32. Palmer, C. E., Auksztulewicz, R., Ondobaka, S. & Kilner, J. M.
Sensorimotor beta power reflects the precision-weighting afforded to
sensory prediction errors. NeuroImage 200, 59–71 (2019).

33. Jahani, A., Schwey, A., Bernier, P.-M. & Malfait, N. Spatially Distinct
Beta-Band Activities Reflect Implicit Sensorimotor Adaptation and
Explicit Re-aiming Strategy. J. Neurosci. J. Soc. Neurosci. 40,
2498–2509 (2020).

34. Bichsel, O. et al. Deep brain electrical neurofeedback allows
Parkinson patients to control pathological oscillations and quicken
movements. Sci. Rep. 11, 7973 (2021).

35. Mazzoni, P., Hristova, A. &Krakauer, J.W.Why don’t wemove faster?
Parkinson’s disease, movement vigor, and implicit motivation. J.
Neurosci. J. Soc. Neurosci. 27, 7105–7116 (2007).

36. Grent-’t-Jong, T., Oostenveld, R., Medendorp, W. P. & Praamstra, P.
Separating visual and motor components of motor cortex activation
formultiple reach targets: A visuomotor adaptation study. J.Neurosci.
J. Soc. Neurosci. 35, 15135–15144 (2015).

37. Darch,H. T.,Cerminara,N. L.,Gilchrist, I. D. &Apps,R. Pre-movement
changes in sensorimotor beta oscillations predict motor adaptation
drive. Sci. Rep. 10, 17946 (2020).

38. Herz, D. M. & Brown, P. Moving, fast and slow: behavioural insights
into bradykinesia in Parkinson’s disease. Brain J. Neurol. 146,
3576–3586 (2023).

39. Herz, D. M. et al. Dynamicmodulation of subthalamic nucleus activity
facilitates adaptive behavior. PLoS Biol. 21, e3002140 (2023).

40. Szewczyk, R. Ł., Ratomska, M. & Jaśkiewicz, M. The Neglected
Problem of the Neurofeedback Learning (In)Ability. in Biomedical
Engineering and Neuroscience (eds. Hunek, W. P. & Paszkiel, S.)
45–58. https://doi.org/10.1007/978-3-319-75025-5_6 (Springer
International Publishing, Cham, 2018).

41. Ros, T., Baars,B. J., Lanius,R.A. &Vuilleumier, P. Tuningpathological
brain oscillations with neurofeedback: A systems neuroscience
framework. Front. Hum. Neurosci. 8, 1008 (2014).

42. Kvamme, T. L., Ros, T. & Overgaard, M. Can neurofeedback provide
evidence of direct brain-behavior causality?. NeuroImage 258,
119400 (2022).

43. Värbu, K., Muhammad, N. &Muhammad, Y. Past, present, and future
of EEG-based BCI applications. Sensors 22, 3331 (2022).

44. Khademi, Z., Ebrahimi, F. &Kordy,H.M. A reviewof critical challenges
in MI-BCI: From conventional to deep learning methods. J. Neurosci.
Methods 383, 109736 (2023).

45. Renard, Y. et al. OpenViBE: An Open-Source Software Platform to
Design, Test, and Use Brain–Computer Interfaces in Real and Virtual
Environments. Presence 19, 35–53 (2010).

46. Kleiner, M. et al. What’s new in psychtoolbox-3. Perception 36, 1–16
(2007).

47. Sorger,B., Scharnowski, F., Linden,D.E. J.,Hampson,M.&Young,K.
D. Control freaks: Towards optimal selection of control conditions for
fMRI neurofeedback studies. NeuroImage 186, 256–265 (2019).

48. Fitzgibbon, S. P. et al. SurfaceLaplacianof scalp electrical signals and
independent component analysis resolve EMG contamination of
electroencephalogram. Int. J. Psychophysiol. J. Int. Organ.
Psychophysiol. 97, 277–284 (2015).

49. Vidal, F. et al. Linking EEG signals, brain functions and mental
operations: Advantages of the Laplacian transformation. Int. J.
Psychophysiol. J. Int. Organ. Psychophysiol. 97, 221–232 (2015).

50. Robertson, D. G. E. & Dowling, J. J. Design and responses of
Butterworth and critically damped digital filters. J. Electromyogr.
Kinesiol. J. Int. Soc. Electrophysiol. Kinesiol. 13, 569–573 (2003).

51. Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers:
Do not use standard deviation around the mean, use absolute

https://doi.org/10.1038/s42003-025-08465-2 Article

Communications Biology |          (2025) 8:1041 12

https://doi.org/10.1007/978-3-319-75025-5_6
https://doi.org/10.1007/978-3-319-75025-5_6
www.nature.com/commsbio


deviation around the median. J. Exp. Soc. Psychol. 49, 764–766
(2013).

52. McFarland, D. J., Miner, L. A., Vaughan, T. M. &Wolpaw, J. R. Mu and
beta rhythm topographies during motor imagery and actual
movements. Brain Topogr. 12, 177–186 (2000).

53. Pfurtscheller, G., Brunner, C., Schlögl, A. & Lopes da Silva, F. H. Mu
rhythm (de)synchronization and EEG single-trial classification of
different motor imagery tasks. NeuroImage 31, 153–159 (2006).

54. Miller, K. J. et al. Cortical activity during motor execution, motor
imagery, and imagery-based online feedback. Proc. Natl. Acad. Sci.
USA107, 4430–4435 (2010).

55. Naros, G., Naros, I., Grimm, F., Ziemann, U. & Gharabaghi, A.
Reinforcement learning of self-regulated sensorimotor β-oscillations
improves motor performance. NeuroImage 134, 142–152 (2016).

56. Autenrieth, M., Kober, S. E., Neuper, C. & Wood, G. How much do
strategy reports tell about the outcomes of neurofeedback training? a
study on the voluntary up-regulation of the sensorimotor rhythm.
Front. Hum. Neurosci. 14, 218 (2020).

57. Delorme, A. & Makeig, S. EEGLAB: An open source toolbox for
analysis of single-trial EEG dynamics including independent
component analysis. J. Neurosci. Methods 134, 9–21 (2004).

58. Jung, T. P. et al. Removing electroencephalographic artifacts by blind
source separation. Psychophysiology 37, 163–178 (2000).

59. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open
source software for advanced analysis of MEG, EEG, and invasive
electrophysiological data.Comput. Intell. Neurosci. 2011, 156869 (2011).

60. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G. Power 3: a flexible
statistical power analysis program for the social, behavioral, and
biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

61. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A
practical and powerful approach to multiple testing. J. R. Stat. Soc.
Ser. B Methodol. 57, 289–300 (1995).

62. Pierrieau, E. Changes in cortical beta power predict motor control
flexibility, not vigor [Data set]. Zenodo. https://doi.org/10.5281/
zenodo.14638353 (2025).

Acknowledgements
This work was supported by the French National Research Agency
(BETAPARK Project, ANR-20-CE37-0012), France Parkinson association
(postdoctoral fellowship), and the University of Bordeaux IdEx “Investments
for the Future” program / GPR BRAIN_2030.

Author contributions
C.D., L.P. and E.P. designed the experiments (EXP1: C.D., L.P. and E.P.;
EXP2: E.P.), E.P. and C.G. conducted the experiments (EXP1: E.P., EXP2:

E.P.andC.G.), E.P. andA.P-V.analyzed thedata (EXP1:E.P., EXP2:E.P.and
A.P-V.), E.P. wrote the paper and C.J.-K., N.G. and B.L. edited the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-025-08465-2.

Correspondence and requests for materials should be addressed to
Emeline Pierrieau.

Peer review informationCommunications Biology thanks Shenghong He,
SimonAvrillonand theother, anonymous, reviewer(s) for their contribution to
the peer review of this work. Primary Handling Editors: Francesca Sylos-
Labini and Jasmine Pan. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s42003-025-08465-2 Article

Communications Biology |          (2025) 8:1041 13

https://doi.org/10.5281/zenodo.14638353
https://doi.org/10.5281/zenodo.14638353
https://doi.org/10.5281/zenodo.14638353
https://doi.org/10.1038/s42003-025-08465-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsbio

	Changes in cortical beta power predict motor control flexibility, not vigor
	Results
	NF condition (EXP1 and EXP2) and speed instruction (EXP2) significantly impacted motor cortical β power
	Modulations of motor cortical β power specifically impacted motor variables that determined task performance (EXP1)
	The direction of the relationship between β power and performance-related motor variables depended on task instruction (EXP2)

	Discussion
	Methods
	Participants
	Material
	EXP1
	EXP2

	Overview of the experimental tasks
	1. Trial timeline
	EXP1
	EXP2

	2. Experiment timeline
	EXP1
	EXP2


	Neurofeedback
	Motor task
	EXP1
	EXP2

	Data processing
	Behavior
	EEG

	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




