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At what level does natural selection occur? When considering the reproductive dynamics of
interacting and mutating agents, it has long been debated whether selection is better understood by
focusing on the individual or if hierarchical selection emerges as a consequence of joint adaptation.
Despite longstanding efforts in theoretical ecology, there is still no consensus on this fundamental
issue, most likely due to the difficulty in obtaining adequate data spanning a sufficient number of
generations and the lack of adequate tools to quantify the effect of hierarchical selection. Here, we
capitalise on recent advances in information-theoretic data analysis to advance this state of affairs by
investigating the emergence of high-order structures- such as groups of species- in the collective
dynamics of the Tangled Nature model of evolutionary ecology. Our results show that evolutionary
dynamics can lead to clusters of species that act as a self-perpetuating group that exhibits greater
information-theoretic agency than a single species for a broad range of stable mutation rates.
However, this higher-order organization breaks down for mutation rates close to the error threshold,
where increased information processing is observed at the level of a single species. Formutation rates
higher than the error threshold, no stable population of species are observed in time, and all
individuality is lost in the ecosystem.Overall, our findingsprovide quantitative evidence supporting the
emergence of higher-order structures in evolutionary ecology from relatively simple processes of
adaptation and reproduction.

The dynamics of life around us are characterised by a plethora of complex,
interdependent relationships. These relations span across different scales,
from cells to organisms, and even the biotic and abiotic environment in
which they exist. Adaptation through selection is widely agreed to be the
motor behind both macro-evolution, as documented in the fossil record1,
and micro-evolution, as observed in microbial experiments2. However, the
collective and mutually interdependent nature of evolutionary dynamics
raises a critical question: What is the level at which selection effectively
operates on a set of entangled co-adapting entities?

Since Darwin, the standard view is to assume individual organisms
as the drivers of evolutionary change. An extreme version of this view is

to regard individual genes as the selective unit, still acting through the
organism to express changes in the behaviour3,4 (for an insightful dis-
cussion, see the book by Jablonka and Lamb5). Alternative perspectives,
where selection also acts at the level of higher-order entities (such as
groups of species, ecosystems, or even the whole biosphere) in a hier-
archical fashion, have been the subject of long debates1,5–7. Crucially, there
is a possibility that non-reproducing higher-order systems may be sub-
jected to a different kind of selection. For instance, theories of persistence
selection argue that evolution selects for the persistence of interaction
structures and processes that are implemented by various entities: genes,
cells, individual organisms or species8–11. This view amounts to a drastic
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shift in the way we conceive selection and evolution more broadly. Such
views raise important questions regarding how group-level dynamics
may make the fate of individuals depend not only on their genetic
information, but also on how this is integrated into a larger system of
interacting entities. Put simply, these views suggest to shift the focus from
the singer (i.e. organism, species, etc.) to the song9 (i.e. relationships
among the organisms or species).

A way to advance these questions is to avoid reducing them to a
dichotomous choice between selection at the basic level of reproduction
versus at some higher collective level, and instead consider that different
types of selection pressure may be working in tandem at different levels of
ecosystemic organisation. However, in order to pursue such a view, it is
crucial to have quantitative tools that are capable of identifying and dif-
ferentiating degrees of (possibly time- and scale-dependent) cooperative
selective structure, which could be used to investigate these ideas on
empirical or simulated data. Although there have been efforts to quantify
multi-level selection using statistical analysis12–14, they suffer from limita-
tions of misspecification when it comes to identifying the mechanisms of
such a selection15, as multiple mechanisms can result in the observed sta-
tistical measures. On the other hand, models that focus on mechanisms
can simulate evolutionary systems that exhibit emergent higher-order
selection16,17. However,metrics that track the strength of this selection in the
models often rely on the knowledge of the underlying interaction structure
or assume temporal stationarity. These conditions are usually not met in
laboratory or field experiments. Therefore, there is a need for model-
agnostic tools that can quantify the strength of higher-order interactions
from population-level datasets.

In this paper, we address these questions by using information-
theoretic tools to investigate the emergence of higher-order interactions in a
model of co-evolving species. Information-theoretic measures such as
entropy, mutual information and synergy have been useful in quantifying
diversity18, interdependence19 and complementarity20 in systems withmany
interacting parts, respectively. Moreover, recent theoretical advancements
have introduced promising methods based on information storage and
predictive information to quantify individuality21. The primary thesis
behind the information-theoretic approach to individuality is that if a group
of individuals can cohesively persist in time (i.e. their future population can
be predicted using their combined past), then they can better adapt and
survive. The enhanced persistence among groups of individuals can arise
due to interdependencies that stabilize the population of the group through
positive and negative feedback, being in line with the persistence theories of
evolution22,23 that propose the selection of lineages24 and interaction
structures10.Despite its attractiveness, it is currently unknown if information
individuality can spontaneously emerge in a co-evolutionary setting. Kra-
kauer et al.21 highlight the need for such a study in their discussions on the
implications of the information theory of individuality.

Building on these information-theoretic foundations, here we inves-
tigate the factors that support higher-order individuality in ecosystems by
analysing co-evolving species based on the well-studied Tangled Nature
(TaNa)model25. TheTaNamodel has beenused to studymultiple aspects of
co-evolutionary dynamics, including the observed species abundance
curves26, the entropy of species distributions27, hierarchical organization of
ecosystems28, and the statistics of mass extinctions29. The TaNa model
establishes the dynamics of the population of multiple species co-evolving
over time. In the model, the fitness of each species depends on the popu-
lation of species with which it interacts, as well as the total population of the
ecosystem. Based on this fitness, species produce offspring that can undergo
mutation, thus introducing new species into the ecosystem. Here, each
species is represented by a pangenome. Thus, a mutation in an offspring of
the species introduces a member of a completely different species than its
parent. As the systemevolves overmany generations, it gets into punctuated
stable states or quasi Evolutionary Stable Strategies (q-ESS). These meta-
stable states become longer in duration30 and support more mutualistic
interactions28 as systems evolve to more resilient configurations. Further
details of themodel are presented in Section 'Methods'. Here, we use the co-

evolutionary dynamics of the TaNa model to investigate whether there are
conditions under which the evolution selects for the interactions at the level
of groupsof species insteadof a single species.Weexplore this question from
various complementary angles, including analyses of information-theoretic
‘individuality’21, integrated information31,32, and other measures of infor-
mation dynamics33,34. We explain the applicability of the information the-
oretic measures, using a schematic diagram in a simple case of two co-
evolving species (see Fig. 1).

The analysis of themodelhighlights the crucial role ofmutation rates in
enabling adaptability and higher-order organization among the co-
evolution of species. We find that groups of species can persist cohesively
to maximize their joint information individuality for a broad range of
mutation rates. As mutation rates increase beyond this range, this cohesion
is lost, andmaximum information individuality is observed at the scale of a
single species near the Eigen error threshold35. For mutation rates higher
than the error threshold, no temporally stable or persistent population of
species are observed as mutations get decoupled from fitness and survival.
The role of mutation rates in affecting adaptability and survival under
changing environmental conditions has been a topic of research interest36,37.
Some researchers have argued that environmental conditions, such as
nutrition availability38 and temperature39, can alter mutation rates. Others
have suggested that the effect of such factors is limited in the case of sexual
reproduction40. Our work provides new evidence on the role of moderate
mutation rates in facilitating higher-order individuality. Crucially, this
higher-order phenomenon is observed in the evolutionary dynamics arising
from a simple underlyingmechanism of reproduction andmutation, which
does not include explicit group-level interactions41 or interaction delays42.
Furthermore, the analysis does not assume a preferred level of selection and
allows quantification of the degree of individuality at all levels. Thus, these
results identify the spontaneous emergence of groups of cooperating species
in a model of co-evolving species.

Results
The results presented in this section are obtained from 10,000 simulations
(of 105 generations each) each for different values of the mutation rates and
calculating ensemble averages over the results (see the 'Methods').

We begin by visualising the dynamics of the model in terms of
existing species at each generation (see Fig. 2). It can be observed that for
low mutation rates, the system quickly gets into a metastable regime
where only a subset of species exists. These metastable states are dis-
rupted by reorganization regions where existing species die out and
others come into being. The reorganization is often initiated by the
appearance of a disruptive mutant, which negatively impacts the popu-
lation of existing species. The population of species undergoes mutations
in response to the mutant, enabling exploration the space of all feasible
species to identify another subset of species, with balanced interactions,
to stabilize their population (see Fig. 6 in ref. 28). Finally, at the end of
this exploration, a new metastable state is established with a distinct
subset of species. As mutation rates increase, the duration of the reor-
ganization region increases. Eventually, beyond pmut > 0.05, no meta-
stable states are seen to be established.

Error threshold and population diversity
As a first step in our analyses, we investigated how the total population and
diversity of species are affected by the mutation rate of the evolving agents.
The diversity is calculated using the exponential of the Shannon indexof the
population distribution. This measure is also known as Hill’s Diversity43.
Special attention is paid to the dynamics observed in the vicinity of the ‘error
threshold,’which is the limit on themutation rate for species beyond which
the existing population of species provides no information about their
future44,45.

Our simulations show that the total population progressively decreases
withmutation rate, with a sudden drop after mutation rate 0.04 (see Fig. 3).
In contrast, the diversity of species increases with the mutation rate and
peaks at 0.04. This helps us identify the error threshold associated with the
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model as close to 0.05, beyond which no stable population of species are
observed.

By tracking the proportion of time spent by the system in the meta-
stable states and the reorganization regime (see Fig. 3), we identify a region
close to the thresholdwhere the system exhibits a non-trivial behaviour. For
mutation rates between 0.04 and 0.05, it is seen that the number of gen-
erations spent by the system in reorganization between themetastable states
increases.We refer to this rangeofmutation rates as the transition region.At
a mutation rate of 0.042, the system spends an equal amount of time
searching for stable configurations as staying in them, therebyenhancing the
variability at the level of individual species.

Information individuality
After identifying the error threshold, we investigated the potential presence
of higher-order individuality by estimating the organismal ‘individuality
scores’ for groups of different numbers of species via the framework
introduced by Krakauer et al.21. Briefly, this approach proposes an ‘indivi-
duality score’ that represents the degree towhich a group behaves as a single
entity in the sense that it is maximally self-predictive (i.e. the group’s future
population is maximally predicted from knowledge of the group’s past
population). According to this framework, if a group of species achieves a
higher individuality score than a single species, then the group is able to
leverage its interactions to adapt to the changing environment. This enables
the group to persist for longer as an evolutionary unit than a single
species alone.

Individuality scores were calculated over 10,000 different combina-
tions for each group size (i.e. the number of species considered in a group,
which we refer to as scale)—singlets (scale = 1), dyads (scale = 2), triplets
(scale = 3), and so on. These scoreswere then normalised based on the size
of the group. Results reveal that the mutation rates play an important role
in modulating higher-order individuality in coevolution. In Fig. 4, we
interpret the results relatively across the scales at any given mutation rate.
For instance, if increased normalised individuality scores are observed at

higher scales thanon a scale of 1,we identify higher-order organizations to
be present in the system. Increased individuality at higher scales suggests
groups of species interacting together in a manner that enhances the
group’s persistence. At low mutation rates, organisation into cliques of
higher scales becomes apparent, and higher individuality scores are
observed for scales between 3 and 9 (compared to scale 1). Though this
enhanced individuality at higher scales flattens out formutation rates 0.03
and 0.04, the higher-order organisation still persists (i.e. average indivi-
duality scores for higher scales are greater than the individuality score for
scale 1). For mutation rates in the transition range, the higher-order
organisation is lost, and the single species level becomes the most optimal
self-predicting scale.

Formal definitions of the individuality score presented here can be
found in the Methods section 'Information individuality'. These results are
also replicated on other proposed measures of individuality that take into
account the effect of the environment on the group of species, which con-
firms the presence of higher-order organisation (see Supplementary
Information B), irrespective of the measure used.

The normalised individuality scores presented here can be interpreted
as information carrying capacity46, predictive information47 or information
storage48. All of these definitions refer to the amount of information in the
past of the system that can be used to predict its future. In summary, the
individuality scores quantify the average level of persistence exhibited by
groups of species for every scale.Wevisualize the individuality scores at scale
6, a scale that exhibits higherorganismal individuality as compared to scale 1
for mutation rates below the transition region. (see Fig. 5).

It can be seen that the individuality score of species at scale 6 peaks for
lowmutation rates and thendecreasesmonotonically through the transition
region before going to zero near the error threshold.However, at the scale of
a single species, peak individuality is observed in the transition region. A
clear crossover can then be observed in the transition region, where higher-
order organisation loses individuality while the singular species gains
organismal individuality.

Fig. 1 | The figure provides a schematic representation of the information-
theoretic measures of storage, transfer and integration to populations of two co-
evolving species. A shows a periodically oscillating population of species. Here, the
past population can accurately predict the future population of the species, implying
that the information about the future of the population has been stored in the past
population. This information storage is measured using the mutual information
between the past and the future population of the species.B illustrates themeasure of
information transfer. Here, species 2 asymmetrically responds to the peak of species

1 by growing its population. This enhanced predictability of the future population of
one species by the knowledge of the past population of the other is measured using
Transfer Entropy. C shows a joint coherence between two aperiodically varying
populations of species. Here, the joint population behaves more predictably than the
population of any species alone. This global coordination is measured using an
improved measure of integrated information. The measure quantifies the excess
mutual information between the past and the future of the joint population as
compared to the sum of the information storage of each species.
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In the Supplementary Information E, we show that the model selects
for a very specific interaction structure at scale 6 to support high indivi-
duality. The structure includes ahighdegree of asymmetry in the interaction
amongst the species with a salient predator-prey interaction. This asym-
metry decays during the transition region, where the higher-order organi-
zation is lost. To directly establish the role of the interaction structure, we
simulated a neutral version of the Tangled Nature model. Here, we allowed
all species to interact with each other with the same weight. We do not see
any higher-order interaction emerge beyond scale 2. These results highlight
the role of an asymmetric interaction structure, with positive and negative
feedback, in the emergence of higher-order organization among co-evolving
species.

In the following section, we explore species-environment information
transfer and integration to explore dynamics in the error-transition region
further.

Interaction between species and their environment
As a last step of our analysis, we characterise the species-environment
interactions using measures of information transfer and integration.
Information transfer quantifies the excess predictability provided by the
population of a species or a group of species about the environment and vice

versa. Additionally, Information integration quantifies the joint predict-
ability of the future population of the species-environment system (see Fig. 1
for a schematic representation). Here, the environment is defined using the
informational boundary of the individual considered. For instance, if a
subset of K species is regarded as an individual, then this boundary implies
the rest of the species as its biotic environment (see Methods section
'Information individuality' for more details). As discussed before, we com-
pare these interdependencies at the level of single species (i.e. scale 1) against
scale 6, which our previous analysis highlighted as the scale that showed
higher individuality than scale 1 for most mutation rates below the error
transition region.We estimate these measures for various mutation rates in
order to identify how a species (or a group of species) interact with the
environment near the error threshold.

For the purposes of this analysis, we use the population of a single
species (for scale 1), a vector of the population of species (for scale 6) or the
total population of all remaining species (for environment) as random
variables to estimate the information measures discussed below. The
population of the environment is calculated as the difference between the
total population of the ecosystem and the total population of the species (or
the groupof species). Further details about these estimations are provided in
the Methods section 'Information-theoretic measures'.

Fig. 2 | Thefigure shows TaNa evolution recorded for 10,000 generations for four
different mutation rates. The bright dots indicate the existing species out of the 210

available species, identified by a unique Species ID. It can be seen that metastable

states are present for pmut < 0.05. These states are separated by a transition regime,
which becomes larger with increasingmutation rates. The simulations are generated
using standard model parameters, L = 10, Θ = 0.25, pkill = 0.2, k = 33 and μ = 1/143.
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First, we focus on the information transfer measured by Transfer
Entropy (TE)49 between species and environment. This directed measure
estimates the information that a source variable provides about the future
state of a target variable, over and above the information contained in the
present state of the target itself. In short, TEquantifies the statistical influence
that species and environment have upon each other’s future populations.

The information transfer to and from the environment also varies
differently at the two levels of organization (see Fig. 6). For scale 1, the
information flow is predominantly from the environment to the single
species, but decreases with increasing mutation rate until the transition
region. However, in the transition region, information flow peaks in both
directions, but at either end of the region.

The trends of information flow look different for the higher-order
organisation of species (Fig. 6). For scale 6, a significant amount of infor-
mation flow exists in both directions, though the environment-to-species
information flow is larger until the transition region. In this case, the
information flow peaks in both directions and stays almost equal
throughout the transition region. Thus, a near-symmetric information flow
is established during the transition region.

The transfer entropy from the environment to the group of species, in
the case of the Tangled Nature model, is mathematically equivalent to
another kind of individuality measure, the Environment determined
individuality21. This measure quantifies howmuch of the persistence of the
group is predicted by the environment beyond what the group can predict.
In essence, the interactions with the environment guide the group’s per-
sistence. However, this effect is much weaker compared to organismal

individuality scores. When we compare this quantity across the two scales,
we can see that in contrast to organismal individuality, scale 6 still possesses
some environment-determined individuality in the error-transition region.
On the other hand, the single species exclusively peaks in both individuality
scores in the transition region.

Finally, we look at the integrated information measured using ΦR34,50,
whichquantifies the level of integration among species and the environment
at the single species level (scale 1). This measure would be zero if the species
and the environment do not interact, and the future of the species (or
environment) depends only upon its current population. The measure is
positive if both species and the environment provide some information
about their joint future, which cannot be obtained independently from
either one (see Methods Information transfer and integration for details).

Here, we also recover a peak of integrated information during the
transition region (see Fig. 7) for scale 1. These results confirm that at the level
of single species, a peak in different modes of information processing:
information storage (organismal individuality), transfer (Environmental
determined individuality) and integration is observed in the error-transition
region. This finding is highly suggestive of a critical phase transition33,51.

Overall, this section presents two major findings: First, the species-
environment interactions at the level of a single species differ from the
higher levels of organisation. This difference is particularly significant near
the error threshold, where the higher-order groups of species lose orga-
nismal individuality while still sharing some influence from the environ-
ment. Meanwhile, at the single-species level, both organismal and
environment-determined individuality peak during the error-transition

Fig. 3 | Effect of mutation rate on the population dynamics. a As mutation rate
increases the overall population decreases monotonically, while b the diversity of
species increases until it reaches a peak value for a mutation rate of 0.04. c shows the
Shannon entropy of the population size distribution across the existing species. It
can be seen that the entropy gradually increases until the mutation rate of 0.04.
Beyond which, a sudden jump to a uniformly distributed population distribution is
observed (Entropy ≈ 1). For mutation rates higher than 0.04, the time spent by the

system in the reorganization region increases (d). This area is highlighted as the
Error Transition region in the lower panel. For a mutation rate of 0.042, the system
spends almost the same number of generations in reorganization between the
metastable states as it does in them. The lines show the ensemble average values of
the measures calculated from the simulations of the Tangled Nature Model, using
the standard parameters described in the methods. The standard deviation of
measures from the mean is shown using the error bands around the lines.
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region. This leads to the second finding of this analysis. Enhanced infor-
mation processing among the parts of the system during the phase transi-
tions is in line with the literature on criticality in complex systems32,33,51–53.
Wefind that information storage, transfer and integrationpeaks at the single
species level during the error transition region. These peaks occur near the
mutation rate ≈ 0.042 when the system spends an equal amount of time in
and between q-ESS. This metastable switching between the two regimes
increases the entropy of the temporal behaviour at the group level (as
evidenced by the reduced duration of metastable states). However, infor-
mation individuality (predictability) is seen to be increased at the level of
individual species for the mutation rates close to the error-transition. This
exhibits a trade-off between the higher-order organization (at lowmutation
rates) and independent single-species level predictability (at high mutation
rates, see Fig. 5). The stability afforded by lower mutation rates affords the
existence of stable group-level interactions that co-evolve and persist in
time. As mutation rates increase, this group-level coordination deteriorates
and enhanced predictability is observed at the level of a single species

during the shorter metastable states observed in the transition region
(see Fig. 2).

Discussion
This paper investigated hierarchical selection in the TangledNature (TaNa)
model of ecological evolution25. In contrast topriorwork, ourwork leverages
recent advances in information theory21 to provide analyses that are
quantitative and mathematically rigorous, which allows us to objectively
estimate the degree of high-order individuality in this self-organising evo-
lutionary system. Crucially, these tools provided evidence of how relatively
simple processes of adaptation and selection pressure can result in the
emergence of groups of cooperating species that act as effective units within
the evolutionary process. Specifically, our results identified signatures of
higher-order organization in the simulated ecosystems, with groups of 3–9
species acting as individual evolutionary units.We argue that the emergence
of this higher-order organization implies the presence of persistence selec-
tion at the higher level. Interestingly, the dominance of multi-species

Fig. 5 | Average Individuality scores for the two
scales of organization—Single species (scale 1)
and Higher Order (scale 6)—varying with
mutation rates. Individuality at scale 6 is higher
than scale 1 for low values ofmutation rates less than
0.04, i.e. before the error transition region. Indivi-
duality at scale 1 peaks in the error transition region
before decreasing to zero beyond the error transi-
tion. The lines show the ensemble average values of
the measures calculated from the simulations of the
Tangled Nature Model, using the standard para-
meters described in the methods. The standard
deviation ofmeasures from themean is shown using
the error bands around the lines.

Fig. 4 | Average Individuality scores observed at different scales and mutation
rates. a Increased information individuality is observed for higher scales (between 3
and 9) and low mutation rates (pmut ∈ [0.005, 0.04)). Conversely, in the transition
region (mutation rates of 0.042 and 0.045), single species (scale = 1) have the highest
individuality scores. The lines show the ensemble average values of the measures
calculated from10,000 simulations of theTangledNatureModel, using the standard

parameters described in the methods. The standard deviation of measures from the
mean is shown using the error bands around the lines. bWehighlight the scales with
optimal information individuality for each mutation rate. Higher order organiza-
tion at scales 5-6 is observed until pmut = 0.03. For pmut = 0.04, we do observe
enhanced individuality at scale 3; however, beyond this rate, the optimal scale is
observed at the scale of a single species.
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evolutionary units breaks down when mutation rates are close to the error
threshold, suggesting evolutionarily relevant interactions between hier-
archical selection and mutation rates.

The peak in each of the information-theoretic measures for groups of
3–9 species at intermediate mutation rates is highly suggestive of hier-
archically organised units of selection. In different biological contexts, this
could be interpreted as the selection of ecological communities54,
holobionts55, or viral quasispecies44. These interpretations would need to be
tested in more focused experimental/computational studies. Given the
design of themodel, these results further highlight the action of selection on
typesof interactionbeyond the individual species that are involved in a given
interaction10, since the subset of species changes in every metastable state
while the interactions within the existing subset of species become more
mutualistic overtime28,56. The results in this paper suggest that it is highly

plausible that emergent units of selection such as these could arise, and the
information-theoretic measures provide a quantitative toolkit for demon-
strating this. That said, more work is needed to translate these methods to
real-world datasets.

Clarifying how the proposed measures of hierarchical selection are
affected by mutation rates is useful to deepen our understanding of the
mechanismsdriving ecosystems fromanecological point of view. Increasing
mutation rates are generally related, among other things, to harsh envir-
onmental conditions or adversity57. Mutations during times of adversity are
a strategy to adapt and survive in a changing environment. Therefore, we
can understand themutation rates in the TaNamodel as a proxy to varying
the conditions of the abiotic environment.However, other parameters of the
model also relate more directly to environmental conditions, such as pkill,
which we have not analyzed in the current study. Further work is needed to

Fig. 6 | Information flow between species and
environment as measured using Transfer Entropy
for variousmutation rates.The top panel shows the
variation at the scale of a single species (scale 1), and
the bottom panel shows the higher-order grouping
(scale 6). Generally, more information flows from
the environment to the species. Except for scale 6 in
the transition region, where an almost symmetric
information flow is observed in both directions. A
peak in the transfer entropy is seen at both scales
during the transition region. The lines show the
ensemble average values of the measures calculated
from 10,000 simulations of the Tangled Nature
Model, using the standard parameters described in
the methods. The standard deviation of measures
from the mean is shown using the error bands
around the lines.

Fig. 7 | Average Integrated Information between the species and the environ-
ment at the single species level. The improved measure ΦR is positive across the
different values of mutation rates. This implies the species and the environment
jointly co-evolve. This integration peaks in the transition region close to the error

threshold. The lines show the ensemble average values of the measures calculated
from 10,000 simulations of the Tangled Nature Model, using the standard para-
meters described in the methods. The standard deviation of measures from the
mean is shown using the error bands around the lines.
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directly study the impact of adverse environmental conditions on the co-
evolution of species. Error transition—thatmarks the limit of mutation rate
for the existence of stable populations of species—shows some interesting
information processing properties. Firstly, as discussed above, the emergent
higher-order organisation breaks down in this region. Simultaneously,
individuality scores, as well as other information processingmeasures, peak
for individual species. This suggests a trade-off between collective persis-
tence through interactions (at the macro level) for increased individual
persistence (at the micro level) for continued survival.

Overall, this work is a step towards enabling quantitative investi-
gations about hierarchical selection and establishing a formal method of
analysis. Although the methods discussed here focus on computational
simulations, the increasing availability of ecological data and advanced
Bayesian methods for inferring probability distributions58 will make it
possible to apply the proposed framework to real-world datasets. How-
ever, proper normalization techniques will need to be developed, similar
to recently proposed methods59, to enable the comparison of indivi-
duality scores across datasets. It is worth emphasising that any ecosystem
has a variety of different species interacting with each other and the
environment in unique ways. While the present study focused on average
species-environment properties, future investigations could consider
more dedicated species-level analyses. Furthermore, the framework can
be deployed to other models of co-evolution to study the individuality
across different timescales (from microscopic to ecosystem) of evolution
and the relationship between the different scales. Finally, another inter-
esting extension of this work could be to apply similar methods to
applications of the TaNa model on social scenarios to investigate if high-
order phenomena also take a central role within the dynamics of
cultural60, organisational61, and opinion62 changes.

Methods
Here, we discuss the details of the model and the information-theoretic
measures used for the simulation and subsequent analysis of themodel.We
provide a brief overview of the Tangled Nature model25, followed by the
information individuality framework21 and other information dynamics
measures presented above.

The model
In the Tangled Nature model, species—represented by a binary vector—
form the dynamical units of evolution. The binary vector is an abstract
representation of the pangenome of the species. The number of agents with
the same pangenome represents the population of the species. The model
does not assign distinct genomes to each member; therefore, species
(identifiedbydistinct binary vectors) act as theprimaryunit of interaction in
the model. Agents from these individual species are subject to three sto-
chastic processes: asexual replication, mutations, and annihilation. No
structured groups or hierarchies are defined a priori. The evolutionary
dynamics occur in a space of pangenomes where random interactions
connect different species. The probability that an agent reproduces is
determined by a sum over influences from other co-existing species the
agent interacts with. This simple mathematical model captures a broad
range of evolutionary phenomena. Starting with a few existing species, the
model dynamics evolves to a quasi-stable configuration (also known as
quasi evolutionary stable strategies or q-ESS) where only a select group of
species exist. These subsets of species with stable populations are disrupted
bymutations in the system that drive them to extinction, and anewgroupof
species emerges as a result of the reorganization. Over time, the system
evolves to more and more stable configurations, where the durations of the
metastable states increase30 and the interactions between the existing subset
of species become more mutualistic over time28,56, thus avoiding these
extinction events and developing resilience.

Although themodel has evolved intodifferent variationsover the years,
for this study, we consider themodel as defined in the original paper30. Each
species is determined using a unique binary pangenome vector of length L,
comprising an ecosystem of a total ofM = 2L possible species. Interactions

between species are encoded in an interactionmatrix JM×M. All entries in the
interaction matrix are sampled at random from a uniform distribution,
Ji;j � Uð�1; 1Þ, thus allowing potentially symbiotic, competitive or
predator-prey relationships between any pair of species. However, of all
possible interactions, each interaction is permitted with the coupling
probability Θ. The coupling probability controls the overall connectivity of
the interaction matrix. The population of a given species at a given time is
represented as ni(t), and the total population of the ecosystem is represented
as N(t).

Starting froma random initial condition,where only a subset of species
exist in the system, each timestep starts with an annihilation step in which a
member of a species, selected uniformly at random, is killed with a prob-
ability pkill. This is followed by asexual reproduction, where a member of a
species, selected uniformly at random, creates an offspring with probability
poff. Each element of the pangenome of the offspring undergoes a mutation
with a probability pmut. These mutations introduce new species in the
ecosystem, which then interact with the existing species. Since the popula-
tion of species is updated using a random selection of an agent at each
timestep, a sufficient number of updates are needed to ensure each agent is
updated at least once.Therefore, the state of the system is recorded after each
generation, i.e.N(t)/pkill timesteps,which is the average number of timesteps
required to kill all currently existing species. The reproduction probability
poff depends upon the fitness of the species at the given timestep. The fitness
function, which is a weighted sum of interactions with all other species, is
defined as

Hðni; tÞ ¼
k

NðtÞ
XM

j¼1

Ji;jnjðtÞ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Inter-species interaction

� μNðtÞ|fflffl{zfflffl}
Resource Constraints

;
ð1Þ

where the parameter μ relates to the inverse of the carrying capacity of the
ecosystem. It characterizes the impact of resource constraints driven by
increasing population N(t), which negatively contributes to fitness. Mean-
while, k is a scaling parameter for the strength of the interactions. The
interaction strength is calculated using the sum of the influences from
neighbouring species Ji,j, weighted by their corresponding populations nj.
Thus, the fitness of a given species depends not only on how it interacts with
other neighbouring species but on the population of the ecosystem as well.
Thefitness function is related to the reproduction probability poff for a given
species i at timestep t as

poff ðni; tÞ ¼
1

1þ exp�Hðni;tÞ : ð2Þ

Note that the probability of reproduction is non-linearly related to the
fitness function. Although the probability of reproduction is higher for
species with positive fitness, some non-zero probability of reproduction
exists for negative fitness values, which enables non-performing species to
reproduce and mutate towards fitter species. We visualize the fitness (H)
and reproduction probability (poff) values in an example of interacting
species (see Fig. 8)

For the purposes of our study, the fixed parameters used for themodel
are L = 10,Θ = 0.25, pkill = 0.2, k = 33 and μ = 1/143. These parameters are
chosen based on the standard parameter ranges used in previous studies30

thathave recreated intermittent co-evolutionarydynamics observed in fossil
records63. We study the changes observed in the dynamics of the model
when a keyparameter pmut is varied. This parameter represents the selection
pressure introduced by the ecosystem. Since changing temperature and
weather conditions lead to more mutations38,39, pmut can be considered a
proxy for controlling abiotic environmental selection pressures57. This
parameter has a significant impact on the dynamics of the system: visually, it
can be observed (see Fig. 2) that the dynamics are more selective and stable
with fewer transitions at very low mutation rates (pmut = 0.001). In an
intermediate range (pmut = 0.01), more species are observed during the
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metastable states, along with more transitions. As the mutation rate
increases in the transition region, the transition time between two meta-
stable states increases throughout this range. Finally, for very highmutation
rates (pmut≥ 0.05), new species emerge, old species die every generation, and
the metastable states are non-existent (i.e. no stable population of species
emerge). Thus, the system exhibits a phase transition where the system
moves from order to disorder between the range of pmut ∈ (0.4, 0.5) (see
ref. 63 for a detailed discussion).

Computationally efficient Rust code was used to simulate the Tangled
Nature Model. The code is available with documentation on GitHub.

Information-theoretic measures
In this paper, we use tools from information theory to estimate the various
measures presented in the Results. Primarily, we use multivariate mutual
information (MI) to quantify interdependencies between time series of
species populations obtained from the simulations. Typically, the numerical
estimation ofMI requires stationary probability distributions of the random
variables. However, the Tangled Nature model exhibits non-stationary
evolution, i.e. the distribution of population across species changes with
generational time. Therefore, we use ensembles of simulations to estimate
mutual information at each time point. The population distributions are
estimated across ensembles at each generational timestep, providing sta-
tistically stable empirical distributions for the estimationofMI.Thismethod
is commonly used in neuroimaging studies where brain activity changes in
time in response to a stimulus64. Details of this ensemble method of esti-
matingmutual information are provided in Supplementary Information C.
Below,we briefly discuss themeasure of information individuality, aswell as
other measures used to quantify species-environment interactions.

We use the Gaussian estimators from the Java Information Dynamics
Toolkit65. A Python implementation of these estimators on a subset of
simulations generated using the Tangled Nature Model is available on
GitHub.

Information individuality. In recent work, Krakauer and others21 put
forward an information-theoretic solution to identifying the boundary
between an individual and their environment. This definition is based on
principles of optimal self-prediction- i.e. if a subsystem can predict its
future better than any of its parts, and any addition to the subsystem
hinders its predictability, then that subsystem is deemed an information
individual. This optimal self-predictability enables biological entities to
control and navigate their environment66, implying that selection for
persistence10,11 could be a putative explanation for their emergence. Once
such a boundary is identified, the rest of the parts can be considered as the
complement or the environment of the individual. This partition between
the individual and the environment is an informational boundary21.
Therefore, it should not be conflated with the natural environment,
which includes abiotic factors not modelled in this study.

For the analyses above, let S(t) be a joint vector representing the
population of a subset of K species, S(t) = (n1(t), n2(t),…, nK(t)), at a given
time t. Where ni(t) is the population of the species i. If N(t) is the total
population of the ecosystem, the population of the corresponding envir-
onment E(t) can then be written as

EðtÞ ¼ NðtÞ �
XK

i¼1

niðtÞ: ð3Þ

Then, based on the properties laid out in the original paper21, Krakauer
et al. propose three different individuality measures as follows:

Organismal Individuality A� ¼ IðSðtÞ; Sðt þ 1ÞÞ;
Colonial Individuality A ¼ IðSðtÞ; Sðt þ 1ÞjEðtÞÞ;

Environmental determined

Individuality nC ¼ IðEðtÞ; Sðt þ 1ÞjSðtÞÞ:

Fig. 8 | An example network of interacting species in the Tangled Nature model.
The size of the species nodes (green) in the network represents the population of the
species (ni). The species influence each other using positive (red) and negative (blue)
links. The strength of the influence is denoted next to the edges. We use the total

population of the example ecosystem (N = 475) and the standard parameters (μ = 1/
143 and k = 33) to calculate fitness and reproduction probability for a few species.
The fitness calculation is explicitly shown for Species 4, which gets positive and
negative influences from species 2 and 1, respectively.
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The operator I(X; Y) refers to the mutual information between vari-
ables X and Y. The organismal individuality A* measures the total infor-
mation shared between the current population vector S(t) to the future
S(t + 1) of the subset of species. Essentially, it tracks how the joint prob-
ability distribution of the population of a subset of species evolves over time.
The colonial individualityA focuses on the extra information that is shared
between the present and the future of the species beyondwhat can be gained
from the environment E(t). Finally, nC measures the information shared
between the future population of the subset of species and the present
population of the environment beyond what is already known from the
present population of the species. Here, we focus on the organismal indi-
viduality, which is closely linked to persistence selection10,11. This indivi-
duality measure includes both the collective predictive information of the
group of species, as well as the redundancy they share with the environment
(see ref. 21 for more details). Such information is useful for the species to
maintain cohesion and respond to environmental fluctuations.

For our analyses,wefirst generate an ensemble of 10,000 simulations of
the Tangled Nature model with different initial conditions for each muta-
tion rate. We then sample a maximum of 105 different subsets of K species
from a rank-ordered list of all possible subsets of species. The subsets are
ranked in the order of population of species they contain, starting with the
subset of the most populous K species. The rank ordering of subsets of
species ensures sampled subsets with similar population distributions and
interaction structures across time, improving comparison across different
subset sizes. Finally, we measure the average organismal individuality of
each subset by estimating the mutual information between the current and
future populations of the species (see Supplementary Information C). This
process is repeated for differentK values ranging fromK=1–15. To account
for the bias introduced by increasing dimensions as we calculate multi-
variate mutual information, we normalize using the group size (see Sup-
plementary Information D). Thus, the normalized individuality score
shown in Fig. 4 can be written as

Individuality score ¼ IðSðtÞ; Sðt þ 1ÞÞ
K

: ð4Þ

Information transfer and integration. Finally, we briefly describe the
measures shown in Section 'Interaction between species and their
environment' to quantify species-environment interaction. We keep the
same notation as above, using S(t) to denote the vector representing the
population of K species at time t, and E(t) to denote the state of their
environment at time t.

Transfer Entropy (TE) is a conditional mutual information (CMI)-
based measure of Granger causality. TE quantifies information transfer
from a source variable to the target as CMI between the past of the source
and the future of the target conditioned on the past of the target. For
instance, TE from a subset S of K species to their environment E can be
written under the Markov condition as,

TE ðS ! EÞ ¼ IðSðtÞ; Eðt þ 1ÞjEðtÞÞ ð5Þ

Measures of integrated information (generally denoted byΦ) were first
introduced by Tononi et al.67 to measure integration among different
regions in the brain. Since then, multiple related measures have been pro-
posed, with some adapted to more practical scenarios31,68 and applied to
quantify interactions across a broad range of complex systems32. In essence,
these measures quantify the extent to which the interactions between parts
of a system drive the joint temporal evolution of the system as a whole; a
system has high integrated information if its dynamics strongly depend on
the interactions between its parts.

Here, we estimate two measures of integrated information (whole-
minus-sum integrated information, ΦWMS31, and its revised version, ΦR69)
between a single species and its environment jointly evolving over time.
Denoting the population of species i and its environment E by the joint

random variable X = (ni, E), Φ
WMS is given by

ΦWMS ¼ IðXðtÞ;Xðt þ 1ÞÞ �
X2

i¼1

IðXiðtÞ;Xiðt þ 1ÞÞ ; ð6Þ

where Xi denotes the i
th element of X.

Despite its intuitive formulation,ΦWMS has one crucial disadvantage: it
can becomenegative in systemswhere the parts are highly correlated69,70. To
address this problem, Mediano et al. proposed a revised measure of inte-
grated information,ΦR, based on themathematical framework of integrated
information decomposition (ΦID)69. This revised measure simply adds a
new term toΦWMS, correcting for the correlation, or redundancy71, between
the parts of the system:

ΦR ¼ ΦWMS þmini; jIðXiðtÞ;Xjðt þ 1ÞÞ: ð7Þ
In the main text, we report results using ΦR, due to its better inter-

pretability. For completeness, we provide a comparison between the
two measures of integrated information in Supplementary Informa-
tion Fig. F.1.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The simulations analyzed in this study were generated using the Tangled
NatureModel.A subset of simulateddata ismade available onGitHub.Data
used to generate the plots of the manuscript are provided in Supplemen-
tary Data.

Code availability
A computationally efficient RUST code is made available publicly on
GitHub. A Python implementation of the information-theoretic analysis
using JIDT, alongwith the associated code and a subset of simulated data, is
also made available on GitHub.
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