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Physical activity simultaneously improves
working memory and ripple-spindle
coupling

Check for updates

Xinyun Che1, Benedikt Auer1, Paul Schmid1, Christoph Reichert 1, Annemarie Scholz 1,
TomWeischner1, Robert T. Knight 2,3 & Stefan Dürschmid 1,2,3

Ripples, representing the compressed reactivation of environmental information, provide a
mechanism for retaining memory information in chronological order and are also crucial for working
memory (WM) during wakefulness. Brief sessions of physical activity (PA) are proposed to boost WM.
In concurrent EEG/MEG sessions, we investigated the role of PA in WM performance and high-
frequency-ripple to wake spindle coupling. Ripples, identified in MEG sensors covering the medial
temporal lobe (MTL) region, predicted individual WM performance. Ripples were locked to robust
oscillatory patterns in theEEGdefined spindle band.Wake spindle activity and ripples decreaseduring
initial stimulus presentation and rebound after 1 sec. Behaviorally, PA enhanced WM performance.
Neurophysiologically, PA scaled the ripple rate with the number of items to be kept in WM and
strengthened the coupling between ripple events and wake spindle events. These findings reveal that
PA modulates WM by coordinating ripple-spindle interaction.

Working memory (WM) allows information to be stored in a sequential
order for future retrieval. A common method to test working memory
capacity in humans is the N-back task requiring subjects to match items
that appeared in previous trials. In the N-back task, target detection
performance decreases with an increasing amount of information to be
retained due to the finite capacity of WM. Brief sessions of physical
activity (PA) like walking1,2 or cycling3 enhance working memory
performance3–7 likely due to increased hippocampus-cortex coupling3.
However, the neurophysiological mechanism for retaining information
in chronological order within WM and the impact of PA on this
mechanism remain unclear. Sleep research suggests a specific interaction
between high-frequency ripples and thalamic generated spindle activity
as a key mechanism for successful integration of information into
memory8–10. High-frequency ripple events, manifesting as transient
bursts (~80–150Hz in humans11), are considered a compressed reacti-
vation of sequential environmental information during cued recall.
Spindle activity is assumed to establish a time frame for ripples
occurrence11. However, whether ripple-spindle coupling during wake-
fulness is a mechanism for memory formation is unknown.

In simultaneous EEG/MEG recordings, we assessed whether per-
forming an N-back WM task is tracked by modulation in wake spindle
activity, ripple rate and spindle-ripple coupling. Specifically, we tested
whether PA improved both WM capacity and MEG-ripple – EEG-

spindle coupling. In rest session, participants remained inactive in short
experimental breaks (2 min) of typical EEG/MEG recordings. In PA
session, participants were engaged in movement during breaks (2 min)
using an MEG-compatible pedal trainer designed to facilitate inde-
pendent forward and backward movements, resembling a walking
motion.

Physical activity (PA) enhanced working memory performance.
High-frequency ripples, key for organizing information into working
memory, were detected in MEG sensors covering the medial temporal
lobe (MTL) region. Both EEG-spindle and MEG-ripple rates decreased
during stimulus presentation but increased after 1 sec. EEG-wake spindle
activity was higher in the PA session compared to rest during rebound.
The rebound MEG-ripple rate predicted individual WM performance
and scaled with the number of items retained in WM. Critically, PA
increased coupling of MEG-ripples to EEG-spindle activity and also
modulated WM performance.

Results
Procedure
21 participants participated in the experiment with simultaneous EEG and
MEG recording. The experiment was conducted in two sessions, with and
without PA, on two different days. The order of PA and rest was counter-
balanced across subjects. Each session consisted of 12 blocks. During breaks
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between blocks subjects were instructed to rest or use an MEG compatible
pedal trainer for two minutes. The pedal trainer permitted independent
forward and backwardmovements (see Fig. 1A andMethods). Participants
were directed to pedal at amoderate speed, adjusting their pace individually,
akin to awalkingmotion.Within each block, an item (one of the 26 letters of
the Latin alphabet) was a target if it matched the item fromN = 2,N = 3, or
N = 4 trials ago (N-back task), requiring subjects to hold a varying number
of items in working memory in each block (see Fig. 1 A and Methods for a
detailed description of the procedure).

Behavioral performance
First, we evaluated target detection accuracy (hit rate; H; see Fig. 1B) and
false alarms (see Fig. 1C). When we compared hit rate, we found a main
effect of PA (F(1,120) = 4.04; p = 0.0042) and N-back condition
(F(2,120) = 31.7; p < 0.00001) compared against a surrogate distribution
(see Methods). Performance declined with number of items to be held in
working memory (H2 = 80.07%; H3 = 64.68%; H4 = 52.12%). However,
hit rate was higher after PA than after rest (HPA = 68.51%;
Hrest = 62.74%; t20 = 3.62; p = 0.0017) in 2 and 3 back conditions at the
Bonferroni-corrected level (2-back: t20 = 2.78; p = 0.012; 3-back:
t20 = 3.39; p = 0.003; 4-back: t20 = 2.21; p = 0.039, see Fig. 1B). When we
compared false alarm rates, no significant effect of PA was found
(F(1,120) = 1.56; p = 0.214, see Fig. 1C).

EEG spindle activity
Spindle activity provides a temporal framework for ripple occurrence11.
In the EEG, thalamic spindle activity is maximal at fronto-central
electrodes12. We found a consistent temporal pattern across both ses-
sions, with spindle activity decreasing immediately after stimulus onset,
followed by a subsequent increase at central EEG electrodes (see Fig. 2A,
left), peaking at 1150 msec. Additionally, enhanced activity between 1
and 2 sec after stimulus presentation was observed in the PA conditions
(t20 = 2.20; p = 0.04, see Fig. 2B).

Ripple activity
Ripples were first observed in rodent hippocampus13 and later in humans
in a frequency range between 80 and 150Hz14–16. We detected ripple
events in the ongoing MEG signal in accord with previous studies8,17,18

(see Fig. 3A and Methods). Ripples in MEG resembled the time-
frequency representation (mean duration = 31.91msec, SD = 10.82msec;
ripple density = 0.125 Hz, SD = 0.098Hz, see Fig. 3B) observed in
intracranial studies8,17,18.

Topographical likelihood distribution of ripples
We defined the topographical distribution of ripple events across the
entire experiment. For each sensor, we determined the ripple likelihood
as the average number of ripples across all trials, including targets and

Fig. 1 | Behavioral performance. A Task design. Subjects were instructed to rest or
use a pedal trainer before the N-back task. B (left): shows that hit rate increased
across all conditions. (right): Hit rate across different N-back conditions. Error bars
indicate the standard error of the mean. (n = 21; +: P < 0.05, *: P < 0.017, **:

P < 0.003, Bonferroni-corrected). C (left): Individual false alarm rate. (right): False
alarms across different N-back conditions. Red indicates PA and blue rest session.
(n = 21; +: P < 0.05, n.s.: not statistically significant).

Fig. 2 | Frequency amplitude of EEG low fre-
quency, standardized spindle and theta amplitude
and ripples. A EEG amplitudes modulation in fre-
quencies 1–40 Hz as a function of time. B The
amplitude modulation of the spindle band
(14–18 Hz) across time for physical activity (red
line) and rest (blue line). Shaded areas represent the
standard error of the mean across subjects. The gray
shading indicates the interval displaying significant
differences between rest and PA. Time 0 represents
stimulus onset.
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standards, leading to a likelihood value for each of the 102 MEG sensors
and each participant. We then correlated the spatial likelihood dis-
tribution between all possible pairs of participants. This resulted in 210
correlation values both for rest and PA. We tested whether the dis-
tribution of ripples differed between PA and rest (see Fig. 4A). Following
PA, pairs of participants exhibited stronger topographical consistency in
ripple distribution (mean rrest = 0.37; mean rPA = 0.56; t209 = 8.07;
p < 0.0001) with sensors covering the MTL region showing the highest
ripple likelihood.

Ripple time series
In the next step, we defined the time course of ripple events around stimulus
presentation. We found that the averaged ripple likelihood decreased after

stimulus onset (from280msec to 970msec) with a rebound starting around
1.5 sec and peaking around 2 sec (see Fig. 4B).

The correlation of ripples with memory capacity
We then tested whether the ripple frequency predicted individual hit rate.
We foundno correlation in thefirst sec after stimulus presentation (r = 0.17;
p = 0.46). However, ripple rate between 1.5 and 2.5 sec predicted individual
target detection rate (r = 0.49; p = 0.021, see Fig. 4B). In the first step we
compared ripple rate in this interval between conditions but did not find a
difference (t20 = 0.43; p = 0.67). When we compared the ripple density
between conditions we found a significant difference between N-back
conditions following PA (F = 3.24, p = 0.046) but not following rest
(F = 0.84, p = 0.437). Furthermore, we found that the ripple density across

Fig. 3 | high frequency ripple activation in MEG. A (left): The grand-averaged
signal of ripple activity. (middle): Time-frequency plot of ripple activity. (left): The
probability of the interval time between two ripples across subjects. The error bars
represent the standard deviation. The blue bar represents the ripple interval during
the rest session, and the red bar represents the ripple interval during the PA session.

B An example of ripples detected in our analysis. The upper line shows the broad
band signal between 1 and 200 Hz. The second time series shows the same signal in
the ripple band. The third time series shows the Hilbert transform of the ripple band
activity. The last graphic shows the time frequency representation of the signal
filtered between 80 and 150 Hz.
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participants was strongly correlated between blocks following PA
(pcorrected = 0.05/6 = 0.0083; 2 vs 3-back: r = 0.7156; 2 vs 4-back: r = 0.6740; 3
vs4-back: r = 0.620; allp-values < 0.0034) butnot following rest (2 vs 3-back:
r = 0.546; 2 vs 4-back: r = 0.2922; 3 vs 4-back: r = 0.5468; all p-values > 0.01).
This result indicates that inter-individual differences remain consistent
acrossN-back conditions followingPAbut not rest.Next, we testedwhether
the number of ripples is scaled with the number of items to be held in
working memory (see Fig. 4C). We conducted a correlation analysis
between N-back and ripple rate for each participant leading to a correlation
value for each subject. Using directed t-tests under the assumption that
r-values are higher than zero (more ripples when more items are held in
WM) we found a positive linear scaling of N-back and ripples in the PA
session (rPA=0.77; t20 = 1.86;p = 0.0385).Nosuch effectwasobserved in the
rest session (rRest = -0.05; t20 = 0.12; p = 0.452). The N-back ripple correla-
tion in the PA session was stronger than in the rest session (t20 = 2.12;
p = 0.024, see Fig. 4D).

MEG-Ripple to EEG-low-Frequency coupling
Ripple centered EEG epochs. We tested whether we could find cou-
pling betweenMEG-ripples and EEG-spindles. Note that we did not find

MTL spindle activity in the MEG (see Fig. 3A). We epoched EEG data
around MEG-ripple events and found a clear oscillation locked to rip-
ples (see Fig. 5A). This oscillation showed a significant positive ampli-
tude modulation from −14 to 0 msec (tmax = 3.24 at -6 msec relative to
ripple peak; p = 0.0041; interval I) and a significant negative amplitude
modulation from 10 to 32 msec (tmax = 4.08 at 24 msec following ripple
peak; p = 0.0006; interval II, see Fig. 5A). No such difference could be
found for randomized ripple events (interval I: tmax = 1.26; p = 0.57;
interval II: tmax = 0.99; p = 0.32, see Fig. 5A). This pattern can be
explained by oscillatory modulation around ripples in the PA session
with a stronger modulation in interval II (interval I: tmax = 2.9 at
−6 msec; p = 0.011; interval II: tmax = 3.7 at 22 msec; p = 0.0014). No
such effect was found in the rest session (interval I: tmax = 3.32; p = 0.003;
interval II: tmax = 2.2; p = 0.032)

Ripple-peak to spindle-phase coupling.We then investigated whether
ripples are coupled to a specific low-frequency phase. We analyzed the
phase of EEG low-frequency activity associated with the ripple peak (see
Fig. 5B) and tested whether ripples are differently locked to the spindle
band (see Fig. 5B). We found that ripples were locked to different

Fig. 4 | Ripple modulation. A (upper): Topographical map of ripple likelihood
acrossMEG sensors for rest (left) and PA (right). (lower): Correlation coefficients of
ripple distributions between pairs of subjects. Higher correlations coefficients fol-
lowing PA indicate a more consistent spatial structure of ripples likelihood across
subjects. Error bars indicate the standard error of the mean. (n = 210;
****P < 0.0001).B (left): Time series of ripple likelihood. Shaded areas represent the
standard error of the mean across subjects. (middle): linear regression between

individual memory capacity and ripple likelihood in segmented intervals. (right):
The ripple likelihood time series from grand-averaged and different sessions, along
with the corresponding t-values. (n = 21; *P < 0.05, n.s.: not statistically significant).
C Ripple count across N-back conditions displayed individually. D Correlation
coefficients for rest (blue) and PA (red) calculated between the ripple likelihood and
the 2, 3, 4-back levels. (n = 21; *P < 0.05).
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phases φ depending on the session (φPA = 0.24 rad; φrest = 1.49 rad;
F = 7.05; p = 0.011).

Temporal coordination of ripples with wake spindle events
We examined whether ripples were temporally locked to wake spindle
events by comparing the frequency of ripples outside and within wake
spindle events (see Fig. 6, and Methods for a definition of wake spindle
events). In the PA session, we observed more ripples within than outside
wake spindle events (Nin = 0.45;Nout = 0.24; t20 = 3.25; p < 0.01, see Fig. 5C),
but only a trend in the rest session (Nin = 0.40; Nout = 0.27; t20 = 1.93;
p = 0.068). In the final step, we investigated when the ripple likelihood
reaches its maximum relative to the wake spindle peak event. We found a
peak in the ripple likelihood starting from 102msec after the spindle onset
(p < 0.0001, see Fig. 5D).

Discussion
We investigated the impact of PA on working memory observing WM
performance increases after PA in all N-back conditions. EEG-wake spindle
activitywas heightened in the PA session compared to rest. High-frequency
ripples linked to the temporal organization of WM information were

detected in MEG sensors covering the MTL region and the number of
ripples predicted individual WM performance. The ripple rate was com-
parable between PA and rest. However, it increased with the number of
items held inWM only after PA. Additionally, ripple-spindle coupling also
increased following PA. Ripple activity has been reported to increase in the
medio-temporal areas (hippocampus, amygdala, and parahippocampal
gyrus) following 20min of mini-bike exercise19. Moreover, a 10min mild
cycling exercise was found to enhance memory performance by increasing
coupling between the hippocampus and cortical regions3. While evidence
for the role of wake spindles in memory processing is limited, it has been
reported that the neural sink and source ofwake spindles are similar to those
of sleep spindles20. Additionally, visual inspection of recordings from wired
electrodes in rats indicated that wake spindles are associated with ripple
activity, much like sleep spindles20.

Moderate PA improved working memory capacity in line with pre-
vious studies. Abou Khalil et al.2 found a performance increase in a word-
recall task during brisk walking compared to sitting. Previous studies found
that concurrentmoderate exercise lead to an improvement inWMaccuracy
and faster reaction times1 and short bouts of exercise improved memory
consolidation21. In summary, ourfindings contribute to the growing bodyof

Fig. 5 | MEG-Ripple and EEG low-frequency coupling results. A (left) Grand-
averaged slowoscillations around the ripple peak compared to the shuffled peak. The
dots at the top represent slow oscillation amplitude peaks and troughs from indi-
vidual subjects. The red dots indicate amplitude peaks, while the pink dots indicate
troughs. Error bars indicate the standard error of the mean. (right): The slow
oscillations around the ripple peak fromdifferent sessions. The blue color represents
the rest session, and the red color represents the PA session. B (left): Phase dis-
tribution of low frequency around the ripple peak. (right upper): The phase

distribution from 14 to 16 Hz from different sessions and the dominant phase from
individual subjects. B (right lower): Average dominant phases across sessions.
(n = 21; *P < 0.05). C The ripple density during the ‘in-spindle’ and ‘out-of-spindle’
phases is plotted separately for the PA and rest sessions. Red denotes PA session data,
while blue represents rest session data. Error bars indicate the standard error of the
mean. (n = 21; **P < 0.01, n.s.: not statistically significant). D Ripple likelihood
around the spindle onset. The time 0 represents the spindle onset.
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evidence indicating that short-term physical activity modulates memory
processes.

Spindle activity during non-rapid-eye-movement (NREM) sleep
increases during memory consolidation8,9. It has been proposed that spin-
dles play a key role in regulating information flow between the cortex and
hippocampus areas, supporting memory processing through the reactiva-
tion of prior experiences and enhancing structural changes at cortical sites
during learning. The increase in ripples is predictive of individual perfor-
mance differences18,22,23. The impact of PA on sleep spindle activity is
uncertain, with some studies suggesting that daily repeated exercise can
enhance 13–16Hz spindle power during sleep24, while others did not find
effects of activity on spindle activity25. We observed spindle activity in both
PA and rest sessions, topographically overlapping with sleep spindle find-
ings in previous studies12. Notably, the amplitude of sleep spindles increased
after the working memory task. These findings suggest that PA improves
working memory performance by enhancing spindle activity.

Ripple events, considered reactivation patterns, manifest as tran-
sient high frequency bursts (~80–150 Hz in humans: mean duration
~30 msec). Ripple events were first studied in the hippocampus and
more recently identified in extrahippocampal regions11,26, particularly
during sleep. Numerous studies highlight the crucial role of hippo-
campal sleep ripples in the initial formation of declarative memory
traces, suggesting their involvement in anatomically distributed memory
traces27. Hippocampo–thalamocortical synchronization during sleep is
key to human memory consolidation28. A prominent model posits that
embedding novel information in the neocortex requires offline reacti-
vation by hippocampal generated ripple events, primarily during slow-
wave sleep22,29. Recent studies have also reported ripples during waking,
influencing emotional memory encoding and discrimination30. Ripples
in the hippocampus, MTL, and neocortex are reported to mirror neuron
firing patterns during cued recall. Awake ripples share similarities in

density, frequency, and duration during both waking and sleep15. Epi-
sodic memory studies in human subjects support the role of the hip-
pocampus and surrounding cortical areas in learning and recalling
temporal sequences. We show that MTL ripple rate scales with the
number of items held in working memory and predicts individual
working memory capacity. Ripples show a specific time course with the
ripple rate decreasing during stimulus presentation, rebound around
1 sec, and predict individual performance.

We observed that ripple rate predicted the number of items inworking
memory post-PA aligning with prior research indicating that ripple rate
scaleswith the complexity of autobiographicalmemory31.We also identified
a correlation between ripple activity and hit performance, consistent with
previous results reporting a correlation between ripple rate and successful
memory retrieval22.

Spindles and high-frequency ripple activity were co-modulated and
bothweremodulated by PA. Spindle-ripple coupling was initially described
during rat slow-wave sleep32 and reported in epilepsy patients during sleep
using intracranial EEG (iEEG) or parahippocampal foramen ovale (FO)
electrodes11,14,33. In linewith these studies, we found coupling of EEGspindle
activity withMEG ripple events in both the PA and rest sessions. However,
PA modulated coupling through phase- and temporal alignment with
spindle activity, exhibiting a stronger spindle modulation around ripple
events. This coupling property is consistent with previous studies showing
that ripple rates increase during the ‘waxing’ spindles phase (the raising
phase) from the iEEG recording at humanMTL regions11. Physical activity
shifted the phase of ripple-coupled spindles, temporally aligning ripples
with high-amplitude spindle events.Our results indicate that short-termPA
modulates spindle-ripple coupling, contributing to improved memory
formation. It is proposed that coupling creates a temporal window for
communication between the hippocampus and neocortical regions34,35. The
spindle-ripple coupling and the phase shift observed during PA sessionmay

Fig. 6 | spindle activation in EEG. An example of spindle detected in our analysis.
The upper line shows the broad band signal between 1 and 200 Hz. The second time
series shows the same signal in the spindle band. The third time series shows the

Hilbert transform of the spindle band activity. The last graphic shows the time
frequency representation of the signal filtered between 13 and 20 Hz.
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signify modulated communication among reactivation processes between
cortical and subcortical structures enhancing working memory.

Methods
Participants
Twenty one participants (13 female, 8 male, mean age = 27.00 years,
SD = 5.76 years) participate in the experiment. Nine participants of an
initial pool of thirty subjects dropped out after the first session due to
unwillingness to return, excessive movement during the memory task, or
difficulty understanding the task. A 60/40% gender split was maintained,
which is sufficient to provide reliable and generalizable results, as the
effects of gender on working memory performance are typically small.
All participants were informed of the study and provided written con-
sent to the experimental protocol prior to participation. The recordings
took place at the Department of Neurology, Otto-von-Guericke Uni-
versity Magdeburg and were approved by the local ethics committee
(“Ethical Committee of the Otto-von-Guericke University Magdeburg”).
All ethical regulations relevant to human research participants were
followed. Participants reported normal or corrected to normal vision
and no history of neurological or psychiatric diseases. We invited par-
ticipants to two separate MEG sessions with an average 75-day (SD =
65.27) interval between sessions to allow for a within-subject design.
They either started with a PA or rest session counterbalanced across
participants.

Procedure
The stimulus presentation and experimental control were carried out
using Matlab R2009a (Mathworks, Natick, USA) and the Psychophysics
Toolbox36. The screen color was set to gray, while the stimuli and instruc-
tions were displayed in black. The experiment consisted of 12 blocks, each
comprising 100 trials of an N-back task. Target items were defined as items
thatmatched the itempresented in eitherN = 2,N = 3, orN = 4 trials before
the current trial requiring subjects to hold a varying numberof items in their
working memory. Each block consisted of 30 targets and 70 standards.
Stimuli included 26 letters of the Latin alphabet, with targets and standards
randomly selected. The experiment started with a practice session involving
N = 2 andN = 4 back tasks, which only included 6 targets and 14 standards,
under identical presentation settings as the main experiment. Each block
beganwith a 2-minute phase before the actual visual stimuli were presented.
Participants either used the pedal trainer or remained seated, depending on
the session (rest vs. PA). Each block lasted 252 sec. Each trial started with a
fixation cross presented for 500msec, centered on the screen. The partici-
pants were instructed to focus the fixation cross during the entire experi-
ment to minimize eye movements. Subsequently, the fixation cross was
replaced by a letter stimulus for 500msec, followed by the reappearance of
the fixation cross for 2000 ± 100msec.

Participants were instructed to respond as quickly and accurately as
possible. They were instructed to use their index finger to respond to
standards and their middle finger to respond to targets. The responses
were provided with the left and right hands, which were alternated every
three blocks. The pedal trainer was specifically designed in-house for
MEG recording. All materials were carefully tested to ensure they con-
tained no magnetic components. The device’s angle and height can be
adjusted to suit each participant’s proportions, and its design allows for
independent forward and backward movement of both feet. Participants
were instructed to pedal at a moderate, self-adjusted pace, similar to a
walking motion. While this activity resembles aerobic exercise—defined
as movement sustained by oxygen delivered through the blood to active
muscles—it did not have the prolonged duration typical of aerobic
workouts37. This adjustment was made to minimize MEG artifacts, such
as ECG interference or changes in skin impedance caused by sweating38,
which can affect EEG electrode contact. Similar moderate-intensity
exercises, such as wheel running in rodents, have been shown to enhance
hippocampal plasticity and improve memory, linking our findings and
previous animal research5.

MEG recording
Participants were equipped with metal-free clothing and seated in a dim-
med,magnetically shielded recording booth. Stimuli were presented via rear
projection onto a semi-transparent screen with an LCD projector (DLA-
G150CLE, JVC, Yokohama, Japan) that was positioned outside the booth.
The screen was placed at a viewing distance of 100 cm in front of the
participants. The display screen resolution was set to 1920 × 1080. Each
letter presented on the screen measured approximately 3 × 3.5 cm. The
screen refresh rate was 120Hz, corresponding to an 8.3msec refresh
interval. Responses were given with the left and right hands via an MEG
compatible LUMItouch response system (Photon Control Inc., Burnaby,
DC, Canada). Acquisition of MEG data was performed in a sitting position
using a whole-head Elekta Neuromag TRIUX MEG system (Elekta Oy,
Helsinki, Finland), containing 102 magnetometers and 204 planar gradi-
ometers. The sampling rate was set to 2000 Hz. EEG was recorded with 30
passive electrodes. The right mastoid was used as a reference electrode.
Vertical EOGwas recordedusingone surface electrode above andonebelow
the right eye. For horizontal EOG, one electrode on the left and right outer
canthus was used. Preparation and recordings took about 3 hours.

Preprocessing and artifact rejection
Maxwell filtering was applied to reduce external noise and both MEG and
EEG data were down sampled to 500Hz. We used Matlab 2016b (Math-
works, Natick, USA) for analysis. We included the 102 magnetometers in
our analyses but no gradiometers. All filtering (see below) was done using
zero phaseshift IIR filters (fourth order butterworth filter; filtfilt.m in
Matlab). First, we filtered the data between 1 and 200Hz. Then, we notch-
filtered the data to discard line noise (50 Hz and its 2nd and 3rd harmonic).
To discard trials of excessive, non-physiological amplitude, we used an
individual threshold for each subject. Both forMEG and EEGwe calculated
the mean variance across time and channels for each trial. Trials with a
variance exceeding 4 standard deviations were excluded. We then visually
inspected all data and excluded epochs exhibiting excessive muscle activity,
as well as time intervals containing artifactual signal distortions, such as
signal steps or pulses.

EEG data were re-referenced to the left mastoid and band-pass filtered
between 1 to 40Hz. To eliminate eye movement artifacts, we applied
Independent Component Analysis (ICA), which was computed with the
FastICApackage forMATLAB(Version2.5). ResultingMEGandEEGtime
series were used to characterize ripple band dynamics (see below) and low
frequency activity, respectively, over the time course of visual target detec-
tion. BothMEG and EEG data were epoched into trials ranging from−2 to
3 sec relative to stimulus onset (sufficiently long to prevent edge effects).

Statistical analysis
In this study, we aimed to explore the effects of physical activity on working
memory and the associated changes in brain states, specifically focusing on
spindle and ripple activity aswell as their coupling effect. First, we compared
target detection performance and reaction times betweenPAand rest across
various N-back conditions (Behavioral Results). In the next step, we
examined EEG spindle activity (Spindle activity). Subsequently, we
employed MEG signals to compute ripple activity and investigated corre-
lations between task performance, memory load with ripple activity (Ripple
activity). Lastly, we tested for spindle-ripple coupling and differences
between rest and PA (Spindle-Ripple Coupling).

Behavioral performance
Weevaluated target detection accuracy based on hit rate (DA; percentage of
target response when a target was present), false alarms (FA; percentage of
target responsewhen no target was presented), and reaction times (RT).We
compared the impact of PA and rest on behavioral measures using a two-
way ANOVA with the factors motion (PA vs. rest) and N-back (2-back, 3-
back, 4-back) separately for DA, FA and RT. The performance of PA and
rest sessions was compared using paired-sample t-tests at both the grand
average level and for individual N-back levels. To account for multiple
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comparisons, we applied a Bonferroni-corrected significance level
(p = 0.05/3) to define statistical significance. To address potential violations
of sphericity and normality in the data, we compared the observed F-values
to a surrogate distribution. This distribution was generated by randomly
shuffling individual behavioral data across participants and conditions
(motion and N-back) in 1000 iterations, ensuring that the resulting dis-
tribution preserved the same properties of sphericity and normality. For
each iteration, we recalculated the F-values, resulting in a distribution of
1000 F-values. The probability (p-value) of the observed F-value was then
determined based on its position within this surrogate distribution.

EEG spindle activity
Our study aimed to explore whether specific frequency bands, particularly
spindle activity, were modulated by the stimulus. By analyzing spindle
activity after stimulus onset, we sought to identify task-related changes in
brain dynamics. Spindle activity is believed to create a temporal window for
ripple events to occur11. In the EEG, spindle oscillations generated within
thalamocortical loops are primarilymeasured at fronto-central electrodes12.
Both spindle andbeta activity fallwithin the same frequency range,withbeta
activity also linked to working memory performance. To distinguish
between these two types of activity, we focused on the central ROI (Fz, Cz,
Fc1, and Fc2), as beta activity typically shows more posterior modulation.
These channelswere alsoused for subsequent spindle and coupling analyses.
To calculate the time-frequency representation, we band-pass filtered the
EEG signal at 21 exponentially increasing center frequencies (ranging from
1 to 40Hz), each with a bandwidth of 10% around the center frequency
bands. The resulting time series wereHilbert-transformed, epoched around
stimulus onsets (from −1 to 2 sec) (see Fig. 2A), baseline-corrected by
subtracting the average activity in the 200msec prior to stimulus onset from
each time point, and averaged across all trials. The resulting time series were
z-scored with respect to a baseline period (−200msec prior to stimulus
onset) for a better comparison across frequencies. For this we firstly cal-
culated themean and standarddeviation of time series in the baseline period
and then subtracted themean from the time series and divided them by the
standard deviation at each time point. The following z-score analysis with
baseline correction was computed with the same procedure. The time-
frequency representation confirmed clear spindle activity. We then
extracted EEG-spindle activity in the frequency band showing highest
amplitudes. We band-pass filtered the EEG signal between 14 and 18Hz.
Subsequently, we determined the analytic amplitude A(t) by Hilbert-
transforming the signal maintaining the same baseline correction settings.
The resulting spindle activitywas averaged across all trials separately for rest
and PA, then we z-scored the spindle activity with a baseline correction
period from −200msec to stimulus onset (see Fig. 2B). To investigate the
disparity in spindle activity between the rest and PA sessions over different
time courses,we conducted a t-test to analyze thedifference between the two
datasets, using the averaged spindle activity between 1 and 2 sec.

Ripple activity
Ripple events were detected in the ongoing MEG signal in the following
way17,18,39. Ripples were first observed in rodent hippocampus which
occurred around 100–200 Hz13, while ripples in humans, which share
many characteristics with it, occur at frequencies around 80-150 Hz14,15.
Hence, the MEG signal was band-pass filtered between 80 and 150 Hz.
We obtained the analytic amplitude A(t) by applying a Hilbert transform
to the filtered time series. To avoid that potential filtering artifacts affect
ripple detection, A(t) was reset to zero during the initial and final 100
msec of each trial. To establish a distribution of ripple events throughout
the entire experiment, we concatenated all trials and computed the
z-score Z(t) separately for eachMEG sensor. Ripple events were identified
as peaks in the Hilbert signal that exceed 2.5 SD39 above mean, extend
over 20msec up to 500 msec (equivalent to 3 cycles at 150 Hz and 40
cycles at 80Hz), and were separated by at least 20msec. Events exceeding
9 SD above mean were excluded. We then retained only ripple events
with at least three peaks that exceeded 2.5 SD above the mean, with at

least one peak designated as dominant (prominence ≥ 20% above
neighboring peaks).

Time frequency representation of ripple events
We tested whether ripples in MEG resemble the time-frequency repre-
sentation in intracranial studies17,18,39 in two steps. First, we calculated the
grand average ripple shape. To this end, we epoched the raw MEG signal
(filtered between 1 and 200Hz) around the ripple peak events. Within
subjects we averaged all resulting ripple-centered time series leading to a
ripple shape for each subject (see Fig. 3A). Second, we calculate the time
frequency representation by band-pass filtering the MEG signal at 38
exponentially increasing center frequencies (between 1 and 200Hz) each
with a band width of 10% around the center frequency bands.We obtained
the analytic amplitude A(t) by Hilbert-transforming the filtered time series.
Then we epoched the frequency specific A(t) around ripple events (see
Fig. 3A) and averaged across epochs. The resulting time serieswere z-scored
as to a baseline period (−1.0 and −0.2 sec) before the ripple event.

Frequency distribution of ripples
First, we determined the topographical distribution of ripple events
across the entire experiment. For each sensor, we calculated the ripple
likelihood as the average number of ripples across all trials leading to
ripple rate for each of the 102 MEG sensors and each participant. We
tested whether the distribution of ripples differed between PA and rest
(see Fig. 4A). Specifically, we tested whether the topographical ripple
distribution becomes more stable across subjects with PA. To do this, we
utilized the individual vectors of the ripple likelihood distribution across
the 102 MEG sensors for each participant, both during PA and rest. We
then correlated the likelihood distribution between all possible pairs of
participants. This resulted in 210 correlation values both for rest and PA.
The resulting correlation coefficients were converted into a metric dis-
tribution by calculating its inverse hyperbolic tangent and compared
using a t-test. In the following steps, we limited the analysis to the MEG
sensors with the highest number of ripples, which were four sensors
positioned bilaterally covering the MTL region. The ripple peak time
points were used to calculate the grand average ripple shape and the time
frequency representation, and coupling with EEG spindle activity. For all
the calculations, we chose a two-second window centered around the
ripple events (from −1.0 to + 1.0 sec).

Ripple time series
In the next step, we defined the time course of ripple events around stimulus
presentation (see Fig. 4B). We summed the number of ripples detected
across the four most informative sensors and all trials in each participant.
This resulted in a discrete time series of zeros and ones (indicating a ripple
event) for each participant. We then convolved the resulting time series in
the following manner. Within a moving time window of 200msec, we
summed ripple events. This yielded a continuous time series RðtÞ for each
participant. Then, we standardized RðtÞ (z-score) according to baseline
activity.

The correlation of ripples with memory capacity
Next,we testedwhether the ripple frequencypredicts individual hit rate.The
ripple likelihood time series showed a continuous decrease over one sec after
stimulus onset with a following rebound. Therefore, we tested whether the
initial decrease or the subsequent rebound is predictive of differences in
performance. For each participant, we determined the mean ripple like-
lihood from 0 to 1 sec and from 1.5 to 2.5 sec after stimulus onset (see
Fig. 4B). To investigate whether ripples correlated with individual perfor-
mance, we averaged target detection performance across all blocks and
physical activity sessions (rest and PA). We then determined the rank of
performance across all participants and correlated this with the rank of
individual ripple likelihood using Pearson correlation. In the next step, we
investigated whether the number of ripples provided information about the
number of items that need to be retained in working memory. First, we
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performed a one-way ANOVA to examine the differences in the number of
ripples between the N-back conditions. Second, we asked whether inter-
individual differences remain consistent across N-back conditions. That
assesses if subjects with a higher number of ripples in one condition also
have a higher number of ripples in another condition. To test this, we
computed Pearson correlations of ripple counts across participants between
different N-back blocks (2 vs. 3, 2 vs. 4, and 3 vs. 4), applying Bonferroni
correction for multiple comparisons. Additionally, we correlated the ripple
frequency in different N-back conditions with N-back (2-3-4, see Fig. 4C,
D), to estimate the linear association between ripple frequency and
increasing task demands. We employed linear regression in our analysis to
examine the three conditions, as it offers several methodological advantages
in this context. Here it was important to model the continuous relationship
between the conditions and the dependent variable, which can be better
captured by linear regression. Another advantage of linear regression is that
it allows us to investigate an interpretable relationship between the condi-
tions and the dependent variable without strictly adhering to the assump-
tions of variance analysis. By using linear regression, we were able to model
potential interactions or trends between the conditions and estimate the
influence of each condition on the dependent variable in a continuous
framework. For each participant, we determined the mean ripple events
separately for each N-back condition. We then correlated these three
resulting values with the 3 N-values separately for the rest and PA session.
As a result, we obtained Pearson’s r value for each participant, both for the
rest and PA session. These values were translated into a metric measure by
calculating their inverse hyperbolic tangent and were compared between
rest and PA using a t-test across participants.

MEG-Ripple to EEG-low-frequency coupling
Ripple centered EEG epochs. Ripple and spindle activity have been
observed in the humanmedial temporal lobe and ripple-spindle coupling
is described as signature of memory consolidation in rodents40,41. Ana-
logous findings in humans can be found during sleep42. Here we tested
whetherwe couldfind a similar coupling pattern duringwakefulness with
non-invasive measurements. In the first step, we tested whether a mod-
ulation of EEG activity occurs simultaneously with ripple events (see
Fig. 5A right). Since there could be coupling between ripples and lower
frequencies, where the spindle frequency acts as a harmonicmultiple.We
investigated the ripple centered low frequency band rather than only
spindle frequency band. In such cases, we would be investigating har-
monic oscillations rather than direct ripple to low-frequency coupling.
The fact that spindle activity is observed despite the broad frequency
range emphasizes the robustness of our analysis. Although lower fre-
quencies typically exhibit higher amplitudes, oscillations in the spindle
band are the ones that emerged as significant. We epoched the filtered
EEG signal (1–25 Hz) at the central channels around the ripple events.
We identified ripples as outlined above and segmented the EEG data into
epochs of length 2 sec (−1 to 1 sec) centered to the peak of the ripple.
Resulting time series for each ripple event and each channel were aver-
aged within subjects. This yielded a time series RS(t) for each participant.
We then standardized RS(t) (z-score) according to baseline activity. First,
we calculated themean and standard deviation of the RS(t) in the baseline
period. Here, we chose the time interval between −1.0 and −0.5 sec
before the ripple event as the baseline since we expect spindle events to be
longer in duration than ripple events. Finally, we subtracted the mean
from the RS(t) at each time point and divided the RS(t) at each time point
by the standard deviation. We compared the spindle amplitude of the
ripple centered EEG at each time point against 0 using a t-test. In the next
step, we constructed surrogate EEG signals whichwere also tested against
0. The surrogate signals were constructed by centering the EEG signals to
random time points matching the number of ripples in each subject. In
this analysis, we shifted the ripple time series for each participant over
time. This allows for maintaining both the number of ripple events and
their intervals consistently. With these new surrogate ripple events, we
repeated the analysis described above (see Fig. 5A left).

Ripple spindle coupling. In the next step, we investigated whether
ripples are coupled to a specific low-frequency phase (see Fig. 5B). Phase-
amplitude cross-frequency coupling (PAC) is amechanism that has been
proposed to coordinate the timing of neuronal firing within local
neural networks43. We utilized conventional cross-frequency coupling
metrics43,44 to test for coupling of ripple events to low frequency bands in
EEG channels. Generally, we determined at which phase of the low-
frequency activity ripples most frequently occur. To do this, we initially
determined the phase angle at each time point for 20 frequency bands
ranging from 1 to 20 Hz each. First, we band-pass filtered the EEG signal
at these center frequencies each with a width of 2 Hz. We then extracted
the instantaneous phase information using the Hilbert transformation.
We calculated the instantaneous phase of the low frequency activity for
each EEG channel time series. We divided each low frequency cycle
separately in 50 equally spaced bins ranging from –π toπ and summed the
number of ripples within a 45-degree window centered on every phase
bin45. The resulting ripple event histograms – each containing 50 values –
were averaged, separately for each low frequency band (see Fig. 5B right).
We then averaged the dominant phase across different subjects with
(circ_mean in Circular Statistics Toolbox) and compared the phases with
parametric Watson-Williams multi-sample test (circ_wwtest in Circular
Statistics Toolbox, see Fig. 5B right lower).

Temporal coordination of ripples with spindle events
In the previous steps, we examined whether ripple peaks are generally
coupled with spindle activity. However, spindle activity is not a uniform
oscillation but is characterized by specific high-amplitude bouts35. In the
next step, we examined whether ripples are temporally locked to spindle
events by comparing the frequency of ripples outside and within spindle
events. We defined spindle events as follows: first, we filtered the EEG
signal in the spindle frequency (13-20 Hz) and obtained the analytic
amplitude A(t). The resulting time series was z-scored, and peaks with
z > 4 were detected. Note, that the peak of A(t) is not necessarily the
peak/trough of the spindle oscillation. Given that ripples are aligned
with a specific phase (see Results) of the spindle activity we centered
spindle events to the troughs of spindle oscillation. Hence, we epoched
the data (−2 to 2 sec) around each detected peak in A(t). We then
detected the trough of the spindle oscillation closest to the peak of A(t).
This time point was used as the center of the spindle event. To deter-
mine spindle duration, we first applied an envelope to the spindle band-
filtered data. We then identified envelope peaks that exceeded a
threshold set at the mean plus one standard deviation of the spindle
event. The start time of a spindle was defined as the valley preceding the
first envelope peak, and the end time as the valley following the last
peak. Subsequently, we epoched the ripple time series around these
spindle events. We then tested when ripples occurred relative to indi-
vidual spindle events. Here, we defined the ‘spindle-out’ interval, which
occurs outside spindle events, as the 1-second periods before and after
each spindle event. The ‘spindle-in’ interval was defined based on the
duration of the spindle event itself. Ripple density was calculated by
summing ripple occurrences across four sensors positioned bilaterally
covering the MTL region, averaging them across spindle events, and
then dividing by the number of sample points. For each interval, we
computed the average ripple count across all spindle events for each
subject (see Fig. 5C). This results in a ripple event rate both for the
within and outside interval for each subject. This was done separately for
the PA and rest session. The resulting ripple event rates were then
compared using a t-test in each session. Finally, we tested when ripple
likelihood peaks relative to spindle peak events (see Fig. 5D). A peak of
ripple likelihood is shown shortly after the spindle onset. First, we
summed ripple epochs across all spindle event peak for each participant,
creating a time series of ripple likelihood around the spindle event peak
for each participant. These individual time series were then averaged
across subjects. This averaged ripple rate was compared against a sur-
rogate distribution. To construct this distribution, we shifted the
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summed ripple epochs around spindle event onset for each participant
over time and averaged the resulting time series across participants. This
process was repeated 1000 times, resulting in 1000 surrogate ripple event
series. We determined the likelihood of ripple events at each time point
relative to the surrogate distribution at each time point by estimating the
probability density functions (pdf.m in Matlab). This yielded a prob-
ability value p for each time point around the spindle event.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data supporting the results presented in the results section and
figures can be accessed on github (https://github.com/SDuerschmid/
PhysicalExerciseWorkingMemory) upon publication.
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