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Sleep is characterized by relative disconnection from the external environment and prompt
reversibility in response to salient stimuli. During non-rapid eye movement (NREM) sleep, reactive
electroencephalographic (EEG) slow waves (K-complexes, KC) are thought to both suppress the
processing of external stimuli and open ‘sentinel’ windows during which further relevant inputs may be
tracked. However, the extent to which a stimulus’s relevance modulates the KC-related response
remains unclear. Here, we investigated the impact of emotional information in human vocal bursts on
KC and post-KC activity. Twenty-five young adults were presented with vocal bursts conveying
negative, neutral, and positive emotions. We found that affective content influenced the rate,
amplitude, and cortical distribution of KCs, as well as post-KC high-frequency activity. These results
indicate that KCs are not all-or-none responses and that salient information is not entirely ‘quenched’
by KCs. These insights offer new perspectives on how sleep continuity and reversibility are regulated.

Sleep is a reversible, homeostatically regulated physiological state char-
acterized by behavioral quiescence and reduced responsiveness to envir-
onmental stimuli. Sleeping animals are unable to engage in productive
behaviors such as foraging, eating, drinking, or mate-seeking and are
exposed to potential threats in the surrounding environment". Viewed
through an evolutionary lens, such a peculiar condition appears biologically
plausible only under the assumption that it must serve at least one vital
function. Indeed, evidence indicates that sleep actually controls many
essential processes, including, amongst others, learning and memory con-
solidation, emotional regulation, and the maintenance of cognitive and
behavioral efficiency’. Notably, these functions are negatively affected by
sleep fragmentation due to frequent arousals or awakenings (e.g.," ). In this
light, functional mechanisms able to sustain sleep continuity in the face of
irrelevant environmental stimuli and favor reactivity to biologically relevant
ones may have obvious evolutionary advantages’.

K-complexes (KCs; <2 Hz) are hallmark features of non-rapid-eye-
movement (NREM) sleep, traditionally thought to regulate sensory dis-
connection by balancing sleep-protective and reactive functions’. In parti-
cular, KCs have been suggested to exhibit a “Janus-faced” nature, acting
both as stabilizers of sleep and as potential facilitators of arousal’. Like
spontaneous slow waves of NREM sleep, KCs reflect the coordinated
occurrence of neuronal off periods (silence) between on periods of active
firing". However, unlike typical slow waves, KCs can be triggered

by external sensory stimuli and tend to be larger and more widespread, likely
due to efficient bottom-up synchronization driven by arousal-related
structures'"'”. Previous work suggested that KCs may represent stereotyped,
all-or-none responses whose shape and topography remain largely inde-
pendent of stimulus salience or intensity”. Due to their nature of widely
synchronized neuronal silencing events, KCs are believed to play a key role
in “quenching” incoming sensory information, helping to preserve sleep
continuity'**. However, KCs also exhibit a reactive component: they are
often followed by increased high-frequency activity and/or microarousals,
suggesting a transient shift toward a “sentinel mode” that may enhance the
detection and processing of subsequent stimuli'*"*. Accordingly, KCs have
been suggested to first dampen incoming sensory input before briefly
promoting environmental monitoring*™*'. Despite compelling evidence for
this dual function, it remains unclear how stimulus salience influences the
protective versus reactive components of KCs and, consequently, the reg-
ulation of sensory disconnection during sleep.

Interestingly, social communication stimuli, especially those with
emotional content, hold unique relevance for human beings. Indeed, both
verbal and non-verbal affective cues may convey information of high
importance for awake and sleeping individuals alike, including the occur-
rence of potentially dangerous or favorable events. Evolutionarily, one would
expect selective pressures to favor adaptations that prioritize the processing
of such relevant communicative signals. Consistent with this, prior research
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demonstrated that certain stimuli - such as hearing one’s own name (vs.
someone else’s name;***?), unfamiliar voices (vs. familiar voices;'®"
or voices characterized by specific emotional prosody (vs. neutral voices;"**°)
- elicit distinctive EEG responses during sleep. However, most studies
investigating the influence of affective stimuli on sleep either excluded sti-
mulation trials containing KCs (e.g.,””) or did not analyze them separately
from trials without KCs (e.g.,”). The few studies focusing on KCs typically
employed a small number of stimuli that were repeatedly presented
throughout the night and across sleep stages. However, the ability of a
stimulus to evoke KCs is known to decrease with repeated exposure'®”’.
Furthermore, most studies have focused primarily on negative (vs. neutral)
emotional content, leaving the broader generalizability of their findings
open to question.

Building on these considerations, the present study aimed to investi-
gate if, and to what degree, KC-related brain responses are modulated by the
emotional valence of non-verbal human vocalizations (vocal bursts). To
optimize the induction of stimulus-dependent KCs, we employed an
experimental protocol in which distinct affective stimuli were presented
only once and with long inter-stimulus intervals, thereby minimizing the
risk of habituation and learning. Additionally, stimuli were delivered
exclusively during NREM sleep to prevent cross-stage interactions. Vocal
bursts were chosen over verbal stimuli as they represent an elementary,
phylogenetically older form of emotional expression**”. We applied a range
of analytical techniques to characterize KC-related responses, including
event-related potentials (ERPs), topographic and source-level analyses of
specific KC subcomponents, time-frequency decomposition, and assess-
ments of relative signal power changes. We hypothesized that emotionally
salient stimuli, signaling potential threats or positive events in the sleeper’s
environment, would elicit functional responses with enhanced high-fre-
quency, arousal-like components, reflecting a temporary shift toward a
brain “sentinel mode.”

Our results indicate that the occurrence, morphology, and spatial
distribution of KCs, as well as post-KC neural dynamics, are modulated by
the emotional salience of incoming stimuli. These results challenge the
traditional view of KCs as uniform, all-or-none responses and instead
suggest that they are embedded within a multiphasic, adaptive process. This

a b
Vocal Burst Stimuli
L ]
2+ ~.
o*.
— L]
E 1r °
3 .
¢
N
— o
©
(%]
>
e}
—
< 1r
Negative
25 Positive
»
-2 -1 0 1 2

Valence [z -score]

Fig. 1 | Experimental procedures. a Each dot represents a stimulus from the
original full pool (n = 1008 stimuli) plotted with respect to its z-scored valence
(x-axis) and arousal (y-axis). Colored dots represent the selected stimuli for
negative (blue), neutral (yellow), and positive (red) valence. b Experimental
paradigm. Each participant completed an overnight EEG session and a

process may allow the brain to transiently increase environmental aware-
ness without fully disrupting sleep, thereby supporting a dynamic balance
between sensory disconnection and responsiveness to salient external cues.

Results

Processing of stimulus valence during wakefulness

Negative, neutral, positive emotional vocal bust stimuli employed in the
present study were selected according to affective ratings provided by 12
healthy adult volunteers (Fig. 1a), as detailed in previous work™. Notably,
a-posteriori analyses revealed strong agreement between the ratings used for
stimulus selection and those provided by participants in the current
experiment, with Spearman’s rho values indicating high correlation for both
valence (rho =0.96; adjusted R*=0.94) and arousal (rho = 0.86; adjusted
R?=0.73; see Supplementary Fig. 1).

Stimulus-related EEG responses during wakefulness, measured by
Global Field Potentials (GFP), exhibited significant differences across the
three valence classes within the time window of 238 to 312 ms following
stimulus onset (p = 0.008, rmANOV A with cluster-mass correction; cluster
size =38 time-points; Fig. 2). Post-hoc comparisons revealed that both
negative and positive stimuli were associated with a stronger GFP response
relative to neutral ones (p <0.01, paired t-tests; also see Supplementary
Fig. 2). No difference was observed between negative and positive stimuli.

Proportion and amplitude of evoked KCs
Overall, 84.34 +7.83% of the stimuli were associated with an evoked KC
(Fig. 3). Stimuli with a positive valence had a lower probability of being
followed by a KC relative to both neutral (p = 0.002; Hedges’ || = 0.482,95%
CI = [0.799; 0.248]) and negative (p = 0.033; |g| = 0.364, CI = [0.723; 0.068])
stimuli (rmANOVA, F(2,48) = 5.07; p =0.009, Fig. 3b). The peak-to-peak
amplitude of evoked KCs was significantly larger for negative (p = 0.002; |
g =0.207, CI [0.103; 0.344]) and positive (p = 0.017; |g| = 0.134, CI = [0.027;
0.276]) stimuli relative to neutral ones (rmANOVA f(2,48) = 6.66; p = 0.003;
Fig. 3¢). No significant amplitude difference emerged between negative and
positive stimuli (p = 0.195).

Of note, we observed in the ERP plot for stimuli that did not evoke KCs
a negative deflection around the time of stimulus presentation (Fig. 3a).
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wakefulness session, the latter including an EEG recording during stimulus
presentation and an affective rating task. Vocal burst stimuli were presented in
random order during NREM sleep and wakefulness experimental sessions. The
photo used in this figure was reproduced and modified with permission from the

author, Agnese Morganti.
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Fig. 2 | Stimulus-dependent brain activity changes during wakefulness. a The
Global Field Potential (GFP) responses are shown as average + standard error of the
mean (SEM), with different colors for negative (blue), neutral (yellow), and positive
(red) valence stimuli. Time 0 corresponds to stimulus onset. The dark bars at the
bottom of the plot indicate uncorrected effects with p < 0.05 (rmANOVA). The gray
shaded area corresponds to significant effects surviving after correction for multiple
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comparisons (p < 0.05, corrected). b Topographic distribution of mean EEG voltages
across significant timepoints. ¢ Post-hoc comparisons based on mean GFP values
across significant timepoints, each dot represents a distinct participant (n = 25).
*p <0.05, ¥¥p < 0.01, ***p < 0.001. Box-plots whiskers represent + 1.5 IQR from
Q1/Qs3.

Based on this, we hypothesized that spontaneous slow waves occurring
around stimulus onset may have prevented the appearance of evoked KCs.
To test this hypothesis, we identified spontaneous slow waves that occurred
between —0.5 and +0.25 s relative to stimulus onset. We found that the
slow-wave occurrence probability around stimulus onset did not sig-
nificantly differ across the three valence classes rmANOVA, F(2,48) = 1.27;
p=0.291). On the other hand, trials lacking an evoked KC more often
coincided with the occurrence of spontaneous slow waves around the time
of stimulus presentation relative to trials with an evoked KC regardless of
stimulus valence (60 + 22% vs. 29 + 13%; p < 0.001; Fig. 4a). Therefore, we
next compared the properties of spontaneous slow waves across trials
associated and not associated with a subsequent KC. We found that spon-
taneous slow waves did not differ in terms of overall amplitude (Fig. 4b), but
showed instead significant differences in topographic distribution (Fig. 4c).
Specifically, slow waves presenting a stronger involvement of bilateral
temporal and parietal electrodes were less likely to be followed by an evoked
KC (paired-sample t-test, nonparametric cluster-based permutation tests
with 5000 iterations, corrected p < 0.5; cluster size = 27).

Topographic analysis of evoked KCs

In addition to the main negative component (N550), KCs are typically
characterized by early (P200) and late (P900) positive peaks (Supple-
mentary Fig. 3). Previous work suggested that the early components of the
KC may reflect a bottom-up excitatory cortical response holding infor-
mation about the physical characteristics of the stimulus, while late KC
components mainly reflect cortical activity suppression and cortico-
thalamic recursive interactions'*"”. Here, we found no significant impact of
stimulus valence on the topographic distribution of the P200 component
(rmANOVA, p>0.05; Fig. 5). Instead, significant effects were found for
both the N550 and the P900 components. Specifically, we found for the

N550 a significant effect of valence spanning centro-frontal and lateral
electrodes on both the right and left sides (rmANOVA, p = 0.003; cluster
size = 39). Post-hoc tests showed that these electrodes were associated with
a stronger involvement for negative relative to neutral stimuli (p <0.001;
median |g| =0.183, CI=[0.091; 0.321]). A follow-up source-modeling
analysis showed that differences in the negative component of the KC
between negative and neutral stimuli mainly involved a set of brain areas
distributed bilaterally in the superior/middle temporal region, orbito/
ventrolateral frontal region, and occipital region (q<0.05 FDR cor-
rected; Fig. 6a).

No significant differences were found between positive stimuli and
either negative or neutral stimuli. For P900, we found a centro-frontal effect
mainly extending to left-side scalp electrodes (rmANOVA, p =0.006;
cluster size =32). Post-hoc tests revealed in these electrodes a stronger
involvement for both negative (p < 0.001; median |g| = 0.381, CI = [0.107;
0.742]) and positive (p < 0.05; median |g| = 0.202, CI = [0.107; 0.742]) sti-
muli relative to neutral ones. Source-level analyses showed that differences
between positive and neutral stimuli in the late positive component of the
KC involved the caudal portion of the middle frontal area and the posterior
cingulate bilaterally, the left pre- and post-central areas, and the right lateral
orbitofrontal cortex and anterior cingulate areas (Fig. 6b). Source-level
differences between negative and neutral stimuli emerged in the bilateral
cingulate and parahippocampal areas bilaterally, left superior-temporal
areas, left pre-/post-central areas, and right medial-occipital and inferior-
temporal areas. No significant differences were found between negative and
positive stimuli.

Brain activity changes time-locked to evoked KCs
We next used time-frequency decomposition to examine brain activity
changes around and after evoked KCs. We observed significant differences
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Fig. 3 | Evoked KCs. a From left to right, the panel shows the ERPs computed from
all stimuli, the ERPs computed only from stimuli followed by a KC, and the ERPs
computed only from stimuli that did not lead to a KC. The green shaded area marks
the time between stimulus onset and offset, while the gray shaded area marks the
window used for baseline correction. The ERPs are shown as average + standard
error of the mean (SEM), with different colors for negative (blue), neutral (yellow),

and positive (red) valence stimuli. For display purposes, the plotted signals were
detrended using robust detrend and low-pass filtered at 45 Hz. b The boxplots show
the ratio between evoked KCs and administered stimuli for each valence class. ¢ The
boxplots show the mean peak-to-peak amplitude of evoked KCs for each valence
class. In b and ¢, each dot represents a distinct participant (n = 25). *p < 0.05,

**p < 0.01, ***p < 0.001. Box-plots whiskers represent + 1.5 IQR from Q1/Q3.
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Fig. 4 | Effect of spontaneous slow waves on evoked KCs. a The boxplots show the
percentage of spontaneous slow waves detected around the onset of stimulus pre-
sentation with respect to the total number of trials with evoked KCs (KC+) or no
detected KCs (KC—). b The boxplots show the mean amplitude of spontaneous slow
waves detected around the onset of stimulus presentation for trials with evoked KCs
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or no detected KCs. ¢ Difference in topographic scalp involvement of slow waves
detected around stimulus onset between trials with evoked KCs (orange) and no
detected KCs (purple). Black dots mark significant effects (p < 0.05, cluster-mass
correction). In a, b, each dot represents a distinct participant (n = 25). *p < 0.05,

**p <0.01, ***p < 0.001. Box-plots whiskers represent + 1.5 IQR from Q1/Q3.

between stimuli with both negative and positive valence in comparison to
neutral stimuli (p <0.05, cluster-based correction; Fig. 7), while no sig-
nificant differences emerged between the negative and positive valence
categories. In particular, we found that negative and positive valence stimuli
were associated with increases in the alpha-sigma range (816 Hz) between
—100 and 4500 ms relative to the negative peak of the KC, and in beta
activity (20-30 Hz) between 100 and 600 ms after the KC negative peak.
These changes were mainly observed in bilateral temporal and parietal

electrodes but also extended to central and frontal ones (see Supplementary
Figs. 4 and 5).

Brain activity changes after evoked KCs

Finally, we investigated potential changes in EEG activity in the few seconds
after a KC (from 2 to 6 s after the KC negative peak), focusing on delta, alpha,
and beta signal power'". We found no significant effects of valence for delta
and alpha power (Supplementary Fig. 6). Instead, a significant effect was
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Fig. 5 | Results of the topographic analyses for distinct components of the KC.

a From left to right, the panel shows the results of the rmANOVA for P200, N550,
and P900 components. Black dots mark electrodes showing a significant effect with
P <0.05, cluster-mass correction. b From left to right, the panel shows the post-hoc
comparisons for P200, N550, and P900 components. Each dot represents the average

value across significant electrodes shown in a for each participant (n = 25). P200
values were obtained computing the average across all electrodes as no significant
effects were observed in the topographic analysis. *p < 0.05, **p < 0.01,

**¥p < 0.001. Box-plots whiskers represent + 1.5 IQR from Q1/Q3.
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Fig. 6 | Source modeling analysis of the N550 and P900 KC components.
a Significant differences in the N550 KC component between negative and neutral
stimuli (t-score; g < 0.05, FDR correction). b Significant differences in the P900 KC

component between negative and neutral stimuli (left), and between positive and
neutral stimuli (right). Medial structures depicted in black were not modeled and
tested.

observed for beta power in a cluster of right-lateralized temporo-parietal
electrodes (p <0.05, cluster-mass correction; Fig. 8b). Post-hoc analyses
revealed a stronger beta increase for positive relative to both neutral
(p <0.01) and negative (p < 0.05) stimuli (Fig. 8c). A tendency toward higher
beta activity for negative relative to neutral stimuli was also observed
(p<0.1). This difference reached significance after the removal of two
outliers in the neutral condition (p < 0.05).

A source-level contrast between positive and neutral stimuli for beta
power revealed significant differences (g < 0.05, FDR correction) in bilateral

prefrontal and orbitofrontal areas, anterior cingulate cortex, inferior, medial,
and superior temporal cortices, and in the left precuneus and superior
parietal cortex (Fig. 8e).

Discussion

The present study investigated how affective information embedded into
human vocalizations influences the generation and properties of stimulus-
related KCs and post-KC brain activity during NREM sleep. Our results
showed that vocal bursts with a positive or negative valence trigger KCs with
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positive and neutral stimuli (right) in two representative electrodes. Dark contours
mark significant differences at p < 0.05, corrected. For each significant cluster, we
calculated the percent power difference relative to the neutral condition (mean +
SEM). F3 electrode: negative vs. neutral, cluster 1 =17.15 + 5.44%; positive vs.
neutral, cluster 1 =31.39 + 7.76%. CP4 electrode: negative vs. neutral, cluster
1=40.57 £ 10.06%, cluster 2 = 24.12 + 7.47%; positive vs. neutral, cluster

1=74.71 +50.83%, cluster 2 = 46.24 + 21.95%, cluster 3 = 27.27 + 7.60%.

distinctive characteristics relative to neutral stimuli, consistent with a pre-
served encoding of affective valence during NREM sleep even during and
after KCs, and in contrast with the common view of KCs as all-or-none
events. Given the hypothesized sleep-preserving and reactive roles of KCs,
these different responses may indicate a higher probability for affective
stimuli to induce a shift of the sleeping brain toward a “sentinel mode,” in
which the processing of external stimuli is temporarily enhanced.

Stimulus valence influences both the occurrence and
morphology of KCs

The rate at which external stimuli trigger KCs typically varies in the lit-
erature between 10% and 50% (e.g.,"***) and is known to depend on several
factors, including the sensory modality, the salience, and the repetition rate
of the stimuli, as well as interindividual differences among sleepers. In the
present study, over 80% of the stimuli elicited a KC, a rate appreciably higher
than those reported in previous studies using human verbal or nonverbal
vocal stimuli (e.g.,'*”). This higher rate is likely attributable to key differ-
ences in our stimulation protocol. Indeed, unlike most prior investigations,
we employed long inter-stimulus intervals (>8s) and avoided stimulus
repetition. While this design limited our ability to systematically assess
changes in brain responsivity across different sleep cycles or throughout the
night, it allowed us to isolate the effects of stimulus valence on KCs more
effectively. By reducing potential confounds such as refractory periods,
habituation, and stimulus learning, this approach ensured that the observed
differences in KC responses were not driven by adaptation effects but rather
by the intrinsic affective properties of the stimuli. This approach allowed us
to isolate the effect of valence on KCs, minimizing the possible impact of
confounding factors such as those related to refractory periods, habituation,
and stimulus learning.

Our results revealed that vocal bursts with a positive valence had a
lower probability of triggering a KC compared to both neutral and negative
stimuli. This finding suggests that positive stimuli may be identified by the
sleeping brain very early during stimulus processing, potentially due to
distinctive low-level features. The lower likelihood of KC occurrence might

indicate that the brain recognizes positive affective stimuli as less salient or
less likely to require an alerting response than negative or neutral stimuli'**.
However, this observation partially contrasts with other findings in this
study, which demonstrate stronger high-frequency increases following
positive stimuli compared to other valence classes (see below). One possible
explanation for this discrepancy is that while positive stimuli may be
interpreted as signaling a low risk for the sleeper, they could also serve as
social or motivationally relevant cues, prompting the brain to allocate
cognitive resources toward detecting potential advantageous opportunities
in the surroundings. According to this view, positive vocal bursts may
inherently carry a lower sleep-disruptive potential compared to threatening
or negative stimuli, thereby reducing the need for strong KC-mediated
suppression. Although positive stimuli may have lower arousal potential,
they could be more effective than negative stimuli in inducing a sentinel
mode state, owing to the engagement of reward-processing systems. This
dual-pathway model could reconcile the apparent contradiction between
reduced KCs and enhanced high-frequency responses, emphasizing the
brain’s ability to differentially prioritize stimuli based on their affective and
motivational significance.

The question of whether the amplitude and shape of K-complexes
(KCs) can be modulated by the salience and intensity of stimuli has been a
topic of considerable debate'’. Some evidence suggests that KCs may
function as all-or-none responses, showing no modulation based on sti-
mulus salience or intensity. For example, a recent study found that although
unfamiliar voices initially seemed to evoke larger KCs compared to familiar
voices, this difference vanished when intertrial variability in KC latency was
considered'®. However, this study employed strict criteria for identifying
potential KCs and did not account for possible topographic variations in KC
expression. In our findings, the peak-to-peak amplitude of evoked KCs was
significantly larger for both negative and positive stimuli compared to
neutral stimuli, with no significant amplitude differences between negative
and positive stimuli. This result aligns with our observation of a stronger
GFP response to negative and positive stimuli relative to neutral ones during
wakefulness. Overall, these findings indicate that emotional stimuli, whether
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topographic rmANOV A for beta power variations across valence classes. Black dots
mark electrodes showing a significant effect with p < 0.05, cluster-mass correction.

¢ Post-hoc comparisons between valence classes. Each dot represents average values
computed within the cluster of electrodes shown in b for each subject. The purple

dashed line marks two outliers in the neutral condition. After removal of these

0.5 _ 04
[5)
a
< 0.4¢ = 0.3
3 z
= 0.3 0.2
5 o \
[0}
2 0.2} S 0.1 /\ /\\,\ |
S 0.1 o 0 1
(0] -
@ 2 01
0r & . % -0.
" o
: - 02
Negative Neutral Positive 5 10 15 20 25 30 35

Frequency [Hz]

outliers the contrast between negative and neutral stimuli becomes significant
(purple *). *p < 0.05, **p < 0.01, ***p < 0.001. d Mean spectral power changes after
KCs computed as log(power_post)-log(power_pre) for each valence class (mean
across electrodes depicted in b). e Source modeling analysis showing significant beta-
power change differences between positive and neutral stimuli (g < 0.05, FDR cor-
rection). Medial structures depicted in black were not modeled and tested. Box-plots
whiskers represent + 1.5 IQR from Q1/Q3.
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positive or negative, tend to elicit more robust neural responses during both
wakefulness and sleep.

Further analyses assessing the topographic distribution of the different
components of evoked KCs revealed that negative-valence stimuli were
associated with a stronger negative EEG component (N550) across most
central, frontal, and lateral electrodes relative to neutral stimuli. The late
positive component of the KCs (P900) was instead stronger for both positive
and negative stimuli relative to neutral ones in centro-temporal and frontal
electrodes. Consistent with this, we also found that the time-window
between N550 and P900 was associated with stronger increases in alpha/
sigma and beta power for affectively-charged stimuli relative to neutral ones.
On the other hand, no significant differences were found for the early
positive KC component (P200). Moreover, no significant differences were
found between positive and negative stimuli for any of the examined KC
components. Overall, these results indicate that late KC components (N550-
P900) may be more sensitive to affective information potentially relevant for
the sleeper than the early P200 component. This observation is consistent
with evidence suggesting that the early and late components of the KC may
reflect different functional processes'*"”.

Notably, both scalp and source modeling analyses revealed that the
strongest differences in N550 and P900 amplitudes occurred in centro-
temporal and centro-frontal areas, roughly corresponding to somatomotor
and auditory cortices. This topographical distribution is consistent with
previous evidence indicating that KC responses integrate both a modality-
nonspecific component—likely driven by arousal-related structures with
preferential projections to somatomotor areas—and a sensory modality-
specific response involving primary sensory cortices™. Our results suggest
that both of these systems may be modulated by the emotional salience of
external stimuli.

Stimulus valence influences post-KC brain activity changes
Previous work showed that KCs and KC-like slow waves (collectively
indicated as type I waves) are followed by relative changes in brain activity
that may persist for a few seconds, including increases in delta, alpha, and
beta activity, and a decrease in sigma activity reflecting a temporary sup-
pression of thalamocortical spindles (11-15 Hz)'"'*”, Recent work showed
that KCs induced by unfamiliar voices are associated with stronger increases
in beta activity relative to KC triggered by familiar voices'’. The authors
suggested that such an increased beta activity may reflect a promoting effect
of KCs on the processing of subsequent relevant sensory information during
NREM sleep. In line with this view, Legendre and colleagues showed that the
few seconds after a KC are associated with an amplification in the processing
of relevant (vs. non-relevant) external signals”. Consistent with these
observations, here we found that KCs evoked by negative and positive
stimuli, relative to those induced by neutral stimuli, are followed by stronger
increases in beta activity in the few seconds after the KC itself, especially in
temporo-parietal and prefrontal areas. This spatial pattern appears to largely
overlap with brain functional systems involved in affective processing™®.
Interestingly, the observed effects were stronger for positive than for
negative stimuli. Taken in the context of the other results described in this
work, it appears that while both negative and positive stimuli induce
stronger KC-related responses relative to neutral stimuli, the effects of the
two valence classes may partially differ over time, with late responses being
stronger for positive than negative stimuli. This “amplification” of arousal-
like activity for positive stimuli is consistent with evidence indicating a
relative attentional bias for positive relative to negative stimuli during
wakefulness™"***. Of note, though, previous research suggests that this
bias may be more evident in the early stages of stimulus processing. The
difference observed here could reflect a slower and/or partially different
processing of affective stimuli during sleep relative to wakefulness.

The KC as part of a longer multi-phasic stimulus-related
response

Evoked KCs are classically regarded as “Janus-faced” events due to their
combination of slow-wave-like appearance and reactive nature’, Moreover,

KCs are usually defined as all-or-none, stereotypical events*"*. Our present
findings indicate that KCs should be regarded as the initial part of a multi-
phasic stimulus-related brain response unfolding over several seconds,
whose different components show different levels of stimulus-dependent
modulation. Previous work suggested that early components of the KC may
reflect the activation of both sensory-specific and non-sensory-specific,
arousal-related pathways'****. Indeed, activation patterns induced by dif-
ferent sensory modalities show both overlapping fronto-central compo-
nents and distinct sensory-specific responses. Here, we found that auditory
evoked KCs begin to differ according to the valence of stimuli starting from
the main negative wave component. The wave negative-to-positive transi-
tion is characterized by the appearance of spindle-like activity and increases
in beta power'*""'*'®”7 Al these elements are modulated by stimulus
valence, with stronger activity changes for negative and positive relative to
neutral stimuli. Then, KCs and KC-like slow waves are followed by arousal-
like brain activity changes, including increases in delta, alpha, and
beta activity, in combination with a temporary suppression of spindling
activity'*'*”’. This late phase, evident 2-6 s after the KC, may correspond to
a sentinel mode period'*", in which novel relevant stimuli may receive
enhanced processing and more easily induce an awakening”"’. Interestingly,
this sentinel state following evoked KCs appears to be modulated as a
function of the affective saliency of the incoming stimulus'’™**.

These observations suggest that the KC may act as an initial
“quenching” mechanism for stimulus processing at the cortical level, with
more salient and arousing stimuli evoking larger (i.e., more synchronous)
neural responses. However, this initial suppression is incomplete, as post-
KC activity continues to carry information about the stimulus’s (affective)
salience. In this context, stronger increases in wake-like activity may indicate
a state of heightened awareness of the external environment during sleep,
enhancing the detection of and response to subsequent relevant stimuli.

Spontaneous slow waves block the processing of sensory
information

Spontaneous slow waves, reflecting the alternation of neuronal activation and
silence, have been previously suggested to have a key role in reducing the level
of consciousness and ensuring sensory disconnection during sleep™*'. Indeed,
the occurrence of local slow waves out of phase across distinct regions may
limit the ability of different cortical areas to effectively communicate among
each other™™. Moreover, sensory information reaching neurons during an
off-state may not undergo further processing as those neurons might be
unable to properly respond to the stimulation (e.g,,"). Indeed, research in rats
indicates that higher amplitudes of spontaneous slow waves and shorter
latencies before stimulus presentation are associated with a decreased
occurrence of evoked slow waves”. Consistent with this, here we found that,
of those stimuli that did not trigger a KC (i.e., ~15% of all stimuli), about 60%
occurred during a spontaneous slow wave. Interestingly, we also noted that
while some spontaneous slow waves did not prevent the appearance of a KC,
those that did so were associated with a stronger involvement of bilateral
central and parietal electrodes. Overall, these findings indicate that the acti-
vation of the arousal system by external stimuli is not sufficient, per-se, to
trigger a KC, whose appearance also depends on the state of cortical neurons.
Moreover, they suggest that while spontaneous slow waves may contribute to
reducing the processing of sensory information, such a reduction may be less
efficient during the so-called “light sleep” (N1/N2), when slow waves are
sparse and small. In this phase of sleep, evoked KCs may have a more crucial
role in attenuating or suppressing incoming information. However, due to
the limited number of trials without evoked KCs in our study, these findings
warrant further investigation. Future research should include larger sample
sizes and specifically examine the influence of other oscillatory patterns, such
as sleep spindles, as well as spontaneous fluctuations in ongoing brain activity
on the brain’s response to emotionally charged stimuli.

Conclusions
In summary, our study demonstrates that the KC is not an all-or-none
phenomenon and that this wave is part of a longer, multi-phasic response
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whose elements may be distinctively modulated by stimulus (affective)
salience. Indeed, our results indicate that the likelihood of KC generation,
the morphology and topographic distribution of the KC, as well as early and
late post-KC brain activity changes, are all modulated by stimulus affective
valence. This multiphasic response and its flexibility may contribute to
guarantee an optimal balance between the needs for sleep continuity and
prompt reactivity to possible dangers or opportunities in physiological
conditions.

Material and methods

Participants

Thirty-three healthy adults (age: 27.15 £ 2.98 years, 18 females) were
recruited through word of mouth and participated in the study. A pre-
liminary screening interview was conducted to assess eligibility based on
inclusion and exclusion criteria. Volunteers were included if they reported
6-9h of sleep per night and good subjective sleep quality, with no self-
reported history or presence of neurological, psychiatric, or sleep disorders.
We excluded volunteers who were taking medications known to sig-
nificantly affect brain function and sleep. Women who were pregnant or
breastfeeding at the time of the study were also excluded.

The study was approved by the local Ethical Committee (Comitato
Etico di Area Vasta Nord Ovest Regione Toscana, protocol n. 24579/2018).
Each participant signed a written informed consent before taking part in the
experiment. All ethical regulations relevant to human research participants
were followed. The experimental protocol adhered to the principles of the
Declaration of Helsinki (2013).

Eight volunteers were excluded because they failed to reach or maintain
stable NREM sleep during the stimulation protocol. Therefore, the final
sample included a total of 25 participants (age: 27.6 + 2.8 years, range
22-32 years; 12 females).

Stimuli

Stimuli consisted of non-verbal utterances commonly referred to as vocal
bursts. A total of 192 vocal bursts, including an equal number of negative,
neutral, and positive valence stimuli, were obtained from a previously
published dataset™”. Specifically, the initial pool of stimuli included 2032
vocal bursts recorded from 56 speakers (26 F, age range 18-35 years) and
representing a wide range of emotional states. Since vocal bursts in this pool
had very different durations, the stimuli were modified (stretched or com-
pressed) to obtain a duration of exactly 850 ms. To avoid excessive distor-
tions, stimuli that would have had to be stretched or compressed in time by
more than 50% of their original duration (i.e., shorter than 567 ms or longer
than 1700 ms) were discarded at this stage. We retained a total of 1008 vocal
bursts. The stretching/compression procedure was performed using a pitch-
preserving algorithm (audioStretch, phase-vocoder method), which allowed
us to preserve the spectral properties of the stimuli (e.g., fundamental fre-
quency, speech harmonics). Finally, stimuli were normalized in loudness
according to the EBU R 128 Standard.

As detailed elsewhere”, twelve volunteers (age: 29.0 +2.1 years; 6
females) listened and rated the valence and arousal levels of all stimuli using
0-100 scales. Raters were instructed to focus on the speaker’s affective state.
We normalized the raw arousal and valence scores using the z-score
transformation for each rater and computed the average across raters. Then,
we discarded stimuli associated with low arousal scores (z-score < 0). The
retained stimuli were further classified based on their valence as follows:
negative = z-score < —1; neutral within+ 0.5 z-score range; positive = z-
score > +1. These criteria led to the selection of 267 stimuli. To ensure an
equal number of stimuli across valence classes, we identified the valence
class containing the smallest number of stimuli and selected an identical
number of stimuli in the other two classes. This led to the selection of
64 stimuli per class (Fig. 1a and Supplementary Fig. 7). For neutral stimuli,
we selected the 64 vocal bursts that showed the lowest standard deviation in
valence scores across raters. This approach was used to avoid including
stimuli that exhibit neutral average scores but show relatively inconsistent
valence ratings across participants™. For negative stimuli, we generated 1000

random selections of 64 stimuli and randomly chose one set of negative
stimuli showing no arousal difference with respect to positive stimuli
(p =0.998). It should be noted that while negative and positive stimuli did
not differ in arousal scores, significant differences were found between these
valence classes and neutral stimuli (p < 0.001), in line with the commonly
observed v-shaped distribution of valence-arousal scores in affective ratings
(Flg. 1a)33,51—54.

Protocol and procedures

Each participant completed first a sleep (overnight) and then a wakefulness
experimental session (Fig. 1b). Both sessions combined a continuous high-
density (hd-)EEG recording (64 channels, 500 Hz sampling rate; Magstim-
EGI) and an auditory stimulation protocol involving the presentation of
vocal bursts with negative, neutral, and positive affective valence. The
wakefulness EEG recordings were followed by a behavioral affective rating
task in which participants had to rate each vocal burst in terms of arousal
and valence (see below). During both the wakefulness and sleep sessions,
stimuli were delivered through in-ear headphones (RHA model: MA750),
with presentation controlled via custom scripts developed using Psy-
chtoolbox (v3.0.17;°) and MATLAB (*; version 2019b). The order of the
stimuli was randomized for each experimental session and participant. The
two experimental sessions, always performed in the same order, were spaced
one to four weeks. All experimental procedures were performed in a sound-
attenuated chamber (BOXY, B-Beng s.r.l, Italy).

The overnight session was scheduled according to the participants’
usual bedtime. Auditory stimulation was manually started after ~15 min of
stable N2 sleep. At the beginning of the procedure, “probe” vocal bursts
distinct from those employed as experimental stimuli were presented and
used to determine an optimal, individualized stimulation volume. Specifi-
cally, the volume was adjusted based on the participant’s response:
decreased if the stimuli induced major arousals or awakenings, or increased
if they failed to elicit a KC-like response. Once an optimal volume was
established (typically around 35 dB), it was kept constant throughout the
entire stimulation session. The experimenters initiated the presentation of
the actual experimental stimuli and continuously monitored the EEG
recording. Specifically, they paused the stimulation in the case of arousals,
awakenings, or transitions to REM sleep, resuming it once stable N2 sleep
was reached again. Auditory stimulation was administered only during the
first part of the night, after which the EEG cap was removed, and partici-
pants were allowed to complete their sleep undisturbed to minimize dis-
comfort and maximize compliance with the study procedures. Our priority
was to complete one full stimulation cycle, including a total of 192 stimuli.
Each stimulus was presented only once, and the inter-stimulus interval (IST)
was randomly selected in the range between 8 and 12 s”. This ISI range was
chosen based on pilot studies, which indicated that intervals longer than 8 s
maximized KC probability while minimizing arousal likelihood and opti-
mizing the overall duration of the experimental procedure.

The wakefulness session took place during daytime hours. Participants
were seated comfortably in a chair with their eyes closed. As for the sleep
session, each stimulus was presented only once. The ISI was randomly
selected in the range between 3 and 7 s. A standard volume of ~50 dB was
used. After the presentation of all stimuli, participants were offered a 10-min
break and subsequently completed an affective rating task in which they had
to provide valence and arousal scores for each stimulus. Specifically, stimuli
were again presented one by one at the same volume used during the night
experimental session, and participants expressed their ratings for each sti-
mulus using two 0-100 visual-analog scales (VAS) presented through a
custom MATLAB graphical user interface.

Sleep scoring

Offline sleep scoring was performed over 30-s epochs following standard
criteria by an expert operator blinded to the stimulation procedure (see
Supplementary Figs. 8 and 9). Four of the electrodes near the eyes were used
to monitor eye movements, while electrodes overlying the masseter muscles
and close to the chin were used to monitor muscle tone™.
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Sleep EEG data preprocessing

All recordings were preprocessed using a custom, automated pipeline based
on the combination of different plugins and functions available in the
EEGLAB toolbox™. First, a copy of the raw data was created and filtered
between 0.5 and 40 Hz (pop_eegfiltnew function; high-pass filter at 0.5 Hz,
stopband 0.25 Hz; low-pass filter at 40 Hz, stopband 45 Hz; notch filter
between 47 and 53 Hz, stopband 48-52 Hz; window type: Hamming). Then,
potential electrical bridges were identified using the eBridge tool*’. More-
over, bad channels were identified using the findNoisyChannels function
available within the PREP-pipeline plugin®'. The detected bridged and bad
channels were excluded from both the raw (unfiltered) and filtered data.
Then, EEG artifacts were reduced using a procedure based on independent
component analysis (ICA). Since ICA assumes data stationarity, we applied
preprocessing steps to mitigate violation of this assumption, including fil-
tering and segment rejection of rare non-stereotypical events™. Addition-
ally, we restricted ICA to N2/N3 epochs to maximize homogeneity in neural
and artifactual sources. Specifically, the filtered copy of the raw data was
divided into non-overlapping 1-s segments. Then, the EEGLAB pop_-
jointprob function was used to identify and reject segments containing
major artifacts (local threshold and global threshold were set to 3 SDs). All
segments that did not belong to NREM epochs were also discarded. The
analysis was performed using the runica EEGLAB function. The ICLabel
plugin® was used to classify the obtained ICs as representing brain or
artifactual activity. We rejected all the ICs with a “brain” classification
probability lower than 25%. Among the remaining ICs, we retained those
that were classified as “brain” activity and those identified as “non-brain,”
for which “brain” represented the second highest probability. On average,
we removed 67.58 £8.96% of identified ICs (range: 48.33%-82.25%) in
sleep data and 56.00 + 9.24% of identified ICs (range: 34.78%-71.43%) in
wakefulness data. The removed components included single-channel arti-
facts, residual eye movements, cardiac activity, and sweating-related arti-
facts (Supplementary Fig. 10). The ICA weights obtained from this
procedure and the indices of the ICs to be retained were eventually applied
to the raw, unfiltered, continuous recording. Finally, the signals of rejected
channels were interpolated from nearby channels using spherical splines
(EEGLAB pop_interp function).

In order to identify and reject stimulation trials associated with residual
artifactual activity, the preprocessed signal was filtered between 0.5 and
40 Hz, and segmented into epochs of 5.5 s, from —2 to +3.5 s with respect to
stimulus onset. Bad stimulation trials identified using the pop_jointprob
function were excluded from all subsequent analyses. Overall, we rejected
11.28 +5.00% of all trials (no differences between valence classes; rmA-
NOVA, F(2,48) =041, p = 0.66).

Slow-wave detection and analysis

For each stimulation trial, we defined as an evoked KC the largest slow-
wave-like response (if any) peaking between 0.25 and 1.75 s after stimulus
onset. This time window was chosen by taking into account the fact that KCs
have a peak frequency around or below 1 Hz, meaning their full waveform
(negative peak followed by a positive rebound) unfolds over ~1-2s. The
selected bounds allowed us to exclude early responses unlikely to reflect
stimulus-evoked KCs while ensuring that delayed but plausibly stimulus-
related KCs were still considered. Slow waves were detected automatically in
a composite EEG signal generated from filtered (0.5-40 Hz) and linked-
mastoid-referenced channels, as described in previous work'>*. This
method provides a single time reference (across electrodes) for each slow
wave and facilitates the detection of both local and widespread events.
Specifically, a negative-going signal envelope was calculated by averaging,
for each time-point, the three most negative samples (electrodes) after
discarding the single most negative value. This approach was used to
minimize the potential impact of any residual large-amplitude artifactual
activity in isolated electrodes. The resulting signal was band-pass filtered
between 0.5 and 4 Hz (Chebyshev type II filter) before the application of a
slow-wave detection procedure based on half-wave zero-crossings'***. Only
negative half-waves with a duration of between 0.25 and 1.25 s (<2 Hz) were

retained for further analyses. No amplitude thresholds were applied to avoid
making strong a priori assumptions about possible stimulus-dependent
variations in the amplitude of evoked slow waves. Instead, we considered
any slow wave occurring within the predefined time window as a potential
stimulus-evoked KC. Of note, though, the applied slow-wave detection
method intrinsically excludes small amplitude fluctuations, ensuring that
low-voltage noise does not influence the analysis. If multiple slow waves
were detected within the time window of interest, only the largest event was
selected. However, additional analyses examining the presence of sequential
slow-wave events (slow-wave trains) and their relationship to stimulus
valence are presented in Supplementary Figs. 11 and 12.

Since the negative-envelope signal does not allow for the identification
of meaningful positive signal deflections around the negative half-wave, we
determined for each detected wave the actual EEG channel that recorded the
largest negative peak (ie., the prototypical wave;”). For this, we applied the
same slow-wave detection approach described above to the signal of each
electrode and limited our search to a time window of 40 ms centered around
the peaks of slow waves detected using the negative-envelope method. For
all the prototypical slow waves, various parameters of interest were calcu-
lated and stored, including the timing of the negative peak, the timing of the
largest positive peaks preceding and following the negative half-wave, and
the amplitude (in uV) of such peaks. For evoked KCs, the early and late
positive peaks are commonly referred to as P200 and P900, respectively'’.
We defined slow-wave peak-to-peak amplitude as the absolute voltage
difference between the maximum wave negative peak (also indicated as
N550) and the maximum subsequent positive peak (P900). Moreover, we
defined the scalp “involvement” for each wave and peak of interest as the
mean EEG signal calculated for all electrodes in a 40 ms window centered on
the wave peaks.

Time-frequency analysis

A KC-locked time-frequency analysis was performed to investigate possible
effects of stimulus affective valence on high-frequency signal components.
Time-frequency decomposition was performed using the FieldTrip toolbox
for each stimulation trial and channel, from unfiltered data. This analysis
covered the 2-42 Hz frequency range (in steps of 2 Hz), and spanned the
time window between —2 and 3.5 s relative to stimulus onset (in steps of
0.02 s). The signal power at each frequency of interest and time point was
estimated using complex Morlet wavelets**”. The length of the wavelets
increased linearly from 4 to 10 cycles as frequency increased (21 frequency
steps), allowing for a balance between temporal precision at lower fre-
quencies and frequency resolution at higher frequencies. Then, the average
across trials was computed at the individual level for negative, neutral, and
positive stimuli. A baseline correction was applied for each trial and then
again on the average across trials, using the mean activity extracted from the
time window between —0.7 and —0.3 s relative to stimulus onset. The
baseline was kept temporally distant from the stimulus onset to avoid the
leakage of post-stimulus activity into the baseline period**. Noisy epochs for
each participant within each condition were then rejected based on the joint
probability across channels (pop_jointprob function”; rmANOVA for
rejected epochs across valence classes, p = 0.143). Trials in which a KC was
not identified were also excluded (see Results). To assess statistical differ-
ences between valence classes, the activity time-locked to evoked KCs was
extracted between —0.25 and +1.25 s relative to the KC maximum negative
peak in each trial. The analyses focused on the 2-30 Hz frequency range.

Power analysis

Previous work showed that KCs are followed by relative changes in brain
activity that last for a few seconds''*”. In particular, increases in signal
power are observed in the delta, alpha, and beta ranges, potentially indi-
cating the coexistence of arousal-like responses and increased slow-wave
activity (e.g., delta bursts). Therefore, here we explored whether such post-
KC variations differed between negative, neutral, and positive stimuli. For
each trial, the signal power spectral density (PSD) was estimated for each
electrode in the 2 s before the stimulation (pre) and in two non-overlapping
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2-s windows starting 2 s after the maximum negative peak of the evoked KC
(post). In each window, PSD was computed using the multitapers method
with a fixed spectral smoothing of +1 Hz. Then, we computed the signal
power in the delta (1-4 Hz), alpha (8-12 Hz), and beta (18-30 Hz) fre-
quency ranges. The signal power obtained in the post-KC windows was
averaged to obtain a single value per trial. Then, we calculated the post-KC
power variation using the formula: log(power_post)-log(power_pre).

Source modeling analysis

Differences detected by topographic comparisons were further explored
through source modeling to obtain a more accurate characterization of
regional brain activity variations as a function of stimulus valence. To
perform signal source estimation, we used the MNE-Python software
(version 1.5.0;""). The source reconstruction was computed for all trials that
included a KC response, in a 1-s window centered on the maximum wave
negative peak (N550). The “fsaverage” template was used to define the
boundary element model (BEM). This template is based on a combination
of 40 brain MRI scans and is available within the FreeSurfer software’".
Starting from this head model, we generated a 3-layer BEM (outer-skin,
outer-skull, inner-skull; respective conductivity: 0.3, 0.006, 0.3), and cor-
egistered it to the sensor space defined according to a predefined set of
standard electrode positions. The surface source space was represented
using 8196 vertices across the two hemispheres. We used the dynamic
statistical parametric maps (dSPM) algorithm™ and a regularized covar-
iance matrix computed from the whole time series of the epochs to obtain
the inverse solution. Moreover, we assigned a constrained loose orientation
of 0.2 to sources, and applied a depth whitening value of 4. Finally, we
computed the root sum square of the three reconstructed dipole orienta-
tions, obtaining a single source time series for each vertex. Given the
inherent limitations in spatial accuracy associated with using standardized
head models and template electrode positions, we adopted an atlas-based
approach focusing on relatively large cortical regions. This strategy mitigates
the impact of potential localization errors, which have been reported to
reach up to 2 cm when using generic head models compared to anatomically
accurate individual-specific models™. Specifically, we parceled the brain
surface according to the Desikan-Killiany Atlas’ and averaged signal values
within each parcel to obtain the respective regional brain activity estimate.
To assess significant regional differences across conditions, we computed
the mean signal in a 40 ms time window centered on the KC negative peak.
An identical procedure was used to compute the sources of the P900
component of the KC. Moreover, for frequency bands showing significant
valence-related differences in pre-to-post KC power changes at scalp level,
the analyses were repeated at source level.

Waking EEG and behavioral data preprocessing

Affective ratings collected during the wakefulness session were analyzed to
validate the classification of stimulus valence into negative, neutral, and
positive categories (see Stimuli section). Specifically, we evaluated the
consistency of the original study’s ratings with those obtained in the current
study by comparing average valence and arousal scores using Spearman’s
rank correlation and linear regression.

EEG data preprocessing was performed using the same automated
pipeline applied to sleep recordings. In this case, a different low-pass filter
was applied to allow preserving frequencies up to 45Hz (stopband:
50.62 Hz; transition band width: 11.25 Hz). In order to identify and reject
stimulation trials associated with residual artifactual activity, the pre-
processed signal was filtered and segmented into 4.5-s epochs, from —1.5 to
+3 s relative to stimulus onset. Then, the signal of each trial was baseline
corrected using a 1-s pre-stimulus window. Bad stimulation trials identified
using the pop_jointprob function were excluded from all subsequent ana-
lyses (12.29 +4.56% of all trials were rejected on average; no differences
between valence classes; rmANOVA, F(2,48) = 0.05, p = 0.95). To identify
potential differences in stimulus-evoked responses across valence classes we
computed the global field potential (GFP), which is a measure of the strength
of the scalp potential field. The GFP is calculated as the standard deviation of

electrode voltages at a given time point”. An important advantage of this
index relative to standard event-related potential analyses is that it does not
involve any a priori assumptions regarding where (in which electrodes)
scalp EEG changes should be expected to occur or differ across conditions.

Statistics and reproducibility

The properties of slow waves associated with stimulus presentation (prob-
ability of occurrence, amplitude, latency) and GFP changes in wakefulness
were compared across valence classes using repeated-measure (rm)ANO-
VAs. Post-hoc comparisons were performed using paired t-tests. For
topographic analyses, corrections for multiple comparisons were applied
using permutation-based cluster-mass corrections’. In brief, each test was
repeated (N = 1000) after shuffling the labels of the valence classes, and all
clusters of significant electrodes were identified (p < 0.05). Then, we com-
puted the sum of test statistics across electrodes belonging to the same
cluster, and the maximum obtained value was saved in a frequency table. A
minimum cluster-mass threshold corresponding to the 95th percentile of
the resulting distribution was applied to correct for multiple comparisons”.
A similar approach was used for GFP-based analyses, although in this case,
clusters were formed over time points, rather than across electrodes.

For time-frequency decompositions, comparisons between valence
classes (negative vs. neutral, positive vs. neutral, and negative vs. positive)
were performed with a cluster-based permutation using t-tests for depen-
dent samples™. Of note, the same contrasts were performed for each elec-
trode, for each time-point in a time-window from —250 ms to +1250 ms
relative to the KC negative peak, and in the frequency range between 2 Hz
and 30 Hz. Corrections for multiple comparisons were applied using a non-
parametric, Monte Carlo-based statistical approach with 5000 permuta-
tions. Cluster-level statistics were calculated taking the sum of the t-values
within every cluster (minimum neighbor channels = 2; alpha level = 0.05,
two-tailed, accounting for both positive and negative clusters).

For analyses in source space, an FDR correction was applied to account
for multiple comparisons across tested cortical brain regions.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The source data underlying the graphs and charts presented in this study are
provided in the Supplementary Data. Raw data and additional supporting
materials are available from the corresponding author upon reasonable
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