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Development of areal-level individualized
homologous functional parcellations
in youth
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Individualized functional brain networks from childhood to adolescence undergo varying patterns of
maturation, associatedwith higher-order cognition outcomes. However, the developmental trajectory
patterns based on homologous areal-level brain parcellations remain elusive. Here, we developed an
individualized homologous functional parcellation technique (IHFP) to map brain functional
development using resting-state functional magnetic resonance imaging data from the Lifespan
Human Connectome Project in Development study (N = 591) aged 8–21 years. We delineate
developmental trajectories based on areal-level homologous parcellations of resting-state functional
connectivity. We found functional features during adolescence exhibit unique developmental
trajectories, such as global mean functional connectivity with a widespread decrease across cerebral
cortex. Then, we matched areal-level parcellations into large-scale networks and demonstrated that
higher-order transmodal networks exhibited higher variability between developmental trajectories in
areal-level parcels. We reveal that IHFPs possess a stronger capability for creating more
homogeneous parcels in individuals, consequently showing a higher accuracy in predicting cognition
behaviors. Together, these results establish the fine-grained areal-level functional homologous
parcellations in adolescent development and will facilitate the understanding of human brain function
more precisely.

Imaging-based parcellation, delineation of functional brain areas and net-
works that present a highly heterogeneous landscape1,2, is fundamental for
understanding brain organization and function from person to person3–6.
Given that stable topology associated with individual cognitive abilities and
behaviors, brain parcellation has been widely used in the field of
neurodevelopment7,8 and clinical applications9,10. So far, most neurodeve-
lopmental studies based on homologous functional brain area have shown
cortical developmental progresses are unique in adolescence, which is char-
acterized by the maturation of cognitive, affective, and social processes8,11,12.
However, typical research on adolescent brain development with indivi-
dualized functional atlasmainly focus on large-scale networks13–16, remaining
gaps in fine-grained individualized homologous parcellations. Beyond large-
scale networks, numerous fine-grained areal-level parcellation atlases have
been proposed in group-level17–22. Even though existing group-level parcel-
lationatfiner scales allow for regional correspondence, this correspondence is
limited to labels and does not account for functional or spatial information.
Furthermore, due to substantial intersubject variability, establishing

functional homology at finer scales remains a major challenge23. As a result,
normative developmental trajectories at the fine-grained areal-level remain
poorly understood. Compared to group-level approaches, individualized
parcellations may offer greater sensitivity in capturing subject-specific
features24,25.

Previous studies of large-scale brainnetworks haveprovided functional
insights into spatiotemporal maturation of functional regions across the
cortex. For example, functional topography in association cortex is most
variable and refined with age14. Yet, the homogeneity of developmental
trajectories in the association cortex and its relationship with individual
cognitive abilities remain unclear at a fine-grained areal-level9,18,25. Areal-
level individual parcellations can correspondwithmore precision to cortical
areas andphysiological features19,20. Related to this, various sites partaking in
the defaultmode network (DMN) function could be further subdivided into
functionally distinct subcomponents by the coactivation pattern with the
rest of the brain21,22. Recently, Sun et al.15 established the normative growth
charts of functional brain connectome of system-level brain atlases across
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lifespan. However, studies of adolescent development with fine-grained
areal-level brain parcellations remain scarce23.

Recently, the group-level functional parcellationmaps19, characterizing
a finer feature based on functional magnetic resonance imaging (fMRI)
compared toYeo’s large-scalenetwork-level atlas havebeen established26. By
subdividing higher-order association cortical network into subcomponents,
Wang et al.21 demonstrated the association among refined subcomponents
with multidimensional cognitive processes and health conditions. Using
high-resolution images and group-level priori parcellation features, Kong
et al.20,27 developed individualized brain atlases in areal-level, exhibiting
better behavioral prediction performance. Individualized areal-level brain
parcellation also shows significant advantages in navigated neuromodula-
tion and personalized treatment of neuropsychiatric diseases23. In addition,
the areal-level functional parcellations of the infant cerebral cortex was
established with meaningful cortical functional correspondence28,29. Nota-
bly, there are common ‘border’ and ‘ectopic’ variants across individuals,
differing in their location, network associations, properties of subgroups of
individuals, activations during tasks, and prediction of behavioral

phenotypes4. Thus, there are noteworthy challenges, especially functional
homology, to capture the dynamic developmental process of areal-level
parcellations for intersubject correspondence in functional organization.
Moreover, a normative model of brain functional development based on
individualized, areal-level homologous parcellation maps will facilitate a
more precise characterization of developmental trajectories of the brain.

Here, we present the fine-grained areal-level individualized homo-
logous functional parcellations (IHFPs) from childhood to adolescence
(total age range: 8–21, total N = 591) (Fig. 1a). Subsequently, we delineated
the normative growth curves of resting-state functional connectivity at
areal-level (Fig. 1b). Thepatterns of the functionalmetrics suggested that the
human brain undergoes continuous dynamic adaptation during
development8,11,15,16,29. We then established the alignment between IHFPs
and large-scale networks, to explore the additional insights revealed by fine-
grained areal-level parcellations in network-level across adolescent devel-
opment. We reveal that developmental trajectory in network-level exhibits
differences from areal-level developmental trajectories, with higher varia-
bility between areal- and network-level trajectories in higher-order

Fig. 1 | Study design overview and methodological approach. aWe included
structural and functional fMRI images from 591 typically developing subjects aged
8–21 years from the HCP-D dataset. First, task activation maps were integrated into
the gradient-weighted Markov Random Field (gwMRF) model to constrain group-
level parcellations. Then, individualized homologous functional parcellations
(IHFPs) were constructed using a variational Bayes expectation-maximization
(VBEM) algorithm21,28, with areal matching procedures aligned to reference par-
cellations. For more details, please see Supplementary Fig. 2. b Resting-state func-
tional connectivity can provide a criterion for characterizing functional
development. Then, we leverage GAMLSS to calculate the developmental

trajectories of areal- and network-level functional connectivity and quantify the
whole-brain distribution of its mean strength and growth rate. cWe developed
prediction models based on the within-system and between-system functional
connectivity of IHFPs to predict adolescent cognitive behaviors. These models were
compared to state-of-the-art individualized functional parcellations proposed by
Kong et al. (noted as Kong2021)21. We selected 6 cognitive behaviors that stable and
well-performed documented in previous studies28,40,41, including reading, inhibition,
vocabulary, working memory, fluid cognition, and crystallized cognition in predict
models.
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association networks. Finally, predictive modeling of cognitive behavior
revealed that IHFPs outperform other individualized fine-scale atlas20,
indicating that functional homology alignment implement in our IHFPs
framework enables more accurate mapping between brain function and
behavior (Fig. 1c). Collectively, the insights and data suggest that fine-
grained areal-level homologous parcellation enables better functional cor-
respondence across individuals and that developmental trajectories derived
from these functionally aligned regions provide valuable insights into the
fine-scale maturation of human brain function.

Results
We utilized 591 high-resolution adolescent fMRI images, from the Lifespan
Human Connectome Project in Development (HCP-D) study to construct
IHFPs, spanning fromchildhood to adolescence,moredemographic details,
please see Table 1 and Supplementary Fig. 1. Specifically, we followed the
standard HCP data processing pipeline30, and extracted surface-based
preprocessed blood oxygenation level-dependent (BOLD) signals in
fs_LR_32k space. Then, we incorporated functional surface alignment
boundary maps, task activation maps and resting-state functional con-
nectivity (RSFC) to construct group-level, age-related parcellations as pre-
cise prior information for establishing an individualized atlas. To generate
functional homologous brain areas across individuals, we performed
homologous functional matching across all fine-grained individual brain
parcellations to age-independent group-level parcellations to obtain the

IHFPs (Supplementary Fig. 2). To investigate age-related nonlinear growth
patterns of functional representation using IHFPs, we applied the general-
ized additive models for local, scale, and shape (GAMLSS) to elucidate
developmental trajectories in youth,with sex and in-scanner headmotion as
fixed effects and scanner sites as random effects15,31–34. Furthermore, we
established the correspondence between homologous parcellations and
large-scale networks, offering insights into the developmental patterns and
interrelationships of brain function across fine-grained parcels within cor-
responding networks (Supplementary Fig. 3). Finally, we predicted cogni-
tion behaviors for application of our areal-level IHFPs.

Task-constrained group-level parcellations exhibit finer bound-
aries and inducing higher functional homogeneity
We first divided subjects from 8 years to 21 years into 5 distinct age groups
for cross-sectional analyses that target specific age groups12,14,15,28,35 (Table 1).
The changes in the age-related andage-independent group-average gradient
maps during development were relatively stable, with higher functional
gradients predominantly observed in the middle frontal gyrus, supramar-
ginal gyrus, precuneus, indicating stronger intersubject similarity in gra-
dient boundaries within these regions (Fig. 2a, Supplementary Fig. 4a). As
the number of iterations increased in the iterative surface alignment model
(for more details please see the Methods), the variability in the functional
gradient maps decreased significantly (Supplementary Fig. 4b, top panel).
Age-independent local gradient maps began to stabilize around 7th itera-
tion, and after 15th iterations, the variability became nonsignificant
(P = 0.12, two-tailed paired-sample t-test between two consecutive itera-
tions). Compared to themaps from the 1st iteration, the stabilized boundary
map after 15th iterations revealed new gradient boundaries in the superior
frontal gyrus and parietal cortex, indicating that the alignment process can
uncover additional gradient information (Supplementary Fig. 4b, bot-
tom panel).

The stabilized gradient boundarymapwas integrated into the gradient-
weighted Markov Random Field (gwMRF) model19, generating age-related
group-level parcellations. To enhance boundary accuracy, we incorporated
a task activation term into the MRF objective function, in addition to the
original local gradient term, global similarity termand spatial connectedness
term. Age-related and age-independent group parcellations were shown in

Table 1 | Demographic information of the HCP-D dataset

Age
group

Age range
(Mean ± SD)

Sex
(M/F)

Subject
number

fMRI scans
number

Age group1 8–9 (9.08 ± 0.53) 27/58 85 339

Age group2 10–12 (11.35 ± 0.88) 61/61 122 482

Age group3 13–15 (14.37 ± 0.84) 80/84 164 656

Age group4 16–18 (17.29 ± 0.90) 48/57 105 418

Age group5 19–21 (20.52 ± 0.90) 54/61 115 456

Cognition behavior 8–19 (12.60 ± 2.66) 219/181 400 1591

Fig. 2 | The local gradient maps and group-level
parcellations ofHCP-Ddataset. aAge-related local
gradient maps computed by averaging individual
local gradientmaps after co-registering, as described
in Wang et al.29. Only the left hemisphere is shown
for visualization purposes; parcellations in right
hemisphere are also identified, as shown in Sup-
plementary Fig. 4a. b Age-related fine-grained par-
cellations were derived from local gradient maps,
task-fMRI and RSFC patterns using the gwMRF
(right hemisphere are shown in Supplementary
Fig. 4c). cMean intersubject variability of functional
connectivity based on age-related and age-
independent group-level parcellations was averaged
within each age group, corrected by regressing out
the mean intrasubject variability. Right hemi-
sphere’s intersubject functional connectivity varia-
bility is shown in Supplementary Fig. 4d. d Task-
related inhomogeneity, measured by the standard
deviation of task fMRI activation within each parcel,
was compared between gwMRF and our task-
constrained gwMRF age-related parcellations20.
Lower task-related inhomogeneity indicates higher
functional homogeneity. Distribution of data points
was represented as each individual’s task-related
inhomogeneity. Statistical significance assessed
using a two-tailed paired t-test, *P < 0.001. y, year.
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Fig. 2b and Supplementary Fig. 4c. The primarymotor cortex, occipital, and
posterior cingulate cortex exhibited stable parcel topologies, whereas areas
such as the lateral prefrontal cortex and posterior superior temporal gyrus
showed high variability of parcel topologies across age-related group-level
parcellations.We observed that the boundaries formed by the combination
of large-scale network boundaries and corresponding regional parcellations
generally aligned, such as the boundary of the posterior cingulate cortex
parcellation is similar to that of the default A in the Yeo 17-networks
parcellation26. This alignment provides valuable guidance for the sub-
sequentmatching of areal-level parcellations with large-scale networks. The
intersubject variability36 in functional connectivity within each age group
was highest in the prefrontal and posterior superior temporal regions and
exhibited an age-related decrease in the middle frontal gyrus, inferior par-
ietal lobule, and superior temporal gyrus (Fig. 2c and Supplemen-
tary Fig. 4d).

Subsequently, we compared the functional inhomogeneity between the
original gwMRF19 and our task-constrained gwMRF model using three
HCP-D task-fMRI datasets (N = 587 for Emotion; N = 577 for Conditioned
ApproachResponse InhibitionTask (CARIT);N = 588 forGUESSING)37. For
each subject, functional inhomogeneity was averaged across all parcels and
compared within each cognitive domain19. The group-level parcellations
constrained by fMRI task activation exhibited significantly lower functional
inhomogeneity within each of the three tasks (Fig. 2d, all P-values < 0.001,
two-tailed paired t-test), enabling the generation of high-quality individual
parcellations for developmental studies.

Mapping normative trajectories of the areal-level functional
connectivity in youth
We employed task-constrained, age-specific group-level parcellations as
priors, rather than age-independent group-level parcellation, in order to
preserve the unique topological features characteristic of each age group as
much as possible. Applying the contiguous multi-session hierarchical
Bayesianmodel (cMS-HBM)20, we generated individualized parcellations at
finer-scales for eachagegroup.The cMS-HBMmethodwas selectedbecause
it provides stablemapping results and consistent region labeling, even in the
presence of high individual variability and poor data quality20. However,
cross-individual alignment of functional parcellations basedongrouppriors
does not guarantee functional homology between parcels24. To address this,
we applied a functional homologous alignment approach across individual
parcellations to obtained IHFPs (for more details please see the Methods).
Examples of functional homologous parcellations for representative parti-
cipants across age groups are shown in Fig. 3a and Supplementary Fig. 5a.
The group-level parcellation comprised 398 cortical parcels, and all indi-
viduals retained at least 396 parcels. The occasional absence of one or two
parcels per individual likely reflects inherent functional variability. For
developmental trajectory analyses, each parcel retained data from at least
92% of participants, ensuring a balance between capturing individual
functional variability andmaintaining result reliability.We then performed
split-half reliability analysis to assess the reliability of the parcellations3. The
reliability of parcellations was evaluated both within intersubject and
intrasubject, quantifying the stability of IHFPs using the distribution of
Dice’s coefficients andnormalizedmutual information (NMI). Themeanof
Dice’s coefficent for each parcel across cerebral cortex was calculated by
averaging across pairs of subjects, both intrasubjects and intersubjects. The
mean Dice’s coefficient for intrasubject comparisons was 77.5%, sig-
nificantly higher than the 66.6% for intersubject comparisons (P < 0.001,
two-tailed two-sample t-test, Fig. 3b and Supplementary Fig. 5b). We also
plotted the NMI distribution for intrasubject and intersubject test-retest
reliability (Fig. 3b). The mean intersubject NMI was 0.90, while the mean
intrasubjectNMIwas0.93, further comfirming stability of IHFPs (P < 0.001,
unequal variance assumed, one-tailed).

To more accurately capture patterns of brain functional development,
we used a GAMLSS model to fit nonlinear developmental trajectories of
RSFC based on IHFPs, including global mean, within-system and between-
system functional connectivity (Fig. 3c, Supplementary Figs. 5c and 6–7).

The strength of normative trajectory for both global mean and between-
system functional connectivity exhibited similar spatial patterns, peaking in
the somatosensory cortex and visual areas at each year. Growth rates were
negative from ages 8 to 10 in the primary motor cortex, superior temporal
sulcus, inferior temporal sulcus, and inferior frontal gyrus, gradually
approaching zero thereafter for global mean functional connectivity.
However, the growth rate continued to increase up to age 21. In prefrontal
cortex, the growth rates were increased into positive by age 20. For within-
system functional connectivity, the highest functional connectivity were
observed in the somatosensory and parietal cortices, exhibiting a decreasing
trend with age. The corresponding growth rates also transitioned from
negative values toward zero over time. In the prefrontal cortex and lateral
occipital sulcus, the growth rates were positive between ages 8 and 10,
gradually declining to zero thereafter. By age 19, growth rates in the primary
motor and visual cortices shifted to positive values but began to decrease
again, turning negative by age 21.

To assess the potential influence of age group sample size imbalance on
the results, we created balanced dataset by matching sample size, scanner
sites, and head motion (Supplementary Table 1). We modeled areal-level
developmental trajectories of global mean, within-system, and between-
system functional connectivity using the balanced dataset (Supplementary
Fig. 8). The strength of the normative trajectory at each year in the balanced
dataset closely mirrored that observed in the discovery cohort. The con-
sistency of growth rates between the balanced and discovery cohorts
highlights the robustness of the results. For both the global mean and
between-system functional connectivity, the growth ratewithin the primary
motor cortex also exhibited negative growth which similar to the discovery
cohort. Furthermore, for within-system functional connectivity, the num-
ber of regions showing positive growth rates in the prefrontal cortex was
reduced as age incresed. Despite these discrepancies, the overarching
developmental patterns were preserved. These results suggest that although
differences in sample size introduced some fluctuations in the develop-
mental trajectories, the overall patterns observed in the control group closely
mirrored those of the discovery cohort.

Higher variability of developmental patterns exhibits in higher-
order association cortices
To investigate thehetergeneity of developmental patterns across the cerebral
cortex, we established correspondences between our areal-level IHFPs and
large-scale networks (for more details please see the Methods). Specifically,
we first assigned each parcels of IHFPs into a canonical 17-network
parcellations26, and then averaged these individualized networks to obtain
the network probability map. Further, we thresholded the probability map
of each network to construct an alternate functional 17-networks parcel-
lation (Fig. 4a), with striped parcellations indicate that a parcel corre-
sponding tomultiple networks in the assignment, while gray regions denote
parcels where the stability of networkmatching falls bellow the set threshold
(Fig. 4a shows the 92% threshold, with results from 98% to 86% in 2%
decrements in Supplementary Fig. 9). Age-independent parcel-to-network
matching showedpredominantly one-to-one relationships in sensorimotor,
auditory, and visual networks. In contrast, alternate parcellationsweremore
frequently in higher-order association cortices. The limbic network, located
around the medial wall, often exhibiting lower signal-to-noise ratio (SNR),
was excluded from further analysis38.

Based on the parcel-to-networkmatching procedure, we calculated the
parcel-weighted functional features within eachmatched network and used
the GAMLSSmodel to fit their normative trajectories (Fig. 4b). To examine
the normative trajectories constructed using the alternate functional 17-
network parcellation derived from IHFPs, we also conducted comparative
analyses using the traditional group-level Yeo 17-network parcellation.
Developmental trajectories of globalmean functional connectivity across all
networks generally exhibited a downward trend. In terms of developmental
rates, the temporal-parietal, default B, ventral attention B, and control
networks exhibited a positive growth trendwith age. By contrast, the default
A, somatomotor, and visual networks showed growth rates that increased
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Fig. 3 | Strength and growth rate of developmental trajectories in youth based on
IHFPs at areal-level. a Example of areal-level parcellations constructed using the
IHFP technique. Resting-state fMRI timeseries were split in half, with parcellations
generated from each half of the timeseries. b Stability of IHFPswas assessed using the
Dice’s coefficient andNMI across intrasubject and intersubject homologous parcels.
c Strength of normative trajectories of global mean functional connectivity was
quantified as the 50th percentile at each age and visualized on the cortex using the

age-independent group-average parcellation. d Growth rate of normative trajec-
tories of global mean functional connectivity was quantified as the first derivative of
the 50th percentile at each age and visualized on the cerebral cortex using the age-
independent group-average parcellation. Only left hemisphere is shown here; right
hemisphere is displayed in Supplementary Fig. 5. NMI, normalized mutual infor-
mation; y year.
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Fig. 4 | Fine-grained areal-level IHFPs assigned to canonical 17-networks.
a Alternate functional 17-networks parcellation calculated by averaging the
network-assigned IHFPs (with threshold from 98% to 86% in 2% decrements in
Supplementary Fig. 3). Striped colors indicate parcels that are assigned to multiple
networks during the assignment procedure. bNormative trajectories of global mean
functional connectivity for each assigned network based on IHFPs and Yeo 17-
network parcellations. These results indicate that the system-level normative model
trajectories exhibit high reproducibility in IHFPs compared with group averaged

parcellation. c Variability of normative trajectories of global mean functional con-
nectivity, represented by the mean absolute deviation of each parcel’s global mean
functional connectivity related to its corresponding functional network, regressed
out the number of parcels assigned to each network. Compared to group averaged
large-scale network parcellations, the normative model trajectories based on IHFPs
exhibit spatial heterogeneity at the system level. Data points for constructing box
plots were calculated as variability for each parcel’s trajectory corresponding to
network-level trajectory.
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initially but declined at later ages (Supplementary Fig. 10). Results based on
the alternate functional 17-network parcellation derived from IHFPs closely
resembled those from the Yeo 17-network parcellation, indicating that
IHFPs effectively recapitulate network-level developmental patterns.

To investigate the variability of normative trajectories of fine-
grained areal-level global mean functional connectivity within each large-
scale networks, we then calculated the mean absolute deviation between
each parcel’s trajectory and its corresponding network-level normative
trajectory, regressed out the number of parcels assigned to each network.
The variability of normative trajectories within each network was
quantified by averaging the mean absolute deviation for all parcels within
the network. The variability of normative trajectories across large-scale
networks generally shifted from primary and unimodal sensory and
motor cortices to higher-order association cortices (Fig. 4c). Specifically,
the default mode, control, and ventral attention networks exhibited
higher variability of normative trajectories than the temporoparietal, and
sensorimotor networks. These results demonstrate that the normative
trajectories of IHFPs exhibit heterogeneous variability across cortical

hierarchies, suggesting that IHFPs can provide precise insight into ado-
lescent developmental patterns.

Higher performance in predicting behavior with functional con-
nectome properties based on IHFPs
Having established the normative trajectories in youth, we further used
kernel ridge regression to predict behavioral outcomes based on functional
connectome properties from IHFPs, comparing the results with another
fine-grained individualized parcellation method proposed by Kong et al.
(noted as Kong2021)20. We selected 6 cognitive behavioral measures from
400 individuals in HCP-D dataset, which are a subset of the behavioral
measures analyzed in previous studies27,39–41. Within-system and between-
system functional connectivity were calculated using both IHFPs and
Kong2021 atlases as neuroimaging features for prediction. A nested cross-
validation procedure, with 20 random replications of 10-fold nested cross-
validation, was employed to evaluate the predictive models. Figure 5a, b
shows the prediction accuracies for the six behavioral measures using the
two different parcellation approaches. For all behavioral measures, the

Fig. 5 | Prediction performance and features for behavioral measures using
kernel ridge regression. a Prediction performance using within-system functional
connectivity based on the Kong2021 atlas21 and our IHFPs. The behavioral measures
include reading, inhibition, vocabulary, working memory, fluid cognition, and
crystallized cognition. b Prediction performance using between-system functional
connectivity based on Kong2021 atlas and our IHFPs. Distribution of data points
was calculated through 20 random replications of 10-fold nested cross-valida-
tion, resulting in 200 predictions. c Predictive-feature metrics for each behavioral

measure using within-system functional connectivity, with gray lines depicting
parcellation boundaries. Right hemisphere is displayed in Supplementary Fig. 11.
d Prediction feature maps when using between-system functional connectivity to
predict behavioral measures, with white lines depicting network boundaries. For
visualization, the values within each matrix of feature predictability were divided by
their standard deviations (across all entries in the matrix). *P < 0.0001, two-tailed
paired t-test.
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prediction performance using within-system functional connectivity based
on IHFPs was significantly higher than that based on Kong2021 (Fig. 5a, all
P < 0.0001, two-tailed paired t-test) after correction for multiple compar-
isons (FDR q < 0.05), with themean prediction accuracy for fluid cognition
in IHFPs reaching highest level (mean accuracy = 0.21 ± 0.15). Similarly,
prediction using between-system functional connectivity with IHFPs out-
performed Kong2021-based predictions (Fig. 5b, all P < 0.0001, two-tailed
paired t-test with FDR corrected), with notable predictive performance for
fluid cognition in IHFPs (mean accuracy = 0.25 ± 0.15).

We further explored the topography of predictive network features for
each behavioral measure. We applied Haufe transformation to invert all
prediction models into forward models, which allowed us to obtain pre-
dictive featurematrices39. Haufe’s inversion approach generated positive (or
negative) predictive feature maps representing the weight maps of the
predictive models. Using within-system functional connectivity for beha-
vioral predictions enabled a more detailed topological analysis of con-
tributions from different brain regions to specific behavior predictions
(Fig. 5c). For behavioral predictions, between-system functional con-
nectivity featurematriceswere partitioned into blocks according to network
structures (Fig. 5d). We also computed within-system and between-system
functional connectivity predictive feature matrices for the Kong2021 atlas,
which revealed a similar whole-brain spatial distribution pattern to that
predicted by IHFPs (Supplementary Figs. 12–13).

In predicting behavior of reading, the within-system functional con-
nectivity features in the dorsal attention, ventral attention, and control A
networks displayed positive predictivity, while in the default mode and
visual networks showed negative predictivity. When using between-system
functional connectivity as a feature for reading behavior prediction, func-
tional connectivity between the visual, dorsal attention, ventral attention,
and control networks showed higher positive predictivity, followed by the
sensorimotor, temporal parietal networks. However, between-system
functional connectivity in the default C and the other two default mode
sub-networks (default A and B) exhibited negative predictivity. These
results suggest that reading behavior is closely associated with commu-
nication among the visual, dorsal attention, and ventral attention networks,
as well as the involvement of sensorimotor and control networks.

In predicting behavior of inhibition, the within-system functional
connectivity in the sensorimotor and auditory networks demonstrated
strong positive predictivity, while the default mode and control networks
exhibited negative predictivity. Additionally, within-system functional
connectivity in the default B/C, control, and ventral attention networks
showed negative predictivity. For the between-system, the functional con-
nectivity between sensorimotor and visual networks exhibited significantly
higher predictive performance compared to other networks. These findings
suggest that inhibition behavior ismore closely related to the primary visual
and sensorimotor networks and inversely related to higher-order associa-
tion cortices.

In predicting behavior of vocabulary, the within-system functional
connectivity showed positive predictivity which was observed in the default
B/C and control networks, while negative predictivity was found in the
somatomotor and default A networks. As for between-system functional
connectivity, the functional connectivity between the control, ventral
attention, dorsal attention, and somatomotor B networks showed strong
positive predictivity. These results suggest that vocabulary behavior is pri-
marily associated with the default mode, control, ventral attention, and
dorsal attention networks.

Working memory behavior is assessed using a sequencing test that
requires immediate recall and ordering of visually and aurally presented
stimuli42. For the within-system functional connectivity, we found that the
sensorimotor network showed high positive predictivity, while the default
mode network showed high negative predictivity. When using between-
system functional connectivity for predicting working memory behavior,
functional connectivity between the visual andmost other networks (except
default A/B) showed positively predictive. Furthermore, the between-
system functional connectivity in default mode and control networks with

the auditory, ventral attention, dorsal attention, and sensorimotor networks
also showedstrongpositive predictivity. In total, workingmemorybehavior,
compared to other behaviors, involves a broader range of whole-brain
functional networks, including visual, sensorimotor, control, and default
mode networks, reflecting extensive inter-network communications.

For fluid cognition, the within-system functional connectivity showed
positive predictivity in the somatomotorB anddefault B networks,while the
somatomotor A, visual B, and default A networks showed negative pre-
dictivity. When using between-system functional connectivity for predic-
tions, the sensorimotor and visual networks exhibited strong positive
predictivity. Additionally, positive predictivity was observed in functional
connectivity between the ventral attention and default mode networks. In
contrast, intra-network functional connectivity within the control and
default mode networks was mostly non-significant.

Crystallized cognition provides a more comprehensive assessment of
individual and group verbal reasoning abilities, relying on accumulated
learning experiences and remaining relatively stable throughout adulthood.
Thepredictive-featurematrix of crystallizedcognitionwas similar to that for
vocabulary behavior, both reflecting feedback on past learning. The within-
system functional connectivity features in the default B/C and control
networks showed high positive predictivity, while negative predictivity was
observed in the somatomotor and default A networks. For between-system
functional connectivity, intra-network connectivity within the auditory and
control networks exhibited strong positive predictive value, followed by
inter-network connections linking the control, ventral attention, dorsal
attention, and somatomotor B networks. In contrast, intra-network con-
nectivity within the dorsal attention B, somatomotor B, and visual A net-
works demonstrated marked negative predictive value.

Discussion
Establishing a proper functional correspondence between individuals is a
prerequisite formapping a normative trajectory of adolescent development.
This study explored the potential of refined maps with homology to
establish a normative trajectory of adolescent development. Based on
refined individual-level brain functional parcellation technology,we are able
to identify homologous functional regions across individuals (IHFPs).
Normative trajectories of globalmean functional connectivity demonstrated
spatial heterogeneity, with the strongest values consistently localized to the
somatosensory, parietal and visual cortices across all developmental stages.
The peak of functional connectivity developmental trajectories occurs
during late childhood (ages 8–9), suggesting that as children transition into
adolescence, the brain undergoes connectivity pruning, information
exchange across brain networks becomesmore distributed. Then, we found
that in the process of assigning refined areal-level parcellations to large-scale
networks, parcels in higher-order association cortices are more unstable,
showing that one parcel may belong to several potential networks. More-
over, areal-level homogeneous developmental trajectories show hetero-
geneous distribution patterns of variability in large-scale networks across
cerebral cortex, with higher variability of developmental patterns exhibits in
higher-order association cortices. This pronounced variability observed in
the developmental trajectories of these higher-order association cortical
regions during adolescence may reflect the fact that adolescence is a critical
period for large-scale reorganization of functional architecture and infor-
mation processing in the brain. Importantly, the IHFPs capture the idio-
syncrasies of the subjects, with functional connectivity based on IHFPs can
better predict individual behavioral measures than the current most widely
used individualized parcellation approach20. In total, these findings suggest
that establishing fine-grained areal-level brain functional parcellations with
homology between individuals is important in constructing normative
trajectories during development and has potential value in delineating the
linking between individual imaging phenotypes and behavioral measures.

Previous studies based on group-level brain parcellations havemapped
standardized developmental trajectories and identified brain functional
connectivity patterns during childhood development13,16,43,44. Currently,
widely adopted group-level brain atlases include large-scale and
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fine-grained areal-level functional parcellations based on functional
homogeneity19,26, anatomical atlases derived from morphological
features45–47, and fusion parcellations constructed using multimodal brain
imaging data17. These group-level atlases can be readily applied to individual
neuroimaging datasets for connectomic analyses, forming a standardized
pipeline commonly used in contemporary neuroimaging research. How-
ever, group-level parcellations can obscure interindividual variability in
brain structure and function, failing to capture the unique patterns of each
individual48–51. These variations were found to be most prominent in
frontoparietal networks14 and involved differences in parcel size, location,
and functional connectivity24. Therefore, constructing individualized brain
functional parcellations is beneficial for emphasizing individual specificity,
as the topological features of an individual’s brain function are better suited
for predicting behavior and show a genetic basis52. Recently, Sun et al.15

developed large-scale individualized brain functional atlases and mapped
standardized functional connectivity trajectories across the human lifespan.
These results revealed the unique developmental characteristics of brain
functional connectome during childhood. However, large-scale networks
fail to capture the fine-grained topological features within networks. Sydnor
et al.35 based on fine-grained group-level brain parcellations, mapping the
intrinsic fMRI BOLD fluctuation amplitudes during childhood and ado-
lescence and demonstrated developmental functional variability along the
sensorimotor-association axis. These BOLD fluctuation amplitudes were
quantified using group-level surface atlases, which are based on a strong
assumption that group-level parcellations preserve homologous corre-
spondence across individuals. However, Li et al.24 proposed a homologous
functional regions mapping approach and showed that individualized
homologous regions exhibited significant intersubject variability, and RSFC
among these regions was more predictive of fluid intelligence than group-
level brain parcellations. Thus, a central challenge in constructing indivi-
dualized, fine-grained areal-level functional brain parcellations lies in
establishing inter-individual correspondence across homologous brain
regions. Although previous studies have advanced parcellation granularity
at the individual level20, significant gaps remain in methods for ensuring
functional homology across individuals. Relying solely on spatial overlap as
a criterion for homology is insufficient24, as it can result in the omission of
spatially variable but functionally critical regions, which may underlie cri-
tical individual-specific features. In this study, we propose a novel approach
—Individualized Homologous Functional Parcellation (IHFP)—which
incorporates both spatial overlap and temporal correlation to identify
homologous regions across individuals. Our method preserves over 99% of
the cortical regions at the individual level while ensuring inter-subject
functional correspondence. Functional connectivity profiles derived from
IHFP demonstrated better performance in predicting individual behavioral
measures compared to the widely adopted Kong2021 individualized par-
cellation approach20. It is important to note that, although our method
enables the establishment of areal-level inter-individual functional homol-
ogy, the concept of functional homology inneuroscience remains inherently
complex and multidimensional, and currently lacks a universally accepted
definition. Future research should aim to further clarify the fundamental
nature of functional homology and explore methodological innovations to
better capture its underlying principles.

After constructed IHFPs, wemapped developmental trajectories based
on the fine-grained areal-level brain functional homologous regions across
subjects, allowing for analyses at the appropriate level of granularity. We
found that the normative trajectories of global mean and between-system
functional connectivity strengths reveal similar spatial patterns, character-
ized by the highest connectivity in the somatosensory and visual cortices,
which gradually declines with age. Compared to unimodal cortices, the
global mean and between-system functional connectivity strengths in the
transmodal association cortices exhibit greater spatial variability, while
similarly showing a decreasing trend with age. These results suggest that
higher-order association cortices exhibit increased variability compared to
other unimodal systems, which consistent with previous studies15,35. In the
within-system functional connectivity, we found the highest connectivity

was observed in the somatosensory and parietal cortices, exhibiting a
decreasing trend with age. The corresponding developmental rates also
shifted fromnegative values toward zeroover time.The spatial differences in
the normative trajectories of within- and between-system functional con-
nectivity suggest that system segregation during adolescence may follow
spatially heterogeneous trajectories15. Future studies leveraging graph-
theoretical analyses of homologous developmental trajectories in functional
connectivity will help to elucidate the maturation of system-level brain
network architecture during adolescence and its association with social,
physical, and mental health outcomes in adolescence and adulthood8.
Overall, the fine-grained normative trajectory presented here offers an
important reference for studying the typical functional development of the
human brain in youth.

Theprocess of areal-level parcelmatching large-scale networks showed
that some parcels in higher-order association cortices corresponded to
multiple different networks, which have been previously shown to exhibit
high variability in network assignment24,53,54. Specifically, we observed the
greatest variation in network assignment within the default mode network,
specifically in the overlap between default A and default B networks. Using
individualized precise fMRI imaging techniques, Braga et al.22 demonstrated
that the default network consists of two separate networks with adjacent
regions, one of which is coupled to the hippocampal formation. Our results
show that these subnetworks of the default network are detectable at the
individual level and exhibit significant interindividual variability, with
overlapping sub-network regions across subjects. Previous study has
demonstrated that these correspondence of functional boundaries across
different brain parcellation schemes is highest in visual andmotor networks,
but notably lower in the default mode, central executive, and salience
networks55. This pattern reflects two main factors: variability across par-
cellation methods and the spatial heterogeneity of functional boundary
stability across the cortex. This induced boundary definitions are particu-
larly unstable in association cortices53. Our findings extend this observation
to adolescence—a period of profound brain maturation—demonstrating
that such boundary instability persists throughout this stage. Adolescent
brain development is marked by a transition from locally organized pro-
cessing to more distributed and functionally integrated network config-
urations, particularly within association cortices56. These regions engage
more flexibly across network communities, introducing uncertainty in
model-based assignments and likely reflecting cortical boundaries that have
yet to fully consolidate57. This likely contributes to the instability of network
affiliation within association cortices during adolescence. Furthermore, we
found that the normative trajectories at the network level displayed a
marked reduction in globalmean functional connectivitywith age in default
and control networks. In contrast, the somatomotor and visual networks
showedmore stable and conservative changes throughout development. By
quantifying the variability of the normative trajectories for homologous
parcels within each network, we found that higher-order association net-
works exhibited more variability compared to unimodal networks. These
findings are consistent with previous studies that demonstrate spatio-
temporal variability in regional developmental trajectories is organized
along a hierarchical distribution, with higher-order association cortices
showing the greatest variability35.

Individual brain functional connectivity exhibited better performance
for tracking individual behavioral variability than anatomical or diffusion
MRI-based connectivity39,58–60. Furthermore, connectivity within functional
brain networks has also been linked to multiple dimensions of psycho-
pathology, suggesting the potential for developing connectivity-based bio-
markers in psychiatry61. Using the MS-HBM technique, Kong et al.20

constructed individual-specific cortical parcellations and revealed that
RSFC derived from these MS-HBM parcellations achieved superior beha-
vioral prediction performance compared to group-level brain parcellations.
These individual-specific hard parcellations also performed better when
compared with the principal gradients detected by reducing the dimen-
sionality of RSFC to obtain themain functional organization patterns40.We
selected 6 cognitive behavioral measures, which are central to adolescent
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cognitive development and support functions such as emotion regulation
and intellectual engagement62–66. We demonstrated that within-system and
between-system functional connectivity derived from IHFPs outperforms
the performance derived from Kong et al.20 parcellations in predicting
behavioral measures. Functional connectivity-based predictive feature
metrics revealed that distinct brain network features support the prediction
of different cognitive functions. Recently, Chen and colleagues39 established
shared and unique brain network features predicting different dimensions
of individual behaviors. Our results extended this study, demonstrating
predictive features derived fromwithin-system functional connectivitywere
significant differences in the distribution patterns across the cerebral cortex
for different cognitive functions. These findings underscore the importance
of studying the relationships between brain functional organization and
multidimensional behavior using fine-grained IHFPs.

Although this study benefited from a large sample and high-quality
developmental data, several limitations should be noted. First, the current
study used cross-sectional data, but previous study has shown that cross-
sectional data can underestimate longitudinal trends67. However, there is
still a lack of longitudinal brain imaging data spanning the entire adolescent
developmental period. The Adolescent Brain Cognitive Development
(ABCD) study is continuing to collect longitudinal data, offering a unique
opportunity to explore neural development over time in young
participants68. In the future, we can further establish developmental tra-
jectory curves based on the ABCD longitudinal dataset. Second, the indi-
vidualized homologous brain parcellation algorithm we developed is based
on a group-level parcellation as prior, and the procedure for matching
homologous functional regions across individuals may introduce bias.
Functional homology has long been sought as the ideal solution by perso-
nalized brainmaps.However, the variability in brain functionmakes perfect
homology difficult to guarantee, and there is a lack of systematic experi-
mental paradigms that can precisely capture brain activation patterns at the
individual level to validate functional homology across individuals.
Recently, Rajimehr et al.69 used high-resolution fMRI data to parcellate the
entire cerebral cortex into 24 functional networks based on individual
responses to rich audiovisual movie stimuli. The topography of these net-
works was precisely characterized, with each network being assigned to a
specific sensory or cognitive processing function. Thus, leveraging natur-
alistic stimuli to collect high-density fMRIdata at the individual levelmaybe
used to create an individualized fine-grained areal-level brain functional
atlases and enable more precise functional homology across parcels at the
individual level. Third, the current study focused only on the cortical
regions, overlooking the homological parcellation of subcortical structures.
Cortico-subcortical circuits support communication functions and the
integration of information within large-scale brain networks70, and they
exhibit dysfunction in neurodegenerative diseases71,72. Future work on fine-
grained functional parcellation of individualized subcortical structures will
significantly enhance our understanding of the maturation processes of
subcortical structures during development.

Methods
Subjects and image acquisition
Subjects used in this study were collected by the Lifespan Human Con-
nectome Project in Development (HCP-D) study. The HCP-D 2.0 release
contained 1300+ healthy human participants, ages 5–21 years, acquired at
four sites73.We included 591 typically developing children, adolescents, and
young adults aged 8–21 years after applying inclusion criteria (excluding
subjects with more than 50% frames that have framewise displacement
(FD) > 0.2mm, andwithin the age range of 5 to 7 years for varying duration
of scan), as demonstrated in Table 1 for discovery dataset and Supple-
mentary Fig. 1 for balanced dataset. All necessary ethical guidelines were
adhered to throughout the data collection process.

Images were acquired across four sites using Siemens 3 T Prisma
scanner with a standard 32-channel head coil. T1-weighted (T1w) images
were acquired by multi-echo 3D magnetization prepared rapid gradient
echo (MPRAGE) sequence: 0.8mm isotropic voxels, TR (repetition time) /

TI (inversion time) = 2500/1000ms, TE (echo time) = 1.8 / 3.6 / 5.4 / 7.2ms
for each scan site, FA (flip angle) = 8 deg, FOV (Field of
View) = 256 × 240 × 166mm3, matrix size = 320 × 300, 208 sagittal slices,
in-plane (iPAT) acceleration factor of 2. T2-weighted (T2w) images were
obtained with same spatial resolution using the variable-flip-angle turbo-
spin-echo 3D SPACE sequence with TR / TE = 3200 / 564ms; FOV and
matrix size were the same as T1w.

Resting-state fMRI (rs-fMRI) data were acquired using T2-weighted
scans sensitive to the BOLD signals contrast with a 2Dmulti-band gradient-
recalled echo-planar imaging (EPI) sequence (TR / TE = 800 / 37ms,
FA = 52 deg) and 2.0 mm isotropic voxels covering the whole brain (72
oblique-axial slices). The acquisition parameters of task fMRI (tfMRI),
including three tasks (GUESSING, CARIT, Emotion), were identical to rs-
fMRI except the number of frames collected per run (rs-fMRI = 488;
GUESSING = 280; CARIT = 300; Emotion = 178). More details about ima-
ging protocols see Harms et al.37. All ethical regulations were followed
during data analysis.

MRI processing
The HCP-D data had been processed with the HCP processing pipeline30.
All T1w and T2w MR images were pre-processed under distortion cor-
rection, denoising, N4 bias correction, and MNI standard space
registration74. The rs-fMRI data was processed including head motion
correction, intensity normalization, bias field correction, ICA-FIX denoised
and transformation to an isotropic 2-mmMNI atlas space75, and registering
into fs_LR_32k mesh to produce a Connectivity Informatics Technology
Initiative (CIFTI) format with a BOLD time series for each functional run39.
As previous studies reported that the ICA-FIX is not effective enough in
removing global physiological noise and motion-related artifacts76,77.
Additional processing steps were performed following the methodology
outlined by Li et al.78. Firstly, FD of participants were estimated by
fsl_motion_outliers. Then, volumes with FD > 0.2mm were marked as
high-motion frames. If the percentage of marked frames is above 50%
percent, corresponding BOLD runs were further removed. Subsequently,
linear regression was applied to account for multiple nuisance regressors,
including six motion correction parameters and their temporal derivatives.
Finally, each rs-fMRI scan was smoothed with a 6mm full-width at half-
maximum (FWHM) kernel.

Data analysis
Definition of agegroups.We categorized participants intofive age groups
to ensure balanced distribution in terms of gender, sample size, and age
range. These groups include late childhood (8–9 years), early adolescence
(10–12 years), middle adolescence (13–15 years), late adolescence (16–18
years), and early adulthood (19–21 years). This stratification offers two key
advantages. First, age-related parcellations are more appropriate for cross-
sectional analyses that target specific age groups12,14,15,28. Second, reliable and
stable age-specific parcellations require a sufficiently large dataset, ensuring
robustness in subsequent analyses79.

Task activation map. There are three distinct, but interrelated fMRI
tasks of information processing domains in HCP-D datasets, including
emotion processing, reward/loss anticipation and consumption, and
inhibitory control processes. Task fMRI analysis was performed using an
adaption of FSL’s FEAT analysis pipeline30,79,80, with task effects estimated
through a generalized linear model (GLM). To the end, we obtained the
individual and group task activationmaps using a threshold (|Z| > 5.01)73.

Selected behavioral measures. We selected six cognitive behavioral
measures, a subset of the behavioral measures analyzed in previous
studies27,39–41, including reading, inhibition, vocabulary, working mem-
ory, fluid cognition and crystallized cognition. Fluid cognition refers to
cognitive abilities without prior knowledge including inhibition and
working memory, while crystallized cognition relies on accumulated
experience including reading and vocabulary81. Both fluid and
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crystallized cognition are important resources for cognitive development,
such as effective emotion regulation and intellectual engagement62–66.
Reading reflects adolescents’ ability to recognize and pronounce letters
and words, and together with vocabulary, serves as an index of reading
experience82,83. Both are strongly associated with neural efficiency shaped
by prior learning and remain relatively stable across the adult lifespan66.
In contrast, working memory and inhibition are linked to reading speed
and comprehension, and both reflect the capacity for new learning and
information processing in novel situations84. After excluding subjects
with null or invalid scores, we selected 400 adolescents for subsequent
analysis.

Construction of individualized homologous functional
parcellations
Iterative functional registration of local gradient maps. The RSFC
gradients reflect transitions in resting-state functional connectivity
across the cortical surface, which can serve as boundaries in brain
parcellations85 and converged with other modalities, including task-
evoked activity and cellular architecture boundaries86. Consequently, we
first computed functional connectivity using the timeseries of vertices
from the fs_LR_32k surface template, and transformed the results to z
scores using Fisher’s r-to-z transformation. Then, we obtained individual
and population-averaged local gradient maps through a gradient-based
parcellation technique by using “watershed by flooding” procedure with
RSFC map similarity matrix (Fig. 2a and Supplementary Fig. 4a)75,87,88 .

Given the highly variable relationship between cortical folds and brain
function, we employed a functional gradient-based registration to the
population-average gradient. Specifically, individual gradientmapswere co-
registered to the population-average gradient map using cortical folding
features through the Multimodal Surface Matching (MSM)89. These indi-
vidual maps were then averaged to generate a new population-average
gradient map. This process was iterated until the difference between two
consecutive population-mean gradientmapswas not statistically significant
(P > 0.05) (Supplementary Fig. 4b). We selected the group-level gradient
maps after 15th iterations for further analysis, as the variability between two
consecutive iterations became nonsignificant beyond this point.

Task-constrained group parcellationmaps. To improve the quality of
individualized homologous functional parcellations (IHFPs), we con-
structed the age-specific and age-independent group parcellationmaps as
the prior information for IHFPs. We first incorporated task activation
maps into the variant of gwMRFmodel19, which integrates local gradient
maps, global similarity, spatial connectedness and task activationmaps to
construct more precise group parcellation maps. The global similarity
term ensures that brain regions with similar fMRI time courses are
assigned to the same parcel, while the spatial connectedness term
maintains spatial cohesion by keeping regions within a parcel close to its
center. The local gradient term and task activation term contribute
equally to penalizing differences in parcellation labels between neigh-
boring regions. Data from all terms were reconstructed as an undirected
connectivity graph, enabling fine-grained parcellations through graph
cuts within a maximum-a-posteriori estimation framework.

To evaluate the performance after introducing task activationmaps,we
compared the task-related inhomogeneity of our group parcellations with
those of Schaefer40019. We used three task measures from HCP-D,
including the Emotion, CARIT, and GUESSING tasks. For each task mea-
sure, task-related inhomogeneity was measured by computing standard
deviation of fMRI task activation (z-scores) within each parcel, and then
averaged across all parcels. Subsequently, we performed task-constrained
parcellation and gwMRF statistical analysis on the averaged inhomogeneity
across all participants. Lower values indicate greater functional homo-
geneity. For demonstrating the individual variation, we also computed the
intersubject functional variation, which quantifies difference in functional
connectivity across participants and is corrected by regressing out themean
intrasubject variability36.

Individualized homologous functional parcellations. We adopted the
prominent model (cMS-HBM) to generate initial individual atlases,
following the approach of Kong et al.20, which can correspond well
between the group priors and individual atlases. While group parcella-
tions provide valuable prior information for estimating functional brain
networks or parcels, they can obscure some individual network organi-
zation and information14,20,27,70 and not guarantee functional homology
across participants24. Thus, we establish an individualized functional
homologous process to obtain IHFPs (Fig. 1a and Supplementary Fig. 2).
We firstly calculated similarity distribution masks for each age group by
overlapping areas across all individual parcellations, and then selected the
mask regions by setting a threshold based on the local minimum of the
stability distribution3 to identify the central regions of homologous ROIs
as the common reference24. Reference parcellations was obtained by
spatially overlapping each age-independent group parcellation with its
corresponding similarity distributionmask24. Individualized homologous
functional parcellations were created through the arealmatching process,
which aligned individualized parcellations with corresponding reference
parcellation based on their spatial overlaps on the cortical surface. Here, a
priori assumption holds that a reference parcellations should roughly
represent the center of the homologous parcels across different indivi-
duals. Thus, we used the group-level parcels as the common reference in
matching parcels across individuals24. Parcellations with an overlap rate
below 30% or fewer than four vertices were excluded. However, low
spatial overlap between functional regions does not necessarily indicate
that the discarded areas lack functional correspondence at their respec-
tive spatial locations. Therefore, we leverage the similarity of functional
connectivity to compensate for the removal of regions with low overlap,
thereby obtaining a more extensive and individualized brain parcellation
during parcellation reassignment. Finally, we established the IHFPs and
subsequent results of developmental trajectories which were visualized
using the age-independent group-average parcellation maps.

There are several different approaches to evaluate the stability of
parcellation90. In this study, we used Dice’s coefficient10,20,91 and NMI3,92 to
assess parcellation reliability. We compared the similarity of parcellation
maps generated within-subjects (intrasubject, split-half timeseries of each
subject) and those generated between different subjects (intersubject).
Examples of individual parcellations derived from fMRI datasets were
shown in Fig. 3a. We calculated parcel-wised Dice’s coefficient with intra-
subject and intersubject parcellations19. Then, the Dice’s coefficient of each
region was averaged across all participants to provide the visualizations of
regional intersubject and intrasubject reproducibility. The distribution of
NMI between intersubject and intrasubject was in the sameway,measuring
the reliability of IHFPs.

Construction of normative trajectories at areal- and
network-level
Resting-state functional connectivity. For the 59,412 vertices in the
fs_LR_32k space, functional connectivity matrices were computed for all
vertex pairs. Negative FC values were set to zero15. To derive parcel-wise
RSFC, vertex-wise RSFC values were averaged within each parcel. The
global mean functional connectivity was then calculated by averaging
RSFC across all parcels. Within-system functional connectivity was
defined as the RSFC within each system, while between-system func-
tional connectivity was calculated as the average RSFC between different
parcels in different systems. Given that the functional connectivity can be
leveraged as a key metric to characterize functional development15, we
employ it as a measure to delineate its developmental trajectory, pro-
viding novel insights into adolescent brain maturation.

Areal-level parcellations mapping to 17 networks. To examine
developmental patterns of homologous parcellations within corre-
sponding networks, IHFPs were mapped to the Yeo17 networks26 across
all participants (Supplementary Fig. 3). We firstly created the binarized
overlap matrix between age-independent group-average parcellation
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map and Yeo17 networks, assigning each parcel to the corresponding
network with maximized cortical overlap. Winner-take-all parcel-to-
network assignments can lead to homologous parcels being mapped to
different networks across individuals based on IHFPs. Specifically, a
parcel’s second-best network match in one individual often aligns with
the primary assignment of its homologous parcel in another individual.
Given this inter-individual variability in parcel-to-network assignment
patterns, we further generated the alternate group alignment matrix to
perform subsequent network-level developmental analysis. We obtained
group-level parcel-based connectome profiles by computing the vertex-
wise RSFC matrix, averaging RSFC values within parcels defined by the
task-constrained age-independent parcellation map, and then averaging
each parcel-based connectome across individuals. In the same way, we
calculated parcel-based connectome profiles at the individual level. Then,
we calculated the similarity (eta2) matrix3 between group-level and
individual-level parcel-wised connectome profiles across all participants.
For each participant, we created parcel-wised individual alignment
matrix by binarizing top 5% similarity matrix for each individual parcel
and then assigning each individual parcel to corresponding networks
through mapping the correspondence between each individual-level
parcel and the group-level parcel to the possible network, which denote as
individualized alignment matrix. We then averaged individualized
alignment matrix to obtain matched probability matrix for each network
across individuals. Finally, we set a threshold (92%) to create the alternate
group alignment matrix and obtained the final alternate functional 17-
networks (results across thresholds from 98% to 86% in 2% decrements
are shown in Supplementary Fig. 9). Notably, thematched probability for
the limbic network was lower than that of the other networks, and no
parcels were assigned to the limbic network after applying the threshold
(Fig. 4a). Moreover, the limbic network of the Yeo17 networks parcel-
lation is located in a cortical region beneath themedial wall, characterized
by a low SNR38. Consequently, we directed our subsequent analyses
toward the remaining 16 networks39.

Modeling normative trajectories for functional connectivity from
childhood to adolescence. To model the normative growth curves
across individuals, we employed the state-of-the-art GAMLSS model to
predict the normative trajectories of functional connectivity19,20,27. The
GAMLSS model first determines the optimal data distribution and
parameters based on different criteria, and subsequently fits the devel-
opmental curves of brain functional features using these optimal
parameters15,27. We implemented the GAMLSS framework, treating
functional connectivity as the dependent variable and modeling age as a
smooth predictor with a B-spline basis function to account for potential
nonlinear developmental patterns. Sex and in-scanner headmotion were
incorporated as additional fixed effects and scanner sites as random
effects. We adopted the Johnson’s SU (JSU) family distributional
assumption to ensure methodological consistency. We fitted ten
GAMLSS models, specifying degrees of freedom (d.f. = 3–6) for the
B-spline basis functions of the location (μ) parameters and default
degrees of freedom (d.f. = 3–6) for the scale (σ) parameters. Consistent
with prior studies, only an intercept was included for the ν and τ para-
meters. Model estimation employed a log-likelihood convergence
threshold of 0.001, with a maximum of 100 iterations. The best-fitting
model for each functional metric was selected based on the lowest
Bayesian Information Criterion (BIC) among all models that achieved
convergence.

The strength of the developmental trajectories of global mean func-
tional connectivity was defined as the 50th percentile at each age, with the
growth rate quantified as the first derivative of this trajectory across ages
(Fig. 3c, d). In addition,we calculated the strength andgrowth rate ofwithin-
system and between-system functional connectivity trajectories across all
ages (Supplementary Figs. 6–7). For network-level normative trajectories,
we conducted the weighted average of the global mean functional con-
nectivity for parcellations within each network, with weights derived from

the group alignment matrix. The normative trajectories for each network
were fitted using the GAMLSS model and subsequently plotted from
childhood to adolescence (Fig. 4b). To examine the normative trajectories
constructed using the alternative functional 17-network parcellation
derived from IHFPs, we also conducted comparative analyses with the
traditional group-level Yeo 17-network parcellation. In addition, we esti-
mated the growth rates of the developmental trajectories for each network
by bootstrapping 500 iterations, defining growth rate as the derivative of the
50th percentile trajectory (Supplementary Fig. 10). We further computed
age-related difference curves comparing the 50th percentile growth rates
between the IHFP-derived alternative parcellation and the canonical Yeo
17-network parcellation.

Variability of normative trajectories within each network. To assess
the variability of areal-level normative trajectories of global mean
functional connectivity within each network, we calculated the mean
absolute deviation (MAD) between each parcel’s developmental curve
and its corresponding network’s developmental curve, regressed out
the number of parcels assigned to each network. Variability was
visualized by sorting the MAD values of all parcels in ascending
order and plotting the centile scores (Fig. 4c). The MAD was com-
puted using the following formula:

Δp nð Þ ¼ EjYp � Vnj;

whereYp represents the areal-level normative trajectory of parcel p, andVn
represents the network-level normative trajectory of network n.

Application of functional connectome derived by IHFPs in pre-
diction of cognitive behavioral measures
Prediction of behavioral measures. We employed kernel ridge
regression (KRR)78 to predict individual behaviors in the HCP-D dataset,
leveraging functional features derived from IHFPs and the Kong2021
atlas20. A 10-fold ridge regression analysis was performed on behavioral
data from 400 selected participants, with head motion, age, and sex
controlled during prediction40. Predictive features were generated using
the Kong2021 and IHFPs for behavioral measures, including within-
system and between-system functional connectivity.

Feature generalization across behavioral measures. Based on the
behavioral prediction results, we applied the Haufe transformation93 to
create a predictive performance matrix for the functional features, where
both positive and negative values indicated the relevance of these features
in predicting behavioral measures.

Statistics and reproducibility
To test the robustness of our findings after controlling for sample
size, epoch number, scanning duration, head motion and scanner site
across age groups, we constructed a balanced dataset (Supplementary
Table 1). In the balanced dataset, group-level gradient maps, group
parcellations, and individual parcellations were constructed using the
same procedures used for the discovery cohort. Subsequently, indi-
vidualized homologous parcellations were generated using an IHFP
process by first aligning individualized parcellations with corre-
sponding reference parcellation based on their spatial overlaps on the
cortical surface, followed by realignment of non-overlapping func-
tional regions according to the similarity of their functional con-
nectivity. Developmental trajectories were then modeled at the areal-
level using GAMLSS, with model parameters held consistent with
those derived from the discovery cohort. Developmental trajectories
from the balanced dataset and the discovery cohort allowed us to
assess whether variations in age group sample sizes and scanner sites
influenced the final conclusions.

Statistical significance for the comparison of task-related inhomo-
geneity between the original gwMRF and our task-constrained gwMRF, as
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well as for the prediction performance of behavioral measures between
Kong2021 and IHFP atlases using kernel ridge regression, was assessed
using a two-tailed paired t-test.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The Human Connectome Project Development data is available for
download through the NIMH Data Archive (https://nda.nih.gov/). The
source data generated in this study, along with the selected participants’ IDs
from theHCP-D dataset, are deposited on ourGitHub page (https://github.
com/BIT-YangLab/IHFPs). The source data behind the graphs in the paper
can be found in Supplementary Data 1.

Code availability
The code for analyzing the data can be found on our GitHub page (https://
github.com/BIT-YangLab/IHFPs). The postprocessing procedure for fMRI
uses the published pipelines available at https://github.com/
ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/CBIG_
fMRI_Preproc2015. Code to generate task activation maps is provided at
https://github.com/Washington-University/HCPpipelines. Code for per-
forming local gradient maps is available at https://github.com/
MidnightScanClub. The code for gwMRF can be found at https://github.
com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_
parcellation/Schaefer2018_LocalGlobal. Additional tools used to work with
CIFTI files that were used to support the findings for this study were as
follows: MSM v3.0 (https://github.com/ecr05/MSM_HOCR), Connectome
Workbench v1.5.0 (https://www.humanconnectome.org/software/
connectome-workbench), R v4.4.1 (https://www.r-project.org), and
GAMLSS package v5.4–3 (https://www.gamlss.com/).
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